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Abstract. In this paper we investigate the role of horo-
spheres in Integral Geometry and Differential Geometry.
In particular we study envelopes of families of horocycles
by means of “support maps”. We define invariant “linear
combination” of support maps or curves. Finally we ob-
tain Gauss-Bonnet type formulas and Chern-Lashof type
inequalities.

1. Introduction

Some parts of Integral Geometry and Differential Geometry in
euclidean spaces rely on the space of hyperplanes. For instance
kinematic formulas, support functions, height functions in re-
lation with the Gauss map and the total (absolute) curvature.
Here the space of oriented hyperplanes is a cylinder S

n−1 × R

equipped with an isotropic metric invariant with respect to eu-
clidean motions. In fact this isotropic metric is just the pullback
of the metric on S

n−1 under the canonical projection.
In Hyperbolic Geometry this situation looks quite different.

The space of geodesic hyperplanes is topologically a cylinder but
with a non-degenerated Lorentz-metric invariant with respect to
hyperbolic motions (de Sitter sphere). In some sense horospheres
are closer to euclidean hyperplanes. The space of horospheres is a
half-cone S

n−1×R
+ equipped with an invariant isotropic metric,

which is a warped product of the metric on S
n−1 with R

+.
In this paper we investigate the role of horospheres in Integral

Geometry and Differential Geometry. After some prelimineries
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we study in section 3 envelopes of families of horocycles by means
of “support maps”. In section 4 we define invariant “linear com-
bination” of support maps or curves. Finally in section ?? we
obtain Gauss-Bonnet type formulas and Chern-Lashof type in-
equalities.

This work was done when the fourth author was visitor at the
CRM within the research programm “Geometric Flows. Equi-
variant Problems in Symplectic Geometry”.

2. Preliminaries

We use the Lorentz space model for the Hyperbolic Geometry.
In detail, the model lives in Lorentz space R

n+1
1 with its Lorentz

product

〈x, y〉 = x1y1 + x2y2 + · · · + xnyn − xn+1yn+1 .

The n-dimensional hyperbolic space H
n is realized as

H
n = {x ∈ R

n+1
1 : 〈x, x〉 = −1 ∧ xn+1 > 0}

i.e. the upper half of an two-sheeted hyperboloid with the light
cone Cn = {x ∈ R

n+1
1 : 〈x, x〉 = 0} as asymptotic cone. The

group G of hyperbolic motions of H
n is given by the subgroup

of the Lorentz group leaving invariant H
n.

The space H of horospheres of H
n is realized as the upper half

of the light cone, i.e.

H = Cn
+ = {x ∈ R

n+1
1 : 〈x, x〉 = 0 ∧ xn+1 > 0 .}

Indeed, horospheres in H
n are exactly the non-void sections of

H
n with hyperplanes which are parallel to hyperplanes tangent

to the light cone Cn. Given θ ∈ Cn
+, then the affine hyperplane

Θ = {x ∈ R
n+1
1 : 〈x, θ〉 = −1} is parallel to the tangent hyper-

plane TθC
n
+ = {x ∈ R

n+1
1 : 〈x, θ〉 = 0} of Cn

+ at θ and intersects
H

n in horosphere which we also denote by Θ. Given a horosphere
Θ in H

n, i.e. the intersection of H
n with an affine hyperplane Θ

parallel to a tangent hyperplane of Cn
+ along along a half light-

ray. Then there exists exactly one θ in this half light-ray such
that Θ = {x ∈ R

n+1
1 : 〈x, θ〉 = −1}. (In the following we shall
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always denote horospheres in H
n (or the underlying affine hy-

perplane) by capital greek letters and the vectors representing
them in Cn

+ by the corresponding small greek letters.)
The correspondence between θ and the hyperplane Θ comes
exactly from the polarity relation with respect to the quadric
±H

n ⊂ R
n+1
1 . The Lorentz product induces on Cn a degenerated

product (isotropic metric).
The light-rays in the cone Cn

+ are exactely the pencils of “par-
allel” horospheres. Two parallel horospheres Θ1 and Θ2 touch
one another at a point at infinity, and they lie in constant hyper-
bolic distance to each other. A little computation in the model
shows that this distance is given by | lnλ|, where λ ∈ R

+ is given
by θ2 = λθ1. Here we use the signed distance from Θ1 to Θ2 by

d(Θ1, Θ2) = − ln λ . (1)

For fixed Θ1, as λ → +∞ the horosphere Θ2 shrinks to the com-
mon point at infinity whereas the signed distance d(Θ1, Θ2) →
−∞. On the other side, if λ → 0, then Θ2 expands over the
whole Hn and d(Θ1, Θ2) → +∞.

The space of horospheres H = Cn
+ ⊂ R

n+1
1 is endowed with a

n-form ω which is invariant under the Lorentz group. In terms
of the coordinates (x1, . . . , xn+1) ∈ R

n+1
1 this form is given by

ω =
1

xn+1
dx1 ∧ . . . ∧ dxn+1 = xn−2

n+1dxn+1dv (2)

where dv is the spherical volume element at x−1
n+1(x1, . . . , xn) ∈

S
n−1, cf. [San67], [San68].
Our bridge between the point space Hn and the space of horo-

spheres Cn
+ is the following.

Definition 2.1. Let M be a smooth regular hypersurface in H
n

and ν(x), x ∈ M , a unit normal vector field along M . Then
θ(x) = x + ν(x) ∈ Cn

+ represents the horosphere Θ(x) which is
tangent to M at x such that ν(x) points into its convex side. We
call

θ : M −→ Cn
+ , x 7→ x + ν(x) (3)
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the “support map” of M .

The support map θ of M is smooth, and in general tranverse
to the generators of Cn

+.

3. Envelopes of horocycles

3.1. Support maps: from c to θ. Let us start with a regular
parametrized curve c(s) in H

2 , s ∈ I , s an arc length parame-
ter.
In order to describe the differential geometry of the curve, we
use the Frenet theory. That means we have the positive ori-
ented Frenet frame along c, build by the unit tangent vector
e1(s) = c′(s) and the normal unit vector e2(s). The Frenet equa-
tions ▽e1(s)e1(s) = κg(s)e2(s), ▽e1(s)e2(s) = −κg(s)e1(s) then
define the geodesic curvature κg of c (▽ denotes the co-variant
derivative in H

2).
In order to describe the support map, let ν(s) be a unit normal
vector field along c. We consider the support map θ of c with
respect to ν, i.e.

θ : I → C2
+ with θ(s) = c(s) + ν(s).

The horocycle Θ(s) is tangent to c at c(s) and ν(s) points into
its convex side.
Then (the primes denote derivations with respect to s)

θ′ = c′ + ν ′ = c′ + ǫe′2 = (1 − ǫκg)e1

with ǫ := 〈ν, e2〉. (Note: 〈e2, e2〉 = 1 ⇒ 〈e2, e
′

2〉 = 0 , 〈c, e2〉 =
0 ⇒ 0 = 〈c′, e2〉 + 〈c, e′2〉 = 〈c, e′2〉, hence e′2 ∈ TcH

2.)
this shows that the curve θ(s) is regular parametrized iff κg 6= ǫ1.
The curve θ(s) is then space-like, and its arc length parameter
σ is given by

dσ = |1 − ǫκg|ds. (4)

3.2. Envelopes: from θ to c. Let us start with a regular
parametrized curve θ(σ) in C2

+ which is locally a graph with re-
spect to the generators of C2

+, σ ∈ I, σ an arc length parameter,
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i.e 〈θ̇, θ̇〉 = 1. We look for the envelope curve c(σ) of the family
Θ(σ) of horocycles in H

2, i.e.

〈c, c〉 = −1,

〈c, θ〉 = −1, (5)

〈ċ, θ〉 = 0 (envelope condition).

For the curve θ we have
〈θ, θ〉 = 0 ⇒ 〈θ̇, θ〉 = 0 ⇒ 0 = 〈θ̈, θ〉 + 〈θ̇, θ̇〉 = 〈θ̈, θ〉 + 1
(the points denote derivations with respect to σ),

〈θ̇, θ̇〉 = 1 ⇒ 〈θ̇, θ̈〉 = 0 , and

〈θ̇, θ̈〉 = 0 ⇒ 〈θ̈, θ̈〉 + 〈θ̇,
...
θ 〉 = 0 .

From (5) we get
〈c, c〉 = −1 ⇒ 〈ċ, c〉 = 0 , and

〈c, θ〉 = −1 ⇒ 0 = 〈ċ, θ〉 + 〈c, θ̇〉 = 〈c, θ̇〉.

Now, we assume that θ, θ̇, θ̈ are linear independent, and we try
c = αθ + βθ̇ + γθ̈ with unknown functions α, β, γ . We take into
account the above relations, i.e.
0 = 〈c, θ̇〉 = α〈θ, θ̇〉 + β〈θ̇, θ̇〉 + γ〈θ̈, θ̇〉 = β , and

−1 = 〈c, θ〉 = α〈θ, θ〉 + β〈θ̇, θ〉 + γ〈θ̈, θ〉 = −γ , and

−1 = 〈c, c〉 = α2〈θ, θ〉+β2〈θ̇, θ̇〉+γ2〈θ̈, θ̈〉+2αβ〈θ, θ̇〉+2αγ〈θ, θ̈〉+

2βγ〈θ̇, θ̈〉 = γ2〈θ̈, θ̈〉 − 2αγ .
And we get

c =
1

2

(

1 + 〈θ̈, θ̈〉
)

θ + θ̈ . (6)

Now, with the expression (6) for c we directly check
〈c, c〉 = −1 , i.e. c ⊂ H

n , 〈c, θ〉 = −1 , i.e. c ∈ Θ , and 〈ċ, θ〉 = 0.
And therefore, c is the envelope of Θ we looked for.

From (6) we get by differentiation

ċ =
1 − 〈θ̈, θ̈〉

2
θ̇ . (7)

(To this, we try
...
θ as a linear combination of the vectors θ, θ̇, θ̈.

We take into account 〈θ̈, θ〉 = −1 ⇒ 〈θ̈, θ̇〉 + 〈
...
θ , θ〉 = 0 and

〈θ̈, θ̇〉 = 0 ⇒ 〈θ̈, θ̈〉+ 〈
...
θ , θ̇〉 = 0, in order to get

...
θ = −〈

...
θ , θ̈〉θ −
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〈θ̈, θ̈〉θ̇.)

Formula (7) shows that the envelope c is regular iff 〈θ̈, θ̈〉 6= 1.

Remark 3.1. The condition 〈θ̈, θ̈〉 6= 1 means, that the osculat-
ing plane of the curve θ in R

3
1 is not tangent to the model H

2.
This property characterizes curves θ in C2

+ which envelope regu-
lar curves in H

2.

Remark 3.2. The osculating plane of θ at a fixed parameter de-
fines a family of horocycles with the following geometric mean-
ing: If the osculating plane is space-like, then the envelope curve
c of θ has an osculating circle at the point under consideration.
We have |κg| > 1 at this point. And the family of horocycles
envelopes this osculating circle on their concave sides or con-
vex sides respectively, if the plane of the family intersects H

2 or
avoids H

2 respectively.
If the osculating plane is of mixed type, then the envelope curve
c of θ has an osculating equidistant at the point under consid-
eration. We have |κg| < 1 at this point. And the family of
horocycles envelopes this equidistant.

Finally we compute the geodesic curvature κg of the curve c
in terms of θ:
From (6) we have c = αθ + γθ̈, and further

c′ =
dc

ds
=

dσ

ds
ċ =

dσ

ds

(

α̇θ + αθ̇ + γ̇θ̈ + γ
...
θ
)

.

Because of c′ ∼ θ̇ and |θ̇| = 1 we can compute

1 = |c′| = |〈c′, θ̇〉| = |1 − ǫκg|
∣

∣

∣

〈

α̇θ + αθ̇ + γ̇θ̈ + γ
...
θ , θ̇

〉
∣

∣

∣
=

= |1 − ǫκg|
∣

∣

∣

(

α̇〈θ, θ̇〉 + α〈θ̇, θ̇〉 + γ̇〈θ̈, θ̇〉 + γ〈
...
θ , θ̇〉

)
∣

∣

∣
=

= |1 − ǫκg|
∣

∣

∣

(

α − γ〈θ̈, θ̈〉
)
∣

∣

∣
.

Inserting the coefficients α, β from (6) we get

1 =
|1 − ǫκg|

2

∣

∣

∣

(

1 − 〈θ̈, θ̈〉
)∣

∣

∣
. (8)
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3.3. Further relations between c and θ. We want to write
the length L(c) and the total curvature TC(c) of the point curve
c in terms of the support curve θ.

Proposition 3.1. Let c(s), s ∈ I, be a regular curve in H2

parametrized by arc length s and ν(s) a unit normal vector field
along c. Let θ : I → C2

+, θ(s) = c(s) + ν(s) denote the support
map of c with respect to ν, and set ǫ = 〈ν, e2〉.
If ǫ = +1 and κg > 1, or ǫ = −1 and κg > −1 respectively, then

L(c) =
1

2

∫

θ

ǫ
(

κ2
θ − 1

)

dσ, (9)

where κθ is the curvature of the curve θ as a curve in R
3
1, and

TC(c) =

∫

c

κg ds =
1

2

∫

θ

(

κ2
θ + 1

)

dσ. (10)

Proof. The case ǫ = +1 and κg > 1: From (4) and (8) we get

ds =
1

κg − 1
dσ =

|1 − 〈θ̈, θ̈〉|

2
dσ.

Locally c lies in the convex side of Θ, hence we have 〈c, θ̈〉 > 0.
(This can be seen in the model: Take the intersection of C2

+

and the plane through θ in direction span(θ̇, θ̈) which represents
the horocycles tangent to the osculating circle of c, and take
into account that c locally lies in the convex side of Θ.) Hence

through (6) we have 1 − 〈θ̈, θ̈〉 < 0. Because σ is an arc length

parameter on θ we have 〈θ̈, θ̈〉 = κ2
θ. Altogether we get (9).

From (4) and (8), taking into account 1 − 〈θ̈, θ̈〉 < 0, we get

κθ ds =
〈θ̈, θ̈〉 + 1

2
dσ,

hence we get (10).
In case ǫ = −1 and κg > −1 the proof runs analogously. �
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4. Linear combinations of support maps

In the cone Cn
+ each generator is a half-ray, i.e. R

+. Hence
along each generator we have an addition and a multiplication,
as far as well defined. This way we are able to define “linear
combinations” of support maps. In the following we investigate
the 2-dimensional situation.

4.1. The “λ-multiple”.

Definition 4.1. Let c(s), s ∈ I, be a regular curve in H
2 parametrized

by arc length s and ν(s) a unit normal vector field along c. Let
θ : I → C2

+, θ(s) = c(s) + ν(s) denote the support map of c with
respect to ν.
For λ ∈ R+, we call the envelope of λθ in H

n, in case it is well
defined, the “λ-multiple λ c of c”.

We consider the case ǫ = +1 and κg > 1. Then locally c lies
in the convex side of each of its tangent horocycles which are
supporting c, and we have 〈θ̈, θ̈〉 > 1.
We consider θ∗ = λθ with λ > 0. Using (1) we set t = d(Θ, Θ∗) =
− ln λ.

a) The case λ > 1: The envelope c∗ of θ∗ is the inner parallel
curve to c at distance t.
We compute

〈
d2θ∗

(dσ∗)2
,

d2θ∗

(dσ∗)2
〉 =

1

λ2
〈θ̈, θ̈〉 .

Taking into account (7) we get: If λ2 < 〈θ̈, θ̈〉 = κ2
θ, then the

envelope c∗ is regular. Singular points occur for λ2 = 〈θ̈, θ̈〉.

In our case we have 〈θ̈, θ̈〉 > 1. Therefore (8) implies

κg =
〈θ̈, θ̈〉 + 1

〈θ̈, θ̈〉 − 1
. (11)

The geodesic curvature κg and the curvature radius ρ are related
by

κg = coth ρ =
e2ρ + 1

e2ρ − 1
, (12)
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hence
e2ρ = 〈θ̈, θ̈〉 . (13)

This shows that singular points occur for t = −ρ, i.e. singular
points occur when the inner parallel curve of c runs through focal
points of c.

b) The case λ < 1: The envelope c∗ = ct of θ∗ is the outer
parallel curve to c at distance t.
Because of λ < 1, formula (7) shows that ct is regular for all
t > 0.
We now compute the length of ct: Using (9), dσ∗ = λ dσ, we get

L(ct) = L(c∗) =
1

2

∫

θ∗
〈

d2θ∗

(dσ∗)2
,

d2θ∗

(dσ∗)2
〉 dσ∗ −

1

2

∫

θ∗
dσ∗ =

=
1

2

1

λ

∫

θ

〈θ̈, θ̈〉 dσ −
1

2
λ

∫

θ

dσ =

=
1

2

(

1

λ
− λ

)
∫

c

κg ds +
1

2

(

1

λ
+ λ

)

L(c) .

And replacing λ = e−t, we arrive at

L(ct) = sinh(t)

∫

c

κg ds + cosh(t)L(c) . (14)

This is a well-known Steiner formula in hyperbolic plane, cf. e.g.
[San76].

4.2. The “sum”.

Definition 4.2. Let c1, c2 be two regular curves in H
2 and θ1, θ2

their support maps with respect to unit normal fields ν1, ν2 along
c1, c2. Then we call the envelope of θ1 + θ2 in H

n, in case it is
well defined, the “sum c1 + c2 of c1 and c2”.

Suppose θ2 = λθ1 , parametrized by the arc length parameter
σ1 on θ1. Then we have

dθ2

dσ1

=
dλ

dσ1

θ1 + λ
dθ1

dσ1

,

〈
dθ2

dσ1

,
dθ2

dσ1

〉 = λ2〈
dθ1

dσ1

,
dθ1

dσ1

〉 = λ2 ,
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hence

dσ2 = λ dσ1 . (15)

We consider, in case it is well defined, θ∗ = θ1 + θ2 = (1 + λ) θ1.
Then we have

dθ∗

dσ1

=
dλ

dσ1

θ1 + (1 + λ)
dθ1

dσ1

and

〈
dθ∗

dσ1
,
dθ∗

dσ1
〉 = (1 + λ)2〈

dθ1

dσ1
,
dθ1

dσ1
〉 = (1 + λ)2 .

Therefore we get

dσ∗ = (1 + λ) dσ1 =
1 + λ

λ
dσ2 = dσ1 + dσ2 , (16)

and we arrive at

Proposition 4.1. For the lengths of the support images involved
in the “sum” the following relation holds

L(θ∗) = L(θ1 + θ2) = L(θ1) + L(θ2) . (17)

In order to compute the length L∗ and the total curvature TC∗

of the sum in terms of the summands, we need the following

Definition 4.3. Let c1, c2 be two regular curves in H
2 and θ1, θ2

their support maps with respect to unit normal fields ν1, ν2 along
c1, c2. Then θ2 = λθ1, and the signed distance d(Θ1, Θ2) from
Θ1 to Θ2 is given by d(Θ1, Θ2) = − ln λ , cf. (1). We call

w12 : θ1 → R , σ1 7→ − ln λ(σ1) (18)

the “mixed width function of c1 and c2 with respect to c1”.

The mixed width function describes the relative position of c1

and c2 to one another in terms of the distance between parallel
tangent horocycles.

Remark 4.1. If θ1 is the support map of a point O ∈ H
2, then

w12 coincides with the horocycle support function of c2 based at
the point O, cf. [Fil70], [San67], [San68].
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Remark 4.2. If c1 = c2 = c and c is h-convex, then the mixed
width function w12 coincides with the width function with re-
spect to horocycles considered in [?].

4.2.1. The sum of “concave-sided” support maps. We consider
the following situation: Let c1, c2 be two regular curves in H

2

with geodesic curvatures (κg)1, (κg)2 > −1. We take the sup-
port maps θ1, θ2 according to ǫ1 = ǫ2 = −1, that means locally
the curves lie on the concave sides of their respective support
horocycles.

Proposition 4.2. Suppose the situation described above. Then,
whenever well defined, the sum θ∗ = θ1 + θ2 envelopes a regular
curve c∗ = c1 + c2 in H

2 with
(i) κ∗

g > −1 , and
(ii) c∗ lies locally on the concave sides of its respective support
horocycles.

Proof. The curves c1, c2 lie locally on the concave sides of their
respective support horocycles, therefore the osculating planes of
θ1, θ2 intersect H

2 without being tangent (cf. Remark 3.1).
Now, we keep fixed an arbitrary parameter σ1.
The osculating plane of θ1 at σ1 is given by

θ1(σ1) + span(θ̇1(σ1), θ̈1(σ1)).

Let P1 denote the parallel plane through θ∗(σ1), i.e.

P1 = θ∗(σ1) + span(θ̇1(σ1), θ̈1(σ1)).

The osculating plane of θ1 at σ1 intersects H
2 without being

tangent, and θ∗ = θ1+θ2, therefore P1 also intersects H
2 without

being tangent.
Now θ2 = λθ1, hence

θ̇2 = λ̇θ1 + λθ̇1 and θ̈2 = λ̈θ1 + 2λ̇θ̇1 + λθ̈1 (19)

(where the dots denote derivatives with respect to σ1). And the
osculating plane of θ2 at σ1 is given by

θ2(σ1) + span(θ̇2(σ1), θ̈2(σ1)).
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Let P2 denote the parallel plane through θ∗(σ1), i.e.

P2 = θ∗(σ1) + span(θ̇2(σ1), θ̈2(σ1)).

The osculating plane of θ2 at σ1 intersects H
2 without being

tangent, we have θ∗ = θ1 + θ2, therefore P2 also intersects H
2

without being tangent.
The osculating plane of θ∗ at σ1 is given by

P ∗ = θ∗(σ1) + span(θ̇∗(σ1), θ̈
∗(σ1))

with

θ̇∗ = θ̇2 + θ̇1 and θ̈∗ = θ̈2 + θ̈1. (20)

Let T be the tangent plane of C2
+ along the generator R+ ·θ1(σ1),

i.e.
T = θ∗(σ1) + span(θ1(σ1), θ̇1(σ1)). For a ≥ 0 let Ta denote the

plane parallel to T given by Ta = T + a θ̈1(σ1).
Then Ta intersects P1 in the line

ℓ1a = θ∗(σ1) + a θ̈1(σ1) + R · θ̇1(σ1) .

And by (19), Ta intersects P2 in the line

ℓ2a = θ∗(σ1) +
a

λ(σ1)
θ̈2(σ1) + R · θ̇2(σ1) .

And by (20), Ta intersects P ∗ in the line

ℓ∗a = θ∗(σ1)+
a

1 + λ(σ1)

(

θ̈2(σ1) + θ̈1(σ1)
)

+R·
(

θ̇2(σ1) + θ̇1(σ1)
)

.

Let ga denote the line in Ta given by

ga = θ∗(σ1) + a θ̈1(σ1) + R · θ1(σ1) .

Then ga intersects ℓ1a in the point

Q1a = θ∗(σ1) + a θ̈1(σ1) .

And ga intersects ℓ2a in the point

Q2a = θ∗(σ1) + a θ̈1(σ1) +
a(λλ̈ − 2λ̇2)

λ2
|σ1

θ1(σ1) .
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And ga intersects ℓ∗a in the point

Q∗

a = θ∗(σ1) + a θ̈1(σ1) +
a((1 + λ)λ̈ − 2λ̇2)

(1 + λ)2
|σ1

θ1(σ1) .

The proof now splits into two cases.
The first case, ((1 + λ)λ̈ − 2λ̇2)|σ1

≥ 0:
P1 intersects H

2 without being tangent. Therefore there exists an
a > 0 such that ℓ1a intersects the parabola Ta∩H

2 without being
tangent. The axis of the parabola is θ∗(σ1)+a θ̈1(σ1)+R ·θ1(σ1).
Hence the half-ray Q1a+R+ ·θ1(σ1) ⊂ Ta lies in the convex region
bounded by the parabola Ta ∩ H

2. In the first case Q∗

a lies on
this half-ray. Hence Q∗

a lies in the convex region bounded by
the parabola Ta ∩ H

2. Hence ℓ∗a intersects the parabola Ta ∩ H
2

without being tangent. Hence the osculating plane P ∗ of θ∗ at
σ1 intersects H

2 without being tangent.
The second case, ((1 + λ)λ̈ − 2λ̇2)|σ1

< 0:
P2 intersects H

2 without being tangent. Therefore there exists
an a > 0 such that ℓ2a intersects the parabola Ta ∩ H

2 without
being tangent. Hence the half-ray Q2a + R+ · θ1(σ1) ⊂ Ta lies in
the convex region bounded by the parabola Ta ∩ H

2. Through
the assumption in the second case we have

λλ̈ − 2λ̇2

λ2
|σ1

≤
(1 + λ)λ̈ − 2λ̇2

(1 + λ)2
|σ1

.

Hence Q∗

a lies on this half-ray. Hence ℓ∗a intersects the parabola
Ta ∩ H

2 without being tangent. Hence the osculating plane P ∗

of θ∗ at σ1 intersects H
2 without being tangent.

Altogether, this shows that the osculating planes of θ∗ intersect
H

2 without being tangent. Therefore c∗ is regular at σ1, θ∗ sup-
ports c∗ concave-sided, and moreover κ∗

g > −1. �

Proposition 4.3. Suppose the situation described above. Then
the length L∗ and the total curvature TC∗ of c∗ = c1 + c2 write
in terms of c1, c2 and their relative position to each other in H

2
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as follows:

L∗ = −
1

2
(W (c1, c1 + c2) − L1 − TC1 − L2 − TC2) (21)

TC∗ =
1

2
(W (c1, c1 + c2) + L1 + TC1 + L2 + TC2) , (22)

with

W(c1, c1 + c2) = TC∗ − L∗ =

∫

θ1

ew1∗

(

(ẇ1∗)
2 + 2ẅ1∗ + κ2

θ1

)

dσ1

and the mixed with function

w1∗(σ1) = − ln(1 + λ(σ1)).

Proof. By the assumptions on c1, c2 and by Proposition 4.2 we
have for all three curves c1, c2, c

∗ that ǫ1 = ǫ2 = ǫ∗ = −1 and
(κg)1, (κg)2, κ

∗

g > −1. Therfore (6) writes dσ = (κg +1) ds, hence

L(θ) =

∫

θ

dσ =

∫

c

(κg + 1) ds =

∫

c

κg ds + L(c) . (23)

This and (17) gives

TC∗ + L∗ = TC1 + L1 + TC2 + L2. (24)

From (4) and (8) we get

ds =
1 − 〈θ̈, θ̈〉

2
dσ,

L(c) = −
1

2

∫

θ

κ2
θ dσ +

1

2
L(θ).

This applied to c∗ yields

L(c∗) = −
1

2

∫

θ∗
κ2

θ∗ dσ∗ +
1

2
L(θ∗). (25)
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Now a straightforward but lenghty computation, not acted out
here, starts at θ∗ = (1 + λ) θ1 and reaches

〈
d2θ∗

dσ∗2
,
d2θ∗

dσ∗2
〉 =

1

(1 + λ)2

[

(

d

dσ1

(ln(1 + λ))

)2

−

−2
d2

dσ2
1

(ln(1 + λ)) + 〈θ̈1, θ̈1〉

]

. (26)

Using the mixed with function of c1 and c∗ with respect to c1,
i.e. w1∗ = − ln(1 + λ), formula (26) gives

∫

θ∗
κ2

θ∗ dσ∗ =

∫

θ∗
〈
d2θ∗

dσ∗2
,
d2θ∗

dσ∗2
〉 dσ∗ =

=

∫

θ1

ew1∗

(

(ẇ1∗)
2 + 2ẅ1∗ + κ2

θ1

)

dσ1 . (27)

(Note: dσ∗ = (1 + λ) dσ1 cf. (16).)
Hence (25), (27) and (23) yield

L∗ = −
1

2

∫

θ1

ew1∗

(

(ẇ1∗)
2 + 2ẅ1∗ + κ2

θ1

)

dσ1+
1

2
TC∗+

1

2
L∗. (28)

Finally (24) and (28) give the result. �

c1

c2

c1 + c2
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Figure 1: The sum c1 + c2 of two circles c1, c2 in the Poincaré disk, with radii

r1 = 1, r2 = 0.5 and distance 2 between their centers

c1 c2

c1 + c2

Figure 2: The sum c1 + c2 of two circles c1, c2 in the Poincaré disk, with radii

r1 = 0.16, r2 = 2 and distance 5 between their centers

4.3. The “rum”.

Definition 4.4. Let c1, c2 be two regular curves and θ1, θ2 their
support maps with respect to unit normal fields ν1, ν2 along c1, c2.
Then θ2 = λθ1. Whenever well-defined, we call

c1#c2 = c∗ , given by θ∗ =
λ

1 + λ
θ1 (29)

the “rum c1#c2 of c1 and c2”.

Geometrically, this definition is induced by the sum of the two
parallel planes Θ1 and Θ2 in the vector space R

3
1.

Lemma 4.1. Let θ1, θ2 be support maps. Then θ∗ = θ1#θ2 lies
below θ1 and θ2 with respect to each of the generators of Cn

+.

Proof. This follows immediately from the geometric meaning of
the definition of the rum. Alternatively:
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We have θ2 = λ θ1 with λ > 0. Hence

θ∗ =
λ

1 + λ
θ1 < θ1 , and

θ∗ =
λ

1 + λ
θ1 =

1

1 + λ
θ2 < θ2 .

�

Proposition 4.4. ................

Proof. .............. �

Now we bring orientations into game. We assume a given ori-
entation on hyperbolic plane H

2. For an oriented curve c in H
2

we now fix ν = e2, i.e. ǫ = +1, and we have the support map
θ = c + e2. Horocycles Θ are orientated such that the convex
region is on its left-hand side (i.e. we choose the positive orien-
tation, i.e the counter-clockwise direction).
A view on oriented circles in H

2:
An oriented circle c is given by its center m ∈ H

2 and its radius
r ∈ R, thereby that the hyperbolic radius is |r| and the orien-
tation is counter-clockwise for r > 0 and clockwise for r < 0.
Especially for r = 0 we get points.
If c is oriented counter-clockwise, then its θ supports convex-
sided. If c is oriented clockwise, then its θ supports concave-
sided.
If the circle is given by its support map θ, then θ is the inter-
section of C2

+ with a space-like plane 〈n, x〉 = −1, n time-like
and inside the half-cone C2

+ ⊂ R3
1. Its center is m = n/|n| ∈ H

2

and its radius is r = ln |n|. Moreover: |n| > 1 iff θ supports c
convex-sided. |n| < 1 iff θ supports c concave-sided. |n| = 1 iff
c is a point.

Proposition 4.5. Let c1, c2 be circles or points in H
2 with cen-

ters m1, m2 and signed radii r1, r2. The rum c∗ = c1#c2 is a
circle or a point which center m∗ and signed radius r∗ are given
as follows:

r∗ =
1

2
ln

(

e2r1 + e2r2 + 2er1+r2 cosh(d(m1, m2))
)

(30)
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where d(m1, m2) is the hyperbolic distance between m1 and m2;
and

m∗ =
1

|n1 + n2|
(n1 + n2) (31)

with n1 = er1 m1 and n2 = er2 m2. Moreover

cosh(d(m1, m
∗))

cosh(d(m2, m∗))
=

er1 + er2 cosh(d(m1, m2))

er1 cosh(d(m1, m2)) + er2
. (32)

Proof. The support maps θ1, θ2 of c1, c2 are uniquely determined
by their planes 〈n1, x〉 = −1, 〈n2, x〉 = −1 as described above.
Then their centers and signed radii are given by m1 = n1/|n1|,
m2 = n2/|n1| and r1 = ln |n1| , r2 = ln |n2| (cf. (13)). The
support map θ∗ is given by the plane 〈n1 + n2, x〉 = −1. Then
straightforward computations give the results. �

c1

c2

c1#c2

c1

c2

c1#c2

c1

c2

c1#c2

Figure 3: The rum c1#c2 of two circles c1, c2 in the Poincaré disk, with signed

radii r1 = 1, +1,−1, r2 = −0.25, +0.25,−0.25 and distance 0.5 between their

centers

c1

c2

c1#c2

c1

c2

c1#c2

c1

c2

c1#c2
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Figure 4: The rum c1#c2 of two circles c1, c2 in the Poincaré disk, with signed

radii r1 = +1, +1,−1, r2 = −1, +1,−1 and distance 3 between their centers

Proposition 4.6. Let c1, c2 be counter-clockwise oriented circles
or points in H

2. Then the rum c1#c2 of c1 and c2 is a circle
containing both c1 and c2.

Proof. c1, c2 are counter-clockwise oriented. Hence their support
maps θ1, θ2 support convex-sided, and their planes do not in-
tersect H

2. Now θ∗ lies below θ1 and θ2 with respect to each
generator of C2

+ (cf. Lemma 4.1). Therefore the plane of θ∗ does
not intersect H

2. Hence each θ∗ supports c1#c2 convex-sided
and contains c1 and c2. �

Proposition 4.7. Let c1, c2 be counter-clockwise oriented smooth
regular boundaries of h-convex bodies K1, K2 in H

2. Then the
rum c∗ = c1#c2 of c1 and c2 is the counter-clockwise oriented
smooth regular boundary of an h-convex body K∗, also called rum
K∗ = K1#K2 of K1 and K2. Moreover K1, K2 ⊂ K∗.

Proof. The curves c1, c2 are oriented counter-clockwise and h-
convex, hence their θ1, θ2 support convex-sided.
The second order situation of c1 and c2 at related points de-
termines the second order situation of c∗ at the envelope point.
For more details at this place, one should especially take into
account:
1) The support map of the osculating circle of a c in H

2 is given
by the intersection of the osculating plane of θ in R

3
1 with C2

+.
2) The intersection of the osculating plane of θ with C2

+ is the
osculating circle of the curve θ in R

3
1 (use the Meusnier formula).

And
3) The rum in C2

+ of the osculating circles of θ1 and θ2 in C2
+ is

equal to the osculating circle of θ1#θ2 (to this use 2) and (26) ).
Now the second order situation of c1, c2 is given by their osculat-
ing circles osc1, osc2 in H

2. Therefore the circle (cf. Proposition
4.6) osc1#osc2 describes the second order situation of c1#c2.
Hence θ1#θ2 supports c1#c2 convex-sided, c1#c2 is regular and
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oriented counter-clockwise. And osc1#osc2 is the osculating cir-
cle of c1#c2. Therefore c1#c2 is h-convex. Finally by Proposition
4.6, K1, K2 ⊂ K∗. �
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