
ON HYPERBOLIC ONCE-PUNCTURED-TORUS BUNDLES III:
COMPARING TWO TESSELLATIONS OF THE COMPLEX PLANE

WARREN DICKS AND MAKOTO SAKUMA

Abstract. To each once-punctured-torus bundle, Tϕ, over the circle with
pseudo-Anosov monodromy ϕ, there are associated two tessellations of the
complex plane: one, ∆(ϕ), is (the projection from ∞ of) the triangulation
of a horosphere at ∞ induced by the canonical decomposition into ideal
tetrahedra, and the other, CW (ϕ), is a fractal tessellation given by the
Cannon-Thurston map of the fiber group switching back and forth between
gray and white each time it passes through ∞. In this paper, we fully
describe the relation between ∆(ϕ) and CW (ϕ).

Dedicated to Prof. Akio Kawauchi
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1. Introduction

Let ϕ be an (orientation-preserving) pseudo-Anosov homeomorphism of the
once-punctured torus T := (R2 − Z2)/Z2 and let

Tϕ := (T × R)/((x, t) ∼ (ϕ(x), t + 1))

be the bundle over the circle with fiber T and monodromy ϕ. By Thurston’s
uniformization theorem for surface bundles ([22, 20]), Tϕ admits a complete
hyperbolic structure of finite volume. Since Tϕ has a single torus cusp, Tϕ

admits a canonical decomposition into ideal tetrahedra which is dual to the
Ford domain ([9, 23]). The complete hyperbolic structure and the canonical
decomposition of Tϕ were constructed by Jørgensen in his famous unfinished
work [14], and rigorous treatments of (part of) his results were given in [1, 2,
12, 13, 15, 21].

The canonical decomposition induces a triangulation of any peripheral torus,
which in turn lifts to a triangulation, ∆(ϕ), of the universal covering of the
peripheral torus. We may assume that the ideal point ∞ of the upper-half-
space model H3 = C × R+ of hyperbolic space is a parabolic fixed point of
the Kleinian group Γ ∼= π1(Tϕ) uniformizing Tϕ. Then we may regard ∆(ϕ)
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as a triangulation of a horosphere at ∞, and then, by projection from ∞, as
a triangulation of the complex plane C which is invariant by the stabilizer
Γ∞ ∼= Z2 of ∞ in Γ.

On the other hand, one can take an external viewpoint and consider the
action of the Kleinian group Γ on the Riemann sphere at infinity. In [16],
C. T. McMullen constructed the Cannon-Thurston map associated to Tϕ, a
Riemann-sphere-filling Γ-invariant Peano curve (cf. [3, 4, 7, 18, 19]). Cer-
tain natural Peano sub-curves of this Peano curve fill in fractal domains in
the Riemann sphere. The first author’s work [5], [6] with J. W. Cannon pro-
vided some information about such fractal domains which we now mention.
In [5], it was found that the boundary of such a domain is the union of two
fractal arcs with common endpoints such that each arc is the limit set of
a finitely generated Kleinian semigroup. (In the case of the simplest (ori-
entable) hyperbolic punctured-torus bundle, these results, and the existence
of the Cannon-Thurston map, were first obtained in the first author’s previ-
ous joint work with R.C. Alperin and J. Porti [3].) In [6], these results were
applied to show that if the Cannon-Thurston map associated to Tϕ switches
between gray and white each time it passes through the point ∞, then the
complex plane becomes painted with a Γ∞-invariant colored CW-structure,
denoted CW (ϕ). In [6], the vertices, the (fractal) 1-cells, the Peano-subcurves
giving the (fractal) 2-cells, and the planar symmetry group of CW (ϕ) were
fully described.

Since both ∆(ϕ) and CW (ϕ) are Γ∞-invariant tessellations of the complex
plane which naturally arise from the punctured-torus bundle Tϕ, it is reason-
able to expect some nice relation between them. The purpose of this paper
is to show that this is actually the case (see Theorems 8.1 and 8.9). Figure 1
illustrates the main results, in which the monodromy ϕ corresponds to an
upward translation preserving the tessellations. In fact, we show that ∆(ϕ)
and CW (ϕ) share the same vertex set and that the combinatorial structure
of CW (ϕ) can be recovered from that of ∆(ϕ) and vice versa. To be more
precise, ∆(ϕ) is endowed with a structure of a “layered simplicial complex”,
which reflects the bundle structure of Tϕ (Section 5), whereas we have seen
that CW (ϕ) is endowed with a structure of a “colored CW-complex” (Sec-
tion 7), which reflects the way that the Cannon-Thurston map fills in the
Riemann sphere (see Proposition 7.3). For intuitive descriptions of ∆(ϕ) and
CW (ϕ), see Remarks 5.5 and 7.13. We show in Theorem 8.1 that ∆(ϕ) with
the layered structure (combinatorially) determines CW (ϕ) with the colored
structure, and vice versa. The theorem is proved by constructing a certain
CW-decomposition of the complex plane which serves as a common parent of
the two tessellations, in the sense that each of the two tessellations is obtained
from the parent CW-decomposition by collapsing certain edges and deleting
others (see Definition 8.8 and Theorem 8.9).
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Figure 1. Projected-horosphere triangulation ∆(ϕ) and frac-
tal tessellation CW (ϕ), for ϕ = RLLRRRLLLL. The straight
line segments etch ∆(ϕ) while the fractal lines etch CW (ϕ).
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This paper is organized as follows. In Section 2, we recall basic facts con-
cerning the orbifold fundamental group π1(O) of the (2, 2, 2,∞)-orbifold, O,
obtained as the quotient of T by the hyper-elliptic involution. The contents
in this section give the common language to describe the combinatorial struc-
tures of ∆(ϕ) and CW (ϕ). In Section 3, we describe the normal form of the
pseudo-Anosov map ϕ and fix a convention (Convention 3.1), which we em-
ploy throughout the paper. In Section 4, we describe the “type-preserving”
PSL(2,C)-representations of π1(O), and fix notation for the punctured-torus
bundle Tϕ and its natural quotient Oϕ. In Section 5, we recall the combinatorial
description of the canonical decomposition of Tϕ, introduce the “layered struc-
ture” of ∆(ϕ) (Definition 5.2), and give a combinatorial description of ∆(ϕ) in
terms of the language prepared in Section 2 (Theorem 5.3 and Proposition 5.4).
In Section 6, we recall the combinatorial description of the Cannon-Thurston
map associated to Tϕ, which was established by Bowditch [4] (Theorem 6.1).
In Section 7, we recall the fractal tessellation CW (ϕ) introduced in [6], and,
in Theorem 7.10, we give a combinatorial description of CW (ϕ) in terms of
the common language developed in Section 2. Finally, in Section 8, we state
the main theorem (Theorem 8.1) and give a proof of the theorem.

2. The orbifold O and its fundamental group

The punctured torus T = (R2−Z2)/Z2 admits the hyper-elliptic involution,
induced by the linear automorphism x 7→ −x of R2−Z2. The quotient of T by
the involution is the (2, 2, 2,∞)-orbifold O, i.e., the orbifold with underlying
space a once-punctured sphere and with three cone points of index 2. The
orbifold fundamental group π1(O) is defined to be the covering-transformation

group of the universal cover Õ of O. Since T is a 2-fold (branched) covering of

O, Õ is identified with the universal cover T̃ of T , and π1(T ) is a subgroup of
π1(O) of index 2.

The group π1(O) has the following presentation:

(2.1) π1(O) = 〈A,B, C | A2 = B2 = C2 = 1〉.
Set D := CBA. We may assume that D (resp. D2) is a peripheral element
of π1(O) (resp. π1(T )), namely it is represented by a simple loop around the
puncture of O (resp. T ). We call D the distinguished element.

By picking a complete hyperbolic structure of O (and hence of T ), we

identify Õ = T̃ with (the upper-half-space model of) the hyperbolic plane
H2 = {z ∈ C | =(z) > 0}, and identify π1(O) with a Fuchsian group (see Fig-
ure 2).

Then D is identified with the following parabolic transformation having the
ideal point ∞ of H2 as the parabolic fixed point.

(2.2) D(z) = z + 1.
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◦
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A(∞) B(∞) C(∞) DA(∞)

Figure 2. Fuchsian group 〈A,B,C〉. The symbols A, B, C,
◦
D(A) and

◦
B(C) are situated near the fixed points in H2 of the

involutions they denote.

Then the points A(∞), B(∞) and C(∞) lie on R from left to right in this
order. After a coordinate change, we may assume that the images of the
three geodesics joining ∞ with these three points, in the universal abelian
cover R2 − Z2 of T , are open arcs of slopes 0, 1 and ∞, joining the puncture
(0, 0) with (1, 0), (1, 1) and (0, 1), respectively. Thus the images of these three
geodesics in T are mutually disjoint arcs properly embedded in T , which divide
T into two ideal triangles, and thus they determine an ideal triangulation of T .

We now recall the well-known correspondence between the ideal triangula-
tions of T and the Farey triangles. The Farey tessellation is the tessellation of
the hyperbolic plane H2 obtained from the ideal triangle 〈0, 1,∞〉 by succes-
sive reflection in its edges. The vertex set of the Farey tessellation is equal to
Q̂ := Q∪{1/0} ⊂ ∂H2 and each vertex r determines a properly embedded arc
βr in T of slope r, i.e., the arc in T obtained as the image of the straight arc of
slope r in R2−Z2 joining punctures. If σ = 〈r0, r1, r2〉 is a Farey triangle, i.e.,
a triangle in the Farey tessellation, then the arcs βr0 , βr1 and βr2 are mutually
disjoint and they determine an ideal triangulation, trg(σ), of T . In the fol-
lowing we assume that the orientation of σ = 〈r0, r1, r2〉 is coherent with the
orientation of the Farey triangle 〈0, 1,∞〉, where the orientation is determined
by the order of the vertices. Then the oriented simple loop in T around the
puncture representing D2 meets the edges of trg(σ) of slopes r0, r1, r2 in this
cyclic order, for every Farey triangle σ = 〈r0, r1, r2〉.

By using the above notation, the generators A, B and C are described as
follows. Consider the ideal triangulation trg(σ) of T determined by the Farey
triangle σ = 〈0, 1,∞〉. It lifts to a π1(O)-invariant tessellation of the universal
cover T̃ = H2. Let {ej}j∈Z be the edges of the tessellation emanating from
the ideal vertex ∞, lying in H2 from left to right in this order. For each
ej, there is a unique order 2 element, Pj ∈ π1(O) which inverts ej. We may
assume after a shift of indices that e3j, e3j+1 and e3j+2 project to the arcs
in T of slopes 0, 1 and ∞, respectively, for every j ∈ Z. Then any triple of
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consecutive elements (P3j, P3j+1, P3j+2) serves as (A,B, C). Throughout this
paper, (A,B, C) represents the triple of specific elements of π1(O) obtained in
this way. We call {Pj}j∈Z the sequence of elliptic generators associated with
the Farey triangle σ.

The above construction works for every Farey triangle σ = 〈r0, r1, r2〉, and
the sequence of elliptic generators associated with it is defined. (Here we
use the assumption that the orientation of 〈r0, r1, r2〉 is coherent with the
orientation of 〈0, 1,∞〉.) Any triple of three consecutive elements in a sequence
of elliptic generators is called an elliptic generator triple. A member, P , of an
elliptic generator triple is called an elliptic generator, and its slope s(P ) ∈ Q̂
is defined to be the slope of the arc in T obtained as the image of the geodesic
〈∞, P (∞)〉. (Here it should be noted that ∞ is the parabolic fixed point of
the distinguished element D.) For example, we have

(2.3) (s(A), s(B), s(C)) = (0, 1,∞).

When we say that {Pj}j∈Z is the sequence of elliptic generators associated
with a Farey triangle σ = 〈r0, r1, r2〉, we always assume that

(s(P3m), s(P3m+1), s(P3m+2)) = (r0, r1, r2).

Thus the index j is well defined modulo a shift by a multiple of 3. We sum-
marize the properties of elliptic generators (cf. [2, Section 2.1]). We shall use
the following non-standard notation.

For elements X, Y of a group G,
◦

X(Y ) denotes XY X−1.(2.4)

We view
◦

X as an element of the automorphism group of G.

Proposition 2.1. (1) Let {Pj}j∈Z be the sequence of elliptic generators asso-
ciated with a Farey triangle σ. Then the following hold for every j ∈ Z.

(i) π1(O) ∼= 〈Pj, Pj+1, Pj+2 | P 2
j = P 2

j+1 = P 2
j+2 = 1〉.

(ii) Pj+2Pj+1Pj is equal to the distinguished element D of π1(O).

(iii) With the notation of (2.4), Pj+3m =
◦

Dm(Pj) for every m ∈ Z.
(iv) 〈s(Pj), s(Pj+1), s(Pj+2)〉 is a Farey triangle and its orientation is coherent

with 〈0, 1,∞〉.
(2) Let P and P ′ be elliptic generators of the same slope. Then P ′ =

◦
Dm(P )

for some m ∈ Z. Let σ = 〈r0, r1, r2〉 and σ′ = 〈r′0, r′1, r′2〉 be Farey triangles
sharing the edge 〈r0, r1〉 = 〈r′0, r′2〉, and let {Pj} and {P ′

j}, respectively, be the
sequences of elliptic generators associated with σ and σ′. Then the following
identity holds after a shift of indices by a multiple of 3 (see Figure 3).

(P ′
3j, P

′
3j+1, P

′
3j+2) = (P3j,

◦
P3j+1(P3j+2), P3j+1). ¤
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Figure 3. Adjacent sequences of elliptic generators. The sym-
bol ª, resp. ©, indicates a triangle in which coherent reading
of the vertices is counter-clockwise, resp. clockwise.

The last assertion of the above proposition motivates us to define the right
automorphism R and the left automorphism L of π1(O) by the following rule:

(2.5) R : (A,B,C) 7→ (A,
◦

B(C), B), L : (A,B,C) 7→ (B,
◦

B(A), C),

The proof of the following lemma is straightforward.

Lemma 2.2. Let σ0 = 〈0,∞,−1〉 and σ1 = 〈0, 1,∞〉. Then the following
hold.

(1) (A,B, C) is an elliptic generator triple associated with σ1. Moreover the
sequence of elliptic generators associated with σ1 is as follows:

· · · ,
◦

D−1(A),
◦

D−1(B),
◦

D−1(C), A, B, C,
◦

D(A),
◦

D(B),
◦

D(C), · · · .

(2) (A,C,
◦

C(B)) is an elliptic generator triple associated with σ0. Moreover
the sequence of elliptic generators associated with σ0 is as follows:

· · · ,
◦

D−1(A),
◦

D−1(C),
◦

D−1
◦

C(B) =
◦

A(B), A, C,
◦

C(B),
◦

D(A), · · · .

(3) Both R and L map the sequence of elliptic generators associated with σ0

to that associated with σ1. In fact, we have:

R(A,C,
◦

C(B)) = (A,B,C), L(A,C,
◦

C(B)) = (B,C,
◦

D(A)).

Moreover, R and L differ only by post composition of a shift of indices of
elliptic generators associated with σ1. To be precise, LR−1(Pj) = Pj+1,
where {Pj}j∈Z is the sequence of elliptic generators associated with σ1. In

particular, (LR−1)3 =
◦

D. ¤
Since R and L preserve the distinguished element D, they map elliptic

generators to elliptic generators. Moreover, if P and P ′ are elliptic generators
of the same slope, then R(P ) and R(P ′) (resp. L(P ) and L(P ′)) have the

same slope. Thus R and L act on the set Q̂ of slopes of the elliptic generators.
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Figure 4. The action of R and L on the Farey tessellation

The action R∗ (resp. L∗) of R (resp. L) on Q̂ induces an automorphism of the
Farey tessellation which acts as a one-unit shift on the bi-infinite sequence of
triangles incident on the vertex 0 (resp. ∞), and this shift can be thought of
as rotation to the right (resp. left). (See Figure 4.)

3. SL(2,Z) and the Farey tessellation

Recall that the mapping-class group of the once-punctured torus

T = (R2 − Z2)/Z2

is identified with SL(2,Z). Thus we may assume the pseudo-Anosov homeo-
morphism ϕ is a ‘linear’ homeomorphism determined by a matrix(

a b
c d

)
∈ SL(2,Z)

with |a + d| > 2.
The homeomorphism ϕ descends to an automorphism of the orbifold O,

denoted by the same symbol, and its action ϕ∗ on the set of slopes of the
(elliptic) generators is given by the rule

(3.1) s 7→ c + ds

a + bs
.

We note that the right and left automorphisms R and L of π1(O) defined by
(2.5) are induced by the automorphisms of O corresponding to the following
matrices, which we represent by the same symbols:

(3.2) R =

(
1 1
0 1

)
, L =

(
1 0
1 1

)
.
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The rule (3.1) determines the isometric action ϕ∗ on H2 preserving the
Farey tessellation. Since |a+ d| > 2, ϕ∗ : H2 → H2 is a hyperbolic translation,
and it has a unique attractive (resp. repulsive) fixed point µ+ (resp. µ−)

on the ideal boundary R̂ = R ∪ {∞}. Since µ± are irrationals, the oriented
geodesic ` in H2 running from µ− to µ+ crosses infinitely many Farey triangles
· · · , σ−1, σ0, σ1, σ2, · · · . This determines a bi-infinite word Ω =

∏
n∈Z fn in the

letters {R, L} by the rule that fn is R (resp. L) if ` exits the Farey triangle
σn to the right (resp. left) of where it enters. Since ϕ∗ preserves the Farey
tessellation, there is a unique (positive) integer p such that

(3.3) ϕ∗(σn) = σn+p.

Then Ω = (
∏p

n=1 fn)∞, where the product is infinite both to the left and to
the right.

After conjugation, we may assume that σ0 = 〈0,∞,−1〉 and σ1 = 〈0, 1,∞〉.
Then it follows that ϕ∗ is equal to

∏p
n=1(fn)∗ as isometries of H2 preserving

the Farey tessellation, where (fn)∗ is the isometry R∗ or L∗ induced by the
matrix R or L in (3.2) according as the symbol fn is R or L. Thus it follows
that ϕ is equal to ±∏p

n=1 fn as an element of SL(2,Z). Since the word Ω
contains both R and L, we may assume f1 = R and f0 = fp = L after a shift
of indices. This implies the well-known fact that ϕ is conjugate in SL(2,Z) to

(3.4) ±Ra1Lb1Ra2Lb2 · · ·RakLbk

for some k > 1 and positive integers ai and bi, where p =
∑k

i=1(ai + bi). This
word, up to cyclic permutation, is uniquely determined by the conjugacy class
of ϕ. We summarize our convention.

Convention 3.1. For the pseudo-Anosov homeomorphism ϕ of T , {σn}n∈Z
denotes the bi-infinite sequence of Farey triangles and {fn}n∈Z denotes the
bi-infinite sequence of the letters R and L defined in the above. We assume
the following conditions are satisfied.

(1) σ0 = 〈0,∞,−1〉 and σ1 = 〈0, 1,∞〉.
(2) f0 = fp = L and f1 = R.
(3) ϕ = ±Ra1Lb1Ra2Lb2 · · ·RakLbk , where k, ai, bi are positive integers

such that p =
∑k

i=1(ai + bi).

4. Type-preserving representations of π1(O)

A PSL(2,C)-representation of π1(O) (resp. π1(T )) is said to be type-preserv-
ing if it is irreducible (equivalently, it does not have a global fixed point in
H̄3) and sends the distinguished element D (resp. D2) to a parabolic transfor-
mation. It is well known that every type-preserving representation of π1(T )
uniquely extends to a type-preserving representation of π1(O) (see e.g. [14,
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Section 2]). Throughout this paper, we always assume that a type-preserving
representation ρ : π1(O) → PSL(2,C) is normalized so that

(4.1) ρ(D) =

(
1 1
0 1

)
.

Thus ρ(D) is a parabolic transformation fixing the ideal point ∞.
For an elliptic generator P , we have ρ(P )(∞) 6= ∞ if ρ is faithful, because

ρ(P ) fixes ∞ if and only if ρ(DP ) is an elliptic transformation of order 2 (cf.
[2, Proposition 2.4.4]), whereas DP ∈ π1(T ) is a hyperbolic element when we
identify π1(T ) with a Fuchsian group. We note that DP is represented by a
simple loop in T of slope s(P ), i.e., a simple loop in T = (R2−Z2)/Z2 obtained
as the image of a line in R2 − Z2 of slope s(P ).

Let σ be a Farey triangle and {Pj}j∈Z the sequence of elliptic generators
associated with σ. Let ρ : π1(O) → PSL(2,C) be a type-preserving repre-
sentation and assume that none of the ρ(Pj) fix ∞. Then {ρ(Pj)(∞)}j∈Z
is a sequence of points in C which is invariant by the Euclidean translation
z 7→ z + 1, because

(4.2) ρ(Pj+3)(∞) = ρ(DPjD
−1)(∞) = ρ(DPj)(∞) = ρ(Pj)(∞) + 1.

We denote by L(ρ, σ) the periodic (possibly self-intersecting) piecewise-straight
line in C obtained by joining the points {ρ(Pj)(∞)}j∈Z successively. If ρ is a
faithful discrete PSL(2,R)-representation of π1(O), then L(ρ, σ) gives a trian-
gulation of the real line, and the hyperbolic plane lying above the real line is
identified with the universal cover Õ. Moreover, the vertical geodesic joining
∞ and the vertex ρ(Pj)(∞) corresponds to the edge ej introduced in Section
2. In general, (the conjugacy class of) the representation ρ can be recovered
from L(ρ, σ) (cf. [2, Section 2.4]), and it plays a key role in the construc-
tion of the triangulation ∆(ϕ) induced by the canonical decomposition of the
punctured-torus bundle Tϕ.

Since the hyper-elliptic involution of T generates the center of the mapping-
class group of T , it extends to a fiber-preserving involution of Tϕ. Moreover,
it is realized by an isometric involution of the hyperbolic manifold Tϕ. The
quotient orbifold, Oϕ, is a bundle over S1 with fiber O and admits a complete

hyperbolic structure of finite volume. Let Γ̂ ∼= π1(Oϕ) be the Kleinian group

uniformizing the hyperbolic orbifold, and let ρĈ : π1(Oϕ) → Γ̂ ⊂ PSL(2,C) be
the holonomy representation. (As in [6], the notation ρĈ records the fact that

the limit set of Γ̂ is the whole Riemann sphere Ĉ.) The bundle structure gives
an exact sequence

(4.3) 1 −−−→ π1(O) −−−→ π1(Oϕ) −−−→ Z −−−→ 1,

and the restriction of ρĈ to π1(O) is type-preserving.
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The orbifold Oϕ can be compactified with a single cusp with associated
group Z2. Deleting a small open neighborhood of the Z2-cusp leaves a com-
pact orbifold with the same orbifold fundamental group as Oϕ and with one
boundary component; this boundary is a torus which we consider fixed and
we call it the peripheral torus, and by abuse of notation we denote it by ∂Oϕ.
This terminology lifts from Oϕ to Tϕ.

With respect to lifting the Z2-cusp to ∞, the fundamental group of the
peripheral torus ∂Oϕ is generated by the distinguished element D and an
element, D†, where D† projects to the generator 1 of Z in the exact sequence

(4.3). Since ρĈ(D) =

(
1 1
0 1

)
by the normalization, we have ρĈ(D

†) =

(
1 λ
0 1

)

for some non-real complex number λ. Under a suitable orientation convention,
we may assume =(λ) > 0. Thus the stabilizers, Γ∞ and Γ̂∞, of the ideal point

∞ with respect to the actions of Γ and Γ̂, respectively, are given as follows.

Γ∞ =

〈(
1 2
0 1

)
,

(
1 λ
0 1

)〉
∼= π1(∂Tϕ)(4.4)

Γ̂∞ =

〈(
1 1
0 1

)
,

(
1 λ
0 1

)〉
∼= π1(∂Oϕ).(4.5)

We may choose our peripheral torus ∂Tϕ so that its preimage in hyperbolic
three-space is a family of horospheres. The horosphere at∞ is acted on by Γ∞,
and can be identified with C by projection from ∞, and thus ∂Tϕ is identified
with the quotient space C/Γ∞. Similar identifications hold for ∂Oϕ.

5. The canonical decomposition of Tϕ

Recall that each Farey triangle σ determines a (topological) ideal triangula-
tion trg(σ) of the punctured torus T . Moreover, if σ and σ′ are adjacent Farey
triangles, then trg(σ′) is obtained from trg(σ) by a “diagonal exchange”, i.e.,
by deleting any one of the three edges and then inserting a new edge in the
unique possible way. As illustrated in Figure 5, trg(σ) and trg(σ′) can be
regarded as the bottom and top faces of an immersed topological ideal tetra-
hedron (with two pairs of edges identified) in T ×R. We denote this immersed
topological ideal tetrahedron in T × R by trg(σ, σ′).

The immersed topological ideal tetrahedra {trg(σn, σn+1)}n∈Z can be stacked
up to form a topological ideal triangulation of T × R. Since ϕ∗(σn) = σn+p

for every integer n, we may assume that the covering transformation (x, t) 7→
(ϕ(x), t + 1), of the infinite-cyclic covering T ×R of Tϕ, sends trg(σn, σn+1) to
trg(σn+p, σn+p+1) and hence it preserves the topological ideal triangulation of
T×R. Thus there is an induced topological ideal triangulation of Tϕ consisting
of p ideal tetrahedra and 2p ideal triangles and p ideal edges. The following
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trg(σ)

=

trg(σ)

-

trg(σ′) trg(σ, σ′)

Figure 5. trg(σ) and trg(σ′) form the immersed topological
ideal tetrahedron trg(σ, σ′)

theorem was found by Jørgensen [14] (cf. [11]) and rigorous treatments were
given in [1, 15, 12, 13, 14, 21].

Theorem 5.1. The topological ideal triangulation of Tϕ described in the above
is homeomorphic to the canonical decomposition, defined in the Introduction,
of the complete hyperbolic manifold Tϕ. ¤

In particular, the triangulation of the chosen peripheral torus ∂Tϕ induced
by the canonical tetrahedral decomposition of Tϕ is combinatorially isomorphic
to the triangulation induced by the above combinatorial tetrahedral decompo-
sition. We now describe this combinatorial triangulation following [12]. Since
trg(σn) is an ideal triangulation of a fiber surface T consisting of two ideal
triangles, it induces a triangulation, C(σn), of some chosen peripheral circle
(to be precise, the circular link of the ideal point) ∂T in T . The triangulation
C(σn) consists of 6 edges, which correspond to the 6 ideal vertex neighbor-
hoods of the two ideal triangles. The region in ∂T × R bounded by C(σn)
and C(σn+1) consists of 4 triangles, which correspond to the 4 ideal vertex
neighborhoods of the tetrahedron trg(σn, σn+1) (see Figure 6).

Since the family {trg(σn)}n∈Z forms the 2-skeleton of the ideal triangulation
of T × R, invariant by the covering transformation (x, t) 7→ (ϕ(x), t + 1), the
family {C(σn)}n∈Z forms the 1-skeleton of a triangulation of ∂T ×R invariant
by the covering transformation. It descends to a triangulation of the peripheral
torus ∂Tϕ. This is by definition the triangulation induced by the topological
ideal triangulation of Tϕ. Let ∆∗(ϕ) be the lift of this triangulation of ∂Tϕ to

its universal cover ∂̃Tϕ. Since ∂̃Tϕ is identified with the universal cover ∂̃Oϕ

of ∂Oϕ and since the above triangulation of ∂Tϕ is invariant by the hyper-

elliptic involution, ∆∗(ϕ) gives a triangulation of ∂̃Oϕ invariant by π1(∂Oϕ).

We identify ∂̃Oϕ with the complex plane C, where the action of the generators
D and D† of π1(∂Oϕ) are given by the following formulas.

(5.1) D(z) = z + 1, D†(z) = z + λ.

12
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©
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©
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upward apex

downward apex

Figure 6. The developed image of the triangles corresponding
to the 4 ideal vertices of the ideal tetrahedron

Here λ is the complex number in (4.5). Then the inverse image of C(σn) in C
is a bi-infinite, horizontal, piecewise-straight line, L(σn), which is invariant by
D. The translation D shifts each vertex and edge of L(σn) to the right by 3
combinatorial units. The piecewise-straight line L(σn+1) lies above L(σn), and
the 1-skeleton of ∆∗(ϕ) is obtained by stacking up these bi-infinite piecewise-
straight lines. Thus the set {L(σn)}n∈Z gives a layered structure of ∆∗(ϕ) in
the sense of Definition 5.2 (1) below. Moreover, (∆∗(ϕ), {L(σn)}n∈Z) can be
regarded as a layered π1(∂Oϕ)-simplicial complex in the sense of Definition
5.2 (3) below. See Figure 7, where the vertices are “opened up” in order to
emphasize the layered structure.

Definition 5.2. (1) By a layered structure of a 2-dimensional simplicial com-
plex K with underlying space C, we mean a family of 1-dimensional subcom-
plexes {Ln}n∈Z indexed by Z, satisfying the following conditions.

(i) Each Ln gives a triangulation of a subspace homeomorphic to the real
line R, and ∪n∈ZLn forms the 1-skeleton of K.

(ii) For each pair Lm and Ln with m 6= n, the union of Lm and Ln cuts off
a region in C homomorphic to a (possibly-pinched) infinite strip.

(iii) {Ln}n∈Z lie in C in the order of the index from bottom to top.

We call the pair (K, {Ln}n∈Z) a layered simplicial complex. It is often abbre-
viated to (K, {Ln}).
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Figure 7. The layered simplicial complex (∆∗(ϕ), {L(σn)}) for
ϕ = RLLRRRLLLL

(2) By an isomorphism between two layered simplicial complexes (K, {Ln})
and (K ′, {L′

n}) we mean a simplicial isomorphism from K to K ′ which maps
Ln to Ln+d, where d is an integer independent of n.

(3) For a group G, a layered G-simplicial complex is a layered simplicial
complex (K, {Ln}) together with an action by G where each element of G
acts as an automorphism of (K, {Ln}). An isomorphism between layered G-
simplicial complexes is defined to be a G-equivariant isomorphism between the
layered simplicial complexes.

By Theorem 5.1, ∆∗(ϕ) gives a combinatorial model of ∆(ϕ). To describe
the correspondence, consider the π1(O)-invariant ideal triangulation of H3, ob-
tained as the lift of the canonical decomposition of the hyperbolic manifold Tϕ.
Then ∆(ϕ) is obtained as its intersection with the horosphere C×{t0}, where t0
is a sufficiently large positive real number. Thus a vertex of ∆(ϕ) corresponds
to a vertical edge (i.e., an edge emanating from ∞) of the lifted canonical
decomposition, and vice versa. Similarly, an edge of ∆(ϕ) corresponds to a
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vertical face (i.e., a face having ∞ as a vertex) of the lifted canonical decom-
position, and vice versa. Recall that we identify ∆(ϕ) with its projection to
the complex plane C ⊂ ∂H3. Then a vertex of ∆(ϕ) is equal to the endpoint
of the corresponding vertical edge of the lifted canonical decomposition, and
an edge of ∆(ϕ) is equal to the line segment joining two vertices obtained as
the projection of the corresponding face of the lifted canonical decomposition.

Since the layer L(σn) of ∆∗(ϕ) arises from the ideal triangulation trg(σn), it

follows that the vertex set of its image in ∆(ϕ) is equal to {ρĈ(P (n)
j )(∞)}j∈Z,

where {P (n)
j }j∈Z is the sequence of elliptic generators associated with σn, and

ρĈ : π1(O) → PSL(2,C) is the type-preserving representation obtained from
the holonomy representation of the complete hyperbolic orbifold Oϕ. Thus
the layer L(σn) of ∆∗(ϕ) corresponds to the periodic piecewise-straight line
L(ρĈ, σn). Hence we obtain the following theorem.

Theorem 5.3. The family {L(ρĈ, σn)}n∈Z forms a layered structure of ∆(ϕ)
invariant by the action of π1(∂Oϕ), and the layered π1(∂Oϕ)-simplicial com-
plexes (∆(ϕ), {L(ρĈ, σn)}) and (∆∗(ϕ), {L(σn)}) are isomorphic. In particu-
lar, ∆(ϕ) is described as follows.

(1) The vertex set of ∆(ϕ) consists of the points

ρĈ(P
(n)
j )(∞).

(2) The edge set of ∆(ϕ) consists of

〈ρĈ(P (n)
j )(∞), ρĈ(P

(n)
j+1)(∞)〉.

(3) The face set of ∆(ϕ) consists of the convex hulls of

{ρĈ(P (n)
j )(∞), ρĈ(P

(n)
j+1)(∞), ρĈ(P

(n)
j+2)(∞)},

such that (P
(n)
j , P

(n)
j+2) is a pair of successive elements in the sequence of

elliptic generators associated with σn−1 or σn+1.

Here {P (n)
j }j∈Z is the sequence of elliptic generators associated with σn. ¤

The above argument also implies the following combinatorial description of
the topological model ∆∗(ϕ) of ∆(ϕ).

Proposition 5.4. (1) The vertex set of ∆∗(ϕ) is identified with the set of the
elliptic generators P such that s(P ) is a vertex of σn for some n ∈ Z.

(2) The edge set of ∆∗(ϕ) is identified with the set of pairs (P, Q) of elliptic
generators, such that P and Q are two successive elements in the sequence of
elliptic generators associated with σn for some n ∈ Z.

(3) The face set of ∆∗(ϕ) is identified with the set of triples (P,Q, R) of
elliptic generators, such that the following hold for some n ∈ Z.

(i) (P, Q,R) is an elliptic generator triple associated with σn.
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(ii) P and R are two successive elements of the sequence of elliptic generators
associated with σn−1 or σn+1.

(4) The layer L(σn) corresponds to the union of the bi-infinite family of

edges {〈P (n)
j , P

(n)
j+1〉}j∈Z, where {P (n)

j }j∈Z is the sequence of elliptic generators
associated with σn. ¤

The following remark, pointed out by the referee, gives heuristic relation-
ships between the word ϕ and ∆(ϕ).

Remark 5.5. Quotienting out by all covering transformations and the hyper-
elliptic involution, we have the following: Each maximal subword of ϕ of the
form Rn or Ln gives rise to one vertex of degree 2n + 4 and (n − 1) vertices
of degree 4 of ∆(ϕ). (The average degree is of course 6.) Conversely, Figure 7
provides a way of reading the infinite word Ω generated by ϕ from ∆(ϕ) (cf.
Remark 7.13).

6. The Cannon-Thurston map

In this section, we recall the combinatorial description of the Cannon-
Thurston map following [5, 6]. Recall that we have identified π1(O) with a
Fuchsian group by choosing a complete hyperbolic metric of O of finite area.
Let ρR̂ : π1(O) → PSL(2,R) ⊂ PSL(2,C) be the holonomy representation in-
ducing the identification. Then the limit set, Λ(ρR̂), of the group ρR̂(π1(O)) is

equal to the round circle R̂.
We recall a combinatorial description of the π1(O)-space Λ(ρR̂) following

[3] (cf. [10]). Let E be the space of the ends of the group π1(O). Here an
end of π1(O) is an infinite reduced word in A, B, C, i.e., an infinite sequence
X1X2 · · ·Xn · · · such that Xn ∈ {A,B, C} and Xn 6= Xn+1 for every n > 1.
For a finite reduced word F in A, B, C, let [F ] be the subset of E consisting
of those infinite words which have F as an initial segment. The space E is
endowed with the topology such that the family {[F ]}, where F runs over all
finite reduced words, forms a base of the topology. Then E is a Cantor set,
i.e., a compact, Hausdorff, totally disconnected, topological space. Note that
the left multiplication of π1(O) induces a left action of π1(O) on E.

For an infinite reduced word W , let Wn be the n-th initial segment of W .
Then lim ρR̂(Wn)(∞) exists in R̂ for every infinite reduced word W ∈ E, and

the map E → R̂ = Λ(ρR̂) defined by W 7→ lim ρR̂(Wn)(∞) is a continuous
π1(O)-equivariant surjective map. Moreover, if ∼ denotes the equivalence re-
lation on E generated by the relation

(6.1) WD∞ ∼ WD−∞

where W runs over elements of π1(O), then the above continuous map induces

a π1(O)-equivariant homeomorphism from E/∼ to Λ(ρR̂) = R̂. It should be
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noted that the equivalence relation∼ is independent of the choice of a complete
hyperbolic structure of O.

Recall the type-preserving representation ρĈ : π1(O) → PSL(2,C) asso-
ciated with the complete hyperbolic orbifold Oϕ. Then the limit set Λ(ρĈ)

of the Kleinian group ρĈ(π1(O)) is equal to the whole Riemann sphere Ĉ.
It was proved by McMullen [16] that for every infinite word W ∈ E the

sequence ρĈ(Wn)(∞) converges in Ĉ and that the map E → Ĉ defined by
W 7→ lim ρĈ(Wn)(∞) is a continuous π1(O)-equivariant surjective map, which
in turn induces a continuous π1(O)-equivariant surjective map

κ : R̂ = Λ(ρR̂) → Λ(ρĈ) = Ĉ.

This is called the Cannon-Thurston map associated to the punctured-torus
bundle Tϕ.

Following [5, 6], we now recall the combinatorial description of the Cannon-
Thurston map κ established by Bowditch [4]. Since we have fixed a complete
hyperbolic structure on O, we can identify the universal cover of O with the
upper half-space C+ := {z ∈ C | =z > 0}. Thus we obtain the following tower
of (topological) coverings:

(6.2) C+ → (R2 − Z2) → T → O.

Recall the attractive fixed point, µ+, of the linear fractional action of ϕ∗ on
C̄+ defined by (3.1), i.e., the slope of the expanding eigenspace of the linear
map ϕ ∈ SL(2,Z). Consider the foliation of T determined by the foliation
of R2 − Z2 by lines of slope µ+. This is the stable foliation of the pseudo-
Anosov homeomorphism ϕ, and it lifts to a foliation of C+ whose leaves are
homeomorphic to the open interval. Each end of each leaf has a well-defined
endpoint on R̂, and the closure of each leaf, which we call a closed-up leaf,
is homeomorphic to the closed interval. Now let P be the set of the parabolic
fixed points of the Fuchsian group ρR̂(π1(O)). Then two closed-up leaves have
a common point if and only if they share a point, say p, in P. Moreover, either
of these closed-up leaves is translated to the other by a parabolic element of
ρR̂(π1(O)) with parabolic fixed point p. For each p ∈ P, the union of the
closed-up leaves with an endpoint p is called the spider with head p (cf. [6,
Section 5]). Each of the closed-up leaves in the spider is called a leg, and the
endpoint of a leg different from the head is called a foot. It should be noted
that the image of a spider in R2 − Z2 consists of a puncture and the pair of
rays of slope µ+ emanating from the puncture. We thus obtain a partition,

P+, of C̄+ = C+ ∪ R̂ into (i) spiders, (ii) closed-up leaves disjoint from P, and
(iii) singletons in R disjoint from the endpoints of the closed-up leaves.
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By applying the complex conjugate to (6.2), we obtain yet another tower of
(topological) coverings:

C− → (R2 − Z2) → T → O,

where C− := {z ∈ C | =z < 0} is the lower half-space. Starting from the
foliation of R2 − Z2 by lines of slope µ−, the repulsive fixed point of ϕ∗, we

obtain a similar partition, P−, of C̄− = C− ∪ R̂. A piece in P+ and a piece of
P−, which are not singletons, intersect if and only if they are spiders with a
common head, say p ∈ P, and their intersection is reduced to {p}. Their union
is called the double spider with head p. It should be noted that the image of
a double spider in R2 − Z2 consists of a puncture and the two pairs of rays of
slopes µ+ and µ− emanating from the puncture. So the feet of a double spider,
contained in P+ and P− are arranged in R alternately. The ‘union’ of P+ and

P− determines a partition, P, of Ĉ into (i) double spiders, (ii) closed-up leaves
disjoint from P, and (iii) singletons in R disjoint from the endpoints of the
closed-up leaves.

The continuous map R̂/P → Ĉ/P between the quotient spaces induced by

the inclusion R̂→ Ĉ is surjective, because every piece in P intersects R̂. Since
the actions of the Fuchsian group ρR̂(π1(O)) on R̂ and Ĉ respect the partition P,
both quotient spaces inherit π1(O)-actions, and the above surjective continuous
map is π1(O)-equivariant.

As is shown in [5, Appendix], the Moore decomposition theorem implies

that the quotient space Ĉ/P is homeomorphic to the 2-sphere. We denote this
topological 2-sphere with the π1(O)-action by S2

P. Then we have the following
tower of continuous π1(O)-equivariant surjective maps:

R̂ = Λ(ρR̂) → R̂/P → Ĉ/P = S2
P.

Let κP : R̂ = Λ(ρR̂) → Ĉ/P = S2
P be the composition of these surjective

maps and call it the model Cannon-Thurston map. The following theorem
was proved by Bowditch [4].

Theorem 6.1 (Bowditch). The model Cannon-Thurston map κP gives a com-

binatorial model of the Cannon-Thurston map κ : R̂→ Ĉ. Namely, there is a
π1(O)-equivariant homeomorphism

Φ : S2
P → Λ(ρĈ) = Ĉ

such that κ = Φ ◦ κP. ¤
By the above theorem and the description of the model Cannon-Thurston

map, it follows that the inverse image κ−1(x) of a point x ∈ Ĉ consists of one,
two, or a countably infinite number of points. If |κ−1(x)| = 2, then κ−1(x)
consists of the endpoints of a closed-up leaf of one of the two foliations. If
|κ−1(x)| = ∞, then x is a parabolic fixed point of ρĈ(π1(O)), i.e., there is
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an element D′ of π1(O) conjugate to D such that x is the fixed point of the
parabolic transformation ρĈ(D

′). In this case κ−1(x) consists of the fixed point
of ρR̂(D

′) and the feet of the double spider having the point as the head.

7. The fractal tessellation CW (ϕ)

In this section, we review the construction of the fractal tessellation CW (ϕ)
introduced in [6]. Recall that the Cannon-Thurston map is obtained by shrink-
ing each lifted closed-up leaf of the stable and unstable foliations to a point (in
particular, each double spider is shrunk to a point). The fractal tessellation

reflects the way the Cannon-Thurston map fills in Ĉ.
Let s be the double spider with head ∞, the parabolic fixed point of ρR̂(D),

and let {`m}m∈Z be the legs of s, and let wm be the foot of `m. We assume
that the elements of {wm} are located in R in increasing order and that `m is
contained in C̄+ or C̄− according as m is even or odd. It should be noted that

ρR̂(D) maps `m to `m+2 and that κ−1(∞) = {wm}m∈Z∪{∞}. Thus R̂−κ−1(∞)
is the disjoint union of open intervals tm∈Z(wm, wm+1).

Let ¯̀
m ⊂ Ĉ be the complex conjugate of `m, and let ∂̂m be the image of ¯̀

m

under the quotient map Ĉ → Ĉ/P = S2
P. The surjective map ¯̀

m → ∂̂m is the
quotient map that identifies the two endpoints ∞ and wm of ¯̀

m, because ¯̀
m

intersects any member of P, except s, at most in one point ([6, Proposition

7.8]). Thus ∂̂m is a simple closed curve in S2
P passing through ∞P, where

∞P = Φ−1(∞) ∈ S2
P. Hence ∂m := ∂̂m − {∞P} is homeomorphic to the real

line and is properly embedded in the model complex plane, CP := S2
P−{∞P}.

We orient ∂m as follows. We first orient the loop `m∪ ¯̀
m so that it proceeds

from ∞ through C− to wm and through C+ back to ∞. Since ∂̂m is equal to
the image of the loop `m ∪ ¯̀

m in S2
P, it inherits an orientation from `m ∪ ¯̀

m

and so does ∂m. The following proposition is proved in [6, Section 7].

Proposition 7.1. (1) ∂m ∩ ∂m′ = ∅ whenever |m−m′| > 1.
(2) ∂m∩∂m+1 is a discrete subset of ∂m which accumulates at ∞P from both

directions.
(3) The closure of each component of CP−∪m∈Z∂m is homeomorphic to the

disk. ¤
By the first and the second assertions of Proposition 7.1, ∂m−1 ∩ ∂m and

∂m∩∂m+1 are disjoint discrete subsets of the line ∂m, and their union forms the
vertex set of a CW-decomposition of ∂m. By the last assertion of Proposition
7.1, the union of the 1-dimensional cell complexes {∂m}m∈Z etches a 〈D〉-
invariant CW-decomposition of CP satisfying the following conditions.

(i) The vertex set is ∪m∈Z(∂m ∩ ∂m+1).
(ii) The edge set is the set of the closures of components of ∂m−(∂m−1∪∂m+1)

where m runs over Z.
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(iii) The face set is the set of the closures of the components of CP−∪m∈Z∂m.

We denote this CW-decomposition of CP by CW (ϕ). Note that the π1(O)-equi-

variant homeomorphism Φ : S2
P → Λ(ρĈ) = Ĉ restricts to a 〈D〉-equivariant

homeomorphism CP → C. We identify the 〈D〉-space C with CP through
this homeomorphism. Then the 〈D〉-invariant CW-decomposition CW (ϕ) of
CP determines a 〈D〉-invariant CW-decomposition of C, which we continue to
denote by the same symbol CW (ϕ). We also continue to denote the image of
∂m in C by the same symbol.

We give a structure of a colored CW-complex to CW (ϕ), in the sense of
Definition 7.2 (1) below, by declaring that the vertices and the faces which
lie between ∂m and ∂m+1 are white or gray according as m is even or odd.
Thus CW (ϕ) admits a structure of colored 〈D〉-CW-complex in the sense of
Definition 7.2 (3) below.

Definition 7.2. (1) By a colored CW-complex, we mean a 2-dimensional CW-
complex in which each vertex and each open 2-cell is assigned a value in the
set {white, gray}.

(2) A color-preserving CW-isomorphism is a homeomorphism between col-
ored CW-complexes which carries cells homeomorphically to cells, and respects
the colorings. Two colored CW-complexes are said to be isomorphic if there
is a color-preserving CW-isomorphism between them.

(3) For a group G, a colored G-CW-complex is a colored CW-complex
W together with an action by G such that each element of G acts as a
color-preserving CW -automorphism of W . An isomorphism between two col-
ored G-CW-complexes is defined to be a G-equivariant color-preserving CW-
isomorphism between them.

For the actual picture of CW (ϕ), see Figure 1, where the color of a vertex
is the color of the two regions occupying most of a small neighborhood of that
vertex. The following result shows that this colored CW-complex CW (ϕ)

reflects the way the Cannon-Thurston map κ fills in Ĉ (see [6, Introduction
and Proposition 7.7]).

Proposition 7.3. The image of the open interval (wm, wm+1) by the Cannon-
Thurston map κ is equal to the closed region bounded by ∂m and ∂m+1. More-
over, κ fills in the region (cell by cell) from top to bottom or from bottom to
top, according as the region is white or gray. ¤

Next, we give an explicit description of the vertex set of CW (ϕ). Recall the
bi-infinite word Ω =

∏
n∈Z fn in the letters {R, L} in Section 3.

Definition 7.4. Let Fn (n ∈ Z) be the bi-infinite sequence of automorphisms
of π1(O) defined by the following rules:

F0 = 1, Fn = Fn−1fn.
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Then the following proposition holds (see [6, Definition 7.13]).

Proposition 7.5. (1) The vertex set of ∂0 is equal to

{ρĈ(Fn(B))(∞)}n∈Z,

in increasing order. More generally, the vertex set of ∂2m is equal to

{ρĈ(
◦

DmFn(B))(∞)}n∈Z = {m + ρĈ(Fn(B))(∞)}n∈Z

in increasing order.
(2) The vertex set of ∂1 is equal to

{ρĈ(Fn

◦
C(B))(∞)}n∈Z,

in increasing order. More generally, the vertex set of ∂2m+1 is equal to

{ρĈ(
◦

DmFn

◦
C(B))(∞)}n∈Z = {m + ρĈ(Fn

◦
C(B))(∞)}n∈Z

in increasing order. ¤
Remark 7.6. (1) In the above proposition, B and C are elliptic generators
as in Lemma 2.2, and the identities among the sets follow from the identity
(4.2).

(2) In [6, Definition 7.13], the vertex

ρĈ(
◦

DmFn

◦
C(B))(∞) = ρĈ(Fn

◦
C(B))(∞) + m

is described as

ρĈ(
◦

Dm+1Fn(AC))(∞) = ρĈ(
◦

DFn(AC))(∞) + m.

These points coincide, because

ρĈ(
◦

DFn(AC))(∞) = ρĈ(Fn

◦
D(AC))(∞)

= ρĈ(Fn(CBCD−1))(∞)

= ρĈ(Fn

◦
C(B))(∞).

In order to describe how the adjacent vertical lines ∂m and ∂m+1 intersect
each other, we prepare the following notation.

Definition 7.7. (1) For each (m,n) ∈ Z2, let Pm,n be the elliptic generator
defined by the following formulas:

P2m,n :=
◦

DmFn−1(B), P2m+1,n :=
◦

DmFn

◦
C(B).

(2) For each (m,n) ∈ Z2, let pm,n be the point in C defined by the following
formula:

pm,n := ρĈ(Pm,n)(∞).
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(3) For each n ∈ Z, set:

n+ := min{k ∈ Z | fk = fn and k > n},
n− := max{k ∈ Z | fk = fn and k < n}.

It should be noted that (n+)− = n = (n−)+ and fn+ = fn = fn− .

Then we have the following (see [6, Definition 7.13 (iii)]).

Proposition 7.8. (1) For each m ∈ Z, the set {pm,n}n∈Z forms the vertex set
of ∂m.

(2) The intersection of two adjacent elements of {∂m} is as follows.

∂2m−1 ∩ ∂2m = {p2m,n | fn = L} = {p2m−1,n | fn = L},
∂2m ∩ ∂2m+1 = {p2m,n | fn = R} = {p2m+1,n | fn = R}.

Moreover, we have the following identities among the vertices:

p2m,n =

{
p2m+1,n+ if fn = R,

p2m−1,n+ if fn = L.

Equivalently, we have the following:

p2m+1,n =

{
p2m,n− if fn = R,

p2m+2,n− if fn = L. ¤

In order to give an explicit combinatorial model of CW (ϕ), we introduce
the following definition (see [6, Definition 4.2] and Figure 8).

Definition 7.9. Let CW ′(ϕ) be the CW-decomposition of R2 defined as fol-
lows: The vertex set is Z2, where each vertex (m,n) is endowed with the label
fn ∈ {L,R}. The edge set consists of the vertical edges and the slanted edges,
which are defined as follows:

(E1) The vertical edges are

〈(m,n), (m,n + 1)〉.
(E2) The slanted edges are

〈(2m,n), (2m + 1, n+)〉 if fn = R,

〈(2m,n), (2m− 1, n+)〉 if fn = L.

The face set of CW ′(ϕ) is {c′m,n}(m,n)∈Z2 , where c′m,n is described as follows.

(F1) If fn = R (and hence fn± = R), then c′m,n is the convex hull of

{(2m,n−), (2m,n), (2m + 1, n), (2m + 1, n+)},
and we assign the color ‘white’ to its interior (see Figure 8).
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(F2) If fn = L (and hence fn± = L), then c′m,n is the convex hull of

{(2m− 1, n), (2m− 1, n+), (2m,n−), (2m,n)},
and we assign the color ‘gray’ to its interior.

Thus the interior of each 2-cell of CW ′(ϕ) has the color white or gray according
as it lies in the vertical strip [m, m + 1] × R with m even or odd. It should
be noted that the colored complex CW ′(ϕ) admits the action of the infinite
cyclic group 〈D〉 by setting D(x, y) = (x + 2, y).

In the above definition, the vertex (m,n) of CW ′(ϕ) corresponds to the
vertex pm,n of CW (ϕ), and collapsing the slanted edges of CW ′(ϕ) corresponds
to the identities in Proposition 7.8(2). This motivates us to define yet another
CW-complex, CW ∗(ϕ), as the colored CW-complex obtained from CW ′(ϕ) by
collapsing each closed slanted edge in CW ′(ϕ) to a point. The image of the
2-cell c′m,n is a 2-cell of CW ∗(ϕ), denoted by c∗m,n, and the set {c∗m,n}(m,n)∈Z is
the set of the 2-cells of CW ∗(ϕ). The open 2-cells of CW ∗(ϕ) inherit colors
from those of CW ′(ϕ). Each vertex of CW ∗(ϕ) is the image of a slanted
edge of CW ′(ϕ), and it is endowed with the color white or gray according as
the slanted edge is contained in the white or gray strip. This determines the
colored structure on CW ∗(ϕ). The action of 〈D〉 on CW ′(ϕ) descends to an
action of 〈D〉 on CW ∗(ϕ). Thus CW ∗(ϕ) is a colored 〈D〉-CW-complex, and
it gives a combinatorial model of the colored 〈D〉-CW-complex CW (ϕ). To
be precise, we have the following theorem (see [6, Theorem 7.12]).

Theorem 7.10. There is a color-preserving 〈D〉-isomorphism from CW ∗(ϕ)
to CW (ϕ), sending the vertex [(m,n)] to the vertex pm,n. The isomorphism
maps the image of the vertical line {m} × R in CW ′(ϕ) to the vertical line
∂m in CW (ϕ). Here [(m,n)] denotes the vertex of CW ∗(ϕ) represented by the
vertex (m,n) of CW ′(ϕ). ¤
Remark 7.11. Since ρĈ is a faithful discrete representation, two elliptic gen-
erators Pm,n and Pm′,n′ coincide if and only if the two points pm,n and pm′,n′

coincide. Thus the slanted edges of CW ′(ϕ) represent identities among the el-
liptic generators, too (see Lemma 8.6(3)). Thus we may identify the vertex set
of CW ∗(ϕ) with the set {Pm,n} of elliptic generators, by the correspondence
[(m, n)] 7→ Pm,n.

Let cm,n be the 2-cell of CW (ϕ) obtained as the homeomorphic image of
c∗m,n. Then {cm,n}(m,n)∈Z is the set of the 2-cells of CW (ϕ). In the remainder
of this section, we give a description of cm,n. To this end, let

F′n =

{
Fn−1L if fn = R,

Fn−1R if fn = L.
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Figure 8. The CW-complex CW ′(ϕ) for ϕ = RLLRRRLLLL.
The dots represents the points Pm,n. The vertical line segments
represent vertical edges and the double line segments represent
slanted edges.
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For example, if n > 0, then F′n and Fn, viewed as words in R and L, are the
same except that their last letters are different. In any event, F′n is an auto-
morphism of π1(O) preserving the distinguished element D. Thus it induces
a 〈D〉-equivariant homeomorphism of the space E of ends of π1(O), preserving

the equivalence relation ∼ defined by (6.1). Since the limit set Λ(ρR̂) = R̂
is identified with E/∼, F′n induces a 〈D〉-equivariant self-homeomorphism of

Λ(ρR̂) = R̂, which we continue to denote by the same symbol. Then we have
the following description of the 2-cells of CW (ϕ) ([6, Theorem 7.12]).

Proposition 7.12. The 2-cell cm,n of CW (ϕ) is equal to κ(
◦

DmF′n([B])). ¤
In the above proposition, B is the elliptic generator of Lemma 2.2, and [B]

denotes the image, in R̂ = E/∼, of the subset [B] of the space E, consisting of
those infinite words which have B as an initial segment.

The following remark, pointed out by the referee, gives heuristic relation-
ships between the word ϕ and CW (ϕ).

Remark 7.13. Definition 7.9 and Theorem 7.10 imply the following. Each
letter R (resp. L) of the infinite word Ω generated by ϕ produces one white
(resp. gray) region, modulo the action of 〈D〉; more precisely, each subword

R(La) R (Lb)R (with a, b possibly zero) gives rise to a white region correspond-
ing to the boxed R with a spikes (gray vertices) on its left boundary and b spikes

on its right boundary. The gray region corresponding to L(Ra) L (Rb)L has a
spikes to the right and b spikes to the left. Conversely, we can read Ω off CW (ϕ)
as follows. Count the numbers of spikes on the left sides of successive gray re-
gions (going up): (0, 0, 0, 1, 0, 3) in Figure 1; then insert these numbers as expo-
nents to obtain L(R0)L(R0)L(R0)L(R1)L(R0)L(R3) = LLLLRLLRRR = ϕ
up to conjugacy. (This can be also applied, with an offset, to the right side.)
Using the white regions instead, one finds (2, 0, 0, 4) spikes yielding the word
R(L2)R(L0)R(L0)R(L4) = RLLRRRLLLL = ϕ. See Remark 4.3 and the
proof of Proposition 4.4 in [6].

8. Statement and the proof of the main result

Theorem 8.1. The vertex set of the fractal tessellation CW (ϕ) is identical
with the vertex set of the projected horosphere triangulation ∆(ϕ). Moreover,
the combinatorial structure of the colored 〈D〉-CW-complex CW (ϕ) can be
recovered from that of the layered 〈D〉-simplicial complex

(∆(ϕ), {L(ρĈ, σn)}),
and vice versa.
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An explicit description of the second statement of the theorem is presented
in italics in mid-course of the proof.

We now begin the proof of the main theorem.
The following concerns the bi-infinite sequence of Farey triangles {σn}n∈Z

occurring in Convention 3.1, and the slope s(Pm,n) of the elliptic generator
Pm,n occurring in Definition 7.7.

Lemma 8.2. (1) σn = (Fn)∗(σ0) and σn+1 = (Fn)∗(σ1).
(2) s(P2m,n) = (Fn−1)∗(1), and it is equal to the vertex of σn which is not

contained in σn−1.
(3) s(P2m+1,n) = (Fn)∗(−1), and it is equal to the vertex of σn which is not

contained in σn+1.

Proof. (1) If n = 0, then F0 = id and the assertion obviously holds. Assume
that n > 0 and the assertion holds for n − 1. Since Fn = (Fn−1fnF−1

n−1)Fn−1,
the inductive hypothesis implies

((Fn)∗(σ0), (Fn)∗(σ1)) = ((Fn−1fnF−1
n−1)∗(σn−1), (Fn−1fnF−1

n−1)∗(σn)).

Since (Fn−1)∗ maps the pair (σ0, σ1) to the pair (σn−1, σn), the conjugate
(Fn−1fnF−1

n−1)∗ of (fn)∗ by (Fn−1)∗ rotates the pair (σn−1, σn) to the right or
left, according as fn is R or L. By the definition of fn, this implies that
(Fn−1fnF−1

n−1)∗ maps the pair (σn−1, σn) to (σn, σn+1). Thus the assertion is
valid for n. This proves the assertion when n is non-negative. A parallel
argument works for the case when n is negative.

(2) and (3). These assertions follow from (1) and the fact that 1 (resp. −1)
is the vertex of σ1 (resp. σ0) which is not contained in σ0 (resp. σ1). ¤
Definition 8.3. Let {Qm,1}m∈Z denote the sequence of elliptic generators
associated with σ1 such that

(Q0,1, Q1,1, Q2,1) = (A,B,C).

Let Qm,n be the elliptic generator defined by

Qm,n = Fn−1(Qm,1).

(The second identity is consistent with the definition of Qm,1 even when n = 1,
because F0 = id.)

Lemma 8.4. (1) For each n ∈ Z, {Qm,n}m∈Z is the sequence of elliptic genera-

tors associated with σn. Thus {Qm,n}m∈Z is equal to {P (n)
m }m∈Z as in Theorem

5.3, after a shift of indices m.
(2) For each n ∈ Z, the sequences {Qm,n}m∈Z and {Qm,n+1}m∈Z are related

as follows.

(i) If fn = R, then

Q3m,n = Q3m,n+1, Q3m+1,n = Q3m+2,n+1.
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(ii) If fn = L, then

Q3m+1,n = Q3m,n+1, Q3m+2,n = Q3m+2,n+1.

Moreover, these are the only identities among the members of the two se-
quences.

(3) Two elements Qm,n and Qm′,n′ are identical if and only if they are related
by a finite sequence of the above identities. To be precise, Qm,n = Qm′,n′ if and
only if (m,n) and (m′, n′) are equivalent with respect to the equivalence relation
generated by the following elementary relations:

(i) If fn = R, then

(3m, n) ∼ (3m,n + 1), (3m + 1, n) ∼ (3m + 2, n + 1).

(ii) If fn = L, then

(3m + 1, n) ∼ (3m,n + 1), (3m + 2, n) ∼ (3m + 2, n + 1).

Proof. (1) Since {Qm,1}m∈Z is the sequence of elliptic generators associated
with σ1, {Fn−1(Qm,1)}m∈Z is the sequence of elliptic generators associated with
(Fn−1)∗(σ1), which is equal to σn by Lemma 8.2(1). Hence {Qm,n}m∈Z is the
sequence of elliptic generators associated with σn.

(2) Since Fn = (Fn−1fnF−1
n−1)Fn−1, we have

Qk,n+1 = Fn(Qk,1)

= (Fn−1fnF
−1
n−1)Fn−1(Qk,1)

= Fn−1fnF
−1
n−1(Qk,n).

Since Fn−1 maps Qk,1 to Qk,n, this implies that the triple

(Q3m,n+1, Q3m+1,n+1, Q3m+2,n+1)

is obtained from the triple (Q3m,n, Q3m+1,n, Q3m+2,n) by applying the first or
second rule in (2.5) according as fn = R or L, where (A, B, C) is replaced with
the triple (Q3m,n, Q3m+1,n, Q3m+2,n). Namely,

(Q3m,n+1, Q3m+1,n+1, Q3m+2,n+1)

=

{
(Q3m,n,

◦
Q3m+1,n(Q3m+2,n), Q3m+1,n) if fn = R,

(Q3m+1,n,
◦

Q3m+1,n(Q3m,n), Q3m+2,n) if fn = L.

Hence we obtain (2).
(3) Since the ‘if’ part is obvious, we prove the ‘only if’ part. Suppose

Qm,n = Qm′,n′ , and denote this elliptic generator by Q. We may assume
m′ = m + r for some non-negative integer r. Then, for every i (0 6 i 6 r),
the slope s(Q) is a vertex of the Farey triangle σn+i and hence Q belongs to
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the sequence of elliptic generators associated with σn+i. Thus we can find by
(2) a sequence {mi}06i6r of integers such that m0 = m and

(m,n) = (m0, n) ∼ (m1, n + 1) ∼ · · · ∼ (mr, n + r).

Since Qm′,n′ = Qm,n = Qmr,n+r = Qmr,n′ , we have m′ = mr, because the
sequence of elliptic generators associated with any Farey triangle consists of
mutually distinct elements. Hence (m,n) ∼ (mr, n + r) = (m′, n′). Thus we
obtain the desired result. ¤

The following lemma describes the relation between the elliptic generators
{Pm,n} in Definition 7.7 and {Qm,n} in Definition 8.3.

Lemma 8.5. The sets {Pm,n}(m,n)∈Z2 and {Qm,n}(m,n)∈Z2 are identical. To be
precise, the following hold.

(1) P2m,n = Q3m+1,n and P2m+1,n = Q3m+d(n),n, where

d(n) =

{
2 if fn = R,

3 if fn = L.

(2) Conversely, the following hold.

Q3m+1,n = P2m,n,

Q3m+2,n =

{
P2m+1,n if fn = R,

P2m+1,n+r if fn = L,

Q3m+3,n =

{
P2m+1,n+r if fn = R,

P2m+1,n+1 if fn = L,

where r is the smallest positive integer such that fn+r 6= fn.

Proof. (1) Since

P2m+k,n =
◦

Dm(Pk,n), Q3m+k,n =
◦

Dm(Qk,n),

we have only to prove the identities when m = 0.
The first identity is proved as follows.

P0,n = Fn−1(B) = Fn−1(Q1,1) = Q1,n.

We prove the second identity for n > 0 by induction on n. The identity for
n = 0 is proved as follows.

P1,0 = F0

◦
C(B) =

◦
C(B) = L−1

◦
D(A) = L−1(Q3,1)

= F−1(Q3,1) = Q3,0 = Qd(0),0.

In the above, the third identity follows from Lemma 2.2(3), the fifth identity
follows from the fact that F−1 = f−1

0 = L−1 (see Convention 3.1), and the last
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identity follows from the convention f0 = L. Now suppose the desired identity
holds for some non-negative integer n, namely P1,n = Qd(n),n. Then

P1,n+1 = Fn+1

◦
C(B) = (Fnfn+1F

−1
n )Fn

◦
C(B)(8.1)

= Fnfn+1F
−1
n (P1,n) = Fnfn+1F

−1
n (Qd(n),n)

= Fnfn+1f
−1
n F−1

n−1(Qd(n),n) = Fnfn+1f
−1
n (Qd(n),1).

If fn+1 = fn, then d(n) = d(n + 1) and hence the last element in the above
identity is equal to

Fn(Qd(n),1) = Qd(n),n+1 = Qd(n+1),n+1,

and therefore the desired identity holds for n+1. Suppose (fn, fn+1) = (R,L).
By Lemma 2.2(3), we have

fn+1f
−1
n (Qm,1) = LR−1(Qm,1) = Qm+1,1.

Hence the last term of (8.1) is equal to

Fn(Qd(n)+1,1) = Qd(n)+1,n+1 = Qd(n+1),n+1.

Here the last identity follows from the fact that (d(n), d(n+1)) = (2, 3). Thus
the desired identity holds for n + 1. The case (fn, fn+1) = (L,R) is treated
similarly. Thus we have proved, by induction, the desired identity for every
non-negative integer n. By a parallel argument, we can also show that the
identity holds for every integer n.

(2) Suppose fn = R. Then, by Lemma 8.5(1), we have

Q3m+1,n = P2m,n, Q3m+2,n = P2m+1,n.

By Lemma 8.4(2), we have Q3m+3,n = Q3m+3,n+1. By applying the same lemma
repeatedly, we have

Q3m+3,n = Q3m+3,n+1 = · · · = Q3m+3,n+r,

because fn = · · · = fn+r−1 = R. Since fn+r = L, Lemma 8.5(1) implies
Q3m+3,n+r = P2m+1,n+r. Hence we obtain the desired identity. A similar argu-
ment also works for the case fn = L. ¤

The following lemma completely describes the identities among the elliptic
generators {Pm,n} and {Qm,n}.
Lemma 8.6. (1) If fn = R, then P2m,n = P2m+1,n+. Moreover Qm′,n′ is equal
to this element if and only if (m′, n′) belongs to the following set.

{(3m + 1, n)} ∪ {(3m + 2, k) | n + 1 6 k 6 n+}.
(2) If fn = L, then P2m,n = P2m−1,n+. Moreover Qm′,n′ is equal to this

element if and only if (m′, n′) belongs to the following set.

{(3m + 1, n)} ∪ {(3m, k) | n + 1 6 k 6 n+}.
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(3) The following are the only identities among the Pm,n.

P2m,n =

{
P2m+1,n+ if fn = R,

P2m−1,n+ if fn = L.

Proof. (1) Suppose fn = R. Then by Lemmas 8.5(1) and 8.4(2), we see

P2m,n = Q3m+1,n = Q3m+2,n+1.

Since fk = L for every k (n + 1 6 k 6 n+− 1), Lemma 8.4(2) implies that the
above element is equal to Q3m+2,k for every k (n + 1 6 k 6 n+). Moreover,
by Lemma 8.4(3), we see that Qm′,n′ is equal to Q3m+1,n if and only if (m′, n′)
appears in the above. (Check that there are no elementary relations relating
(3m+1, n) with (∗, n−1) and those relating (3m,n+) with (∗, n+ +1).) Since
fn+ = fn = R, we have Q3m+2,n+ = P2m+1,n+ by Lemma 8.5(2). This completes
the proof of (1).

(2) is proved by an argument parallel to that of (1).
(3) The desired identity is already proved by (1) and (2). Let (r, s) and

(r′, s′) be elements of Z2 such that Pr,s = Pr′,s′ . Suppose first that r and
r′ have the same parity. Then we have s = s′ by Lemma 8.2(2),(3). So,
by Definition 7.7, Pr′,s′ = Pr′,s is the conjugate of Pr,s by D(r′−r)/2. Since
Pr,s = Pr′,s′ , this implies r = r′ and hence (r, s) = (r′, s′). Suppose r and r′

have different parity, say r = 2m and r′ = 2m′ + 1 for some m,m′ ∈ Z. Then,
by Lemma 8.2(2),(3) again, s′ is uniquely determined by s. On the other hand,
we have Pr,s = P2m,s is equal to P2m+1,s+ or P2m−1,s+ according as fs = R or
L. Thus we have s′ = s+. By the argument for the same-parity case, we see
that s′ is equal to 2m+1 or 2m− 1 according as fs = R or L. Thus we obtain
the conclusion. ¤
Remark 8.7. As observed in Remark 7.11, the assertion (3) in the above
lemma is essentially equivalent to the identities in Proposition 7.8(2).

Lemmas 8.4 and 8.5 motivate us to introduce the following CW-decomposi-
tion of R2 (see Figures 9 and 10).

Definition 8.8. CW∆(ϕ) denotes the CW-decomposition of R2 defined as
follows. The vertex set is equal to Z2, where (m,n) is labeled with Qm,n, and
the edge set consists of the horizontal edges, the vertical edges and the slanted
edges, which are described as follows.

(1) The horizontal edges are:

〈(m,n), (m + 1, n)〉.
(2) The vertical edges are:

〈(3m + 1, n), (3m + 1, n + 1)〉,
〈(3m + d(n), n), (3m + d(n + 1), n + 1)〉.
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(3) For each n ∈ Z, the slanted edges lying between R×{n} and R×{n+1}
are:

if fn = R,

〈(3m,n), (3m,n + 1)〉,
〈(3m + 1, n), (3m + 2, n + 1)〉,

and, if fn = L,

〈(3m + 1, n), (3m,n + 1)〉,
〈(3m + 2, n), (3m + 2, n + 1)〉.

For each n ∈ Z, the horizontal edges {〈(m,n), (m + 1, n)〉}m∈Z of CW∆(ϕ)
correspond to the edges of the layer L(σn) of ∆∗(ϕ) (cf. Proposition 5.4(4)
and Lemma 8.4(1)). For each m ∈ Z, the vertical edges

{〈(3m + 1, n), (3m + 1, n + 1)〉}n∈Z

correspond to the edges in the vertical line ∂2m in CW (ϕ), and the vertical
edges

{〈(3m + d(n), n), (3m + d(n + 1), n + 1)〉}n∈Z
correspond to the edges in the vertical line ∂2m+1 in CW (ϕ) (cf. Proposition
7.8(2) and Lemma 8.5(1)). The slanted edges correspond to the elementary
relations in Lemma 8.4(3). Thus CW∆(ϕ) can be regarded as a common
parent of the two tessellations ∆(ϕ) and CW (ϕ). To be precise, we have the
following theorem, for which all terms have been defined.

Theorem 8.9. (1) Let ∆∗∗(ϕ) be the CW-complex obtained from CW∆(ϕ)
by removing (the interior of ) each vertical edge and collapsing each slanted
edge to a point. Then ∆∗∗(ϕ) is combinatorially isomorphic to ∆∗(ϕ) (and
hence to ∆(ϕ)), where the vertex of ∆∗∗(ϕ) represented by (m,n) corresponds
to the vertex Qm,n of ∆∗(ϕ). Here, we employ the identification described by
Proposition 5.4.

(2) Let CW ∗∗(ϕ) be the CW-complex obtained from CW∆(ϕ) by removing
(the interior of ) each horizontal edge and collapsing each slanted edge to a
point. Then CW ∗∗(ϕ) is combinatorially isomorphic to CW ∗(ϕ) (and hence
to CW (ϕ)), where the vertex of CW ∗∗(ϕ) represented by (3m + 1, n) (resp.
(3m + d(n), n)) corresponds to the vertex P2m,n (resp. P2m+1,n) of CW ∗(ϕ).
Here, we employ the identification described by Remark 7.11.

Proof. (1) By Proposition 5.4 and Lemma 8.4(1), the vertex set of ∆∗(ϕ) is
identified with the set {Qm,n}(m,n)∈Z2 . On the other hand, since the slanted
edges of CW∆(ϕ) correspond to the elementary relations in Lemma 8.4(3),
the vertex set of ∆∗∗(ϕ) is identified with the set {Qm,n}(m,n)∈Z2 . Hence there
is a natural bijection between the vertex sets of ∆∗(ϕ) and ∆∗∗(ϕ). By virtue
of the characterization of the edge set and the face set of ∆∗(ϕ) by Proposition
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Figure 9. The CW-complex CW∆(ϕ) for ϕ=RLLRRRLLLL.
The horizontal line segments represent horizontal edges, the thin
non-horizontal line segments represent vertical edges, and the
thick line segments represent slanted edges.
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Figure 10. Another view of CW∆(ϕ) for ϕ=RLLRRRLLLL.
In contrast to Figure 9, here the “vertical”, “horizontal” and
“slanted” lines have the indicated properties. The slanted edges
are represented by thick, white or gray connections between the
vertices Qm,n (there is a vertex wherever a slanted edge intersects
a horizontal line). The isotopies that exist between vertical and
horizontal edges (after collapsing the slanted ones) sweep out
the small, dashed area.
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5.4, the bijection between the vertex sets of ∆∗(ϕ) and ∆∗∗(ϕ) extends to an
isomorphism between the two CW-complexes.

(2) By Remark 7.11, the vertex set of CW ∗(ϕ) is identified with the set
{Pm,n}(m,n)∈Z2 , which in turn is equal to the set

{Qm,n}(m,n)∈Z2

by Lemma 8.5(1). On the other hand, as in the proof of Theorem 8.9(1), the
vertex set of CW ∗∗(ϕ) is also identified with the set {Qm,n}(m,n)∈Z2 . Thus there
is a natural bijection between the vertex sets of CW ∗(ϕ) and CW ∗∗(ϕ). By
the correspondences mentioned in the paragraph preceding the proposition,
this bijection extends to an isomorphism between the two CW-complexes. ¤
Remark 8.10. (1) The subcomplex of CW∆(ϕ) obtained by deleting the
vertical edges is a tessellation by four types of pentagons. These pentagons,
which become triangles after slanted-edge collapsing, can be thought of as
being equal to the pentagons that appeared in Figure 3.

(2) Each vertical edge becomes identified (up to isotopy with fixed end-
points) with exactly one horizontal edge.

We now give a proof of the first assertion of Theorem 8.1. By Theorem 5.3
and Lemma 8.4(1), the vertex set of ∆(ϕ) is equal to {ρĈ(Qm,n)(∞)}(m,n)∈Z2 .
By the definition of CW (ϕ), the vertex set of CW (ϕ) is equal to

{ρĈ(Pm,n)(∞)}(m,n)∈Z2 .

Since these two sets are identical by Lemma 8.5, we obtain the first assertion
of Theorem 8.1.

Next, we show that the combinatorial structure of the colored 〈D〉-CW-com-
plex CW (ϕ) can be recovered from that of the layered 〈D〉-simplicial com-
plex (∆(ϕ), {L(ρĈ, σn)}). In the following, we identify ∆(ϕ) with ∆∗∗(ϕ) and
CW (ϕ) with CW ∗∗(ϕ). We also employ the identification described by Propo-
sition 5.4 and Remark 7.11. Thus the vertices of ∆(ϕ) and CW (ϕ) are repre-
sented by elliptic generators, and in particular, the layer L(ρĈ, σn) of ∆(ϕ) is
identified with the following bi-infinite family of edges of ∆∗∗(ϕ).

Ln := {〈Qm,n, Qm+1,n〉}m∈Z

Definition 8.11. A vertex of Ln is called an upward apex (resp. a downward
apex ) if it is not a vertex of Ln−1 (resp. Ln+1) (see Figure 6).

Lemma 8.12. (1) For each n ∈ Z, a vertex of Ln is an upward apex of Ln

if, and only if, it is equal to P2m,n for some m ∈ Z. Moreover, P2m,n+1 is a
vertex of Ln+1 adjacent to P2m,n in Ln+1. Furthermore, P2m,n+1 is the unique
upward apex of Ln+1 which is adjacent to P2m,n in ∆(ϕ).
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(2) For each n ∈ Z, a vertex of Ln is a downward apex of Ln if, and only if,
it is equal to P2m+1,n for some m ∈ Z. Moreover, P2m+1,n−1 is a vertex of Ln−1

adjacent to P2m+1,n in Ln−1. Furthermore, P2m+1,n−1 is the unique downward
apex of Ln−1 which is adjacent to P2m+1,n in ∆(ϕ).

Proof. Since the proofs of (1) and (2) are parallel, we prove only (1). By
Lemma 8.2, the slope of Pm,n is the vertex of σn which is not contained in
σn−1. Hence Pm,n is an upward apex of Ln. By the periodicity of Ln and
Ln−1, every upward apex of Ln is obtained from a single upward apex, say
P0,n, by taking the conjugate by Dm for some m ∈ Z. Thus it is equal to the
following element by Lemma 8.5(1).

◦
Dm(P0,n) =

◦
Dm(Q1,n) = Q3m+1,n = P2m,n

Hence {P2m,n}m∈Z are the only upward apexes of Ln.
By Lemma 8.6, we have

P2m,n = Q3m+1,n =

{
Q3m+2,n+1 if fn = R,

Q3m,n+1 if fn = L.

Hence P2m,n is a vertex of Ln+1 adjacent to Q3m+1,n+1 = P2m,n+1. The other
vertex of Ln+1 adjacent to Q3m+1,n+1 in ∆(ϕ) is equal to Q3m,n+1 or Q3m+2,n+1

according as fn = R or L. By Lemma 8.4(2), it is equal to Q3m,n or Q3m+2,n

accordingly. Thus it is contained in Ln and therefore it is not an upward apex
of Ln+1. Hence we obtain the last assertion of (1). ¤

Lemma 8.12 implies that, for each upward apex of Ln, there is a unique
upward apex of Ln+1 adjacent to it in ∆(ϕ). Thus by successively joining
adjacent upward apexes, we obtain a bi-infinite ‘vertical’ edge path in ∆(ϕ).
We call it an upward line. Similarly, we define a downward line to be a
vertical edge path in ∆(ϕ) obtained by successively joining adjacent downward
apexes. By Lemmas 8.12 and 8.5(1), the vertical line in CW∆(ϕ) with
vertex set {(3m+1, n)}n∈Z projects homeomorphically onto an upward line in
∆(ϕ), for each m ∈ Z. Similarly, the vertical line in CW∆(ϕ) with vertex set
{(3m+1, d(n))}n∈Z projects homeomorphically onto a downward line in ∆(ϕ),
for each m ∈ Z. Since these two kinds of vertical lines in CW∆(ϕ) are mutually
disjoint, and since all upward lines and downward lines are obtained in this
way, an upward line and a downward line never cross each other though they
may share some common edges. Moreover, upward lines and downward lines
are located in C alternately. Hence we may number them so that {∂∆

m}m∈Z
is the set of upward/downward lines located in ∆(ϕ) from left to right, where
∂∆

m is an upward line or a downward line according as m is even or odd. It
should be noted that D maps ∂∆

m to ∂∆
m+2 (see Figure 11).
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↑∂∆
0 ↓∂∆

3

Figure 11. The upward/downward lines {∂∆
m}m∈Z in ∆(ϕ)

The union of {∂∆
m}m∈Z forms a 〈D〉-CW-decomposition of C. We blow up

each common edge of adjacent upward/downward lines into a bigon to produce
a new 〈D〉-CW-decomposition, CW#(ϕ), and let ∂#

m be the image of ∂∆
m in

CW#(ϕ). We color the interior of the 2-cells in the new cell-complex bounded

by ∂#
m and ∂#

m+1 white or gray according as m is even or odd. We also color

the vertices shared by ∂#
m and ∂#

m+1 white or gray by the same rule. Then, by
Theorem 8.9(2), we see that the resulting colored 〈D〉-CW-complex CW#(ϕ)
is isomorphic to the colored 〈D〉-CW-complex CW (ϕ). Thus we have shown
that the combinatorial structure of the colored 〈D〉-CW-complex CW (ϕ) can
be recovered from that of the layered 〈D〉-simplicial complex (∆(ϕ), {Ln}).

Next, we show conversely that the combinatorial structure of the layered
〈D〉-simplicial complex (∆(ϕ), {Ln}) can be recovered from that of the colored
〈D〉-CW-complex CW (ϕ).

Lemma 8.13. (1) Suppose fn = R. Then the open 2-cell cm,n of CW (ϕ) has
the color white and its boundary is the union of an edge path, α, of ∂2m and
an edge path, β, of ∂2m+1 which satisfy the following conditions.
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(i) α ∩ β = ∂α = ∂β and it consists of the following two vertices:

v+ := P2m,n = P2m+1,n+ ,

v− := P2m,n− = P2m+1,n.

Moreover, the inverse image of v+ in CW∆(ϕ) is the edge path, ṽ+,
spanned by the following n+ − n + 1 vertices:

{(3m + 1, n)} ∪ {(3m + 2, k) | n + 1 6 k 6 n+}.
Similarly, the inverse image of v− in CW∆(ϕ) is the edge path, ṽ−,
spanned by the following n− n− + 1 vertices:

{(3m + 1, n−)} ∪ {(3m + 2, k) | n− + 1 6 k 6 n}.
Furthermore, the vertices v+ and v− are contained in the layer Ln of
∆(ϕ) in this order.

(ii) α has n−n− + 1 vertices {P2m,k | n− 6 k 6 n}, and it is the homeomor-
phic image of the edge path, α̃, in CW∆(ϕ) with vertex set:

{(3m + 1, k) | n− 6 k 6 n}.
(iii) β has n+ − n + 1 vertices {P2m+1,k | n 6 k 6 n+}, and it is the homeo-

morphic image of the edge path, β̃, in CW∆(ϕ) with vertex set:

{(3m + 2, n)} ∪ {(3m + 3, k) | n + 1 6 k 6 n+ − 1}
∪{(3m + 2, n+)}.

(2) Suppose fn = L. Then the open 2-cell cm,n of CW (ϕ) has the color gray
and its boundary is the union of an edge path, α, of ∂2m and an edge path, β,
of ∂2m−1 which satisfy the following conditions.

(i) α ∩ β = ∂α = ∂β and it consists of the following two vertices:

v+ := P2m,n = P2m−1,n+ ,

v− := P2m,n− = P2m−1,n− .

Moreover the inverse image of v+ in CW∆(ϕ) is the edge path, ṽ+,
spanned by the following n+ − n + 1 vertices:

{(3m + 1, n)} ∪ {(3m, k) | n + 1 6 k 6 n+}.
Similarly, the inverse image of v− in CW∆(ϕ) is the edge path, ṽ−,
spanned by the following n− n− + 1 vertices:

{(3m + 1, n−)} ∪ {(3m, k) | n− + 1 6 k 6 n}.
Furthermore, the vertices v− and v+ are contained in the layer Ln of
∆(ϕ) in this order.
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(ii) α has n−n− + 1 vertices {P2m,k | n− 6 k 6 n}, and it is the homeomor-
phic image of the edge path, α̃, in CW∆(ϕ) with vertex set:

{(3m + 1, k) | n− 6 k 6 n}.
(iii) β has n+ − n + 1 vertices {P2m−1,k | n 6 k 6 n+}, and it is the homeo-

morphic image of the edge path, β̃, in CW∆(ϕ) with vertex set:

{(3m,n)} ∪ {(3m− 1, k) | n + 1 6 k 6 n+ − 1} ∪ {(3m,n+)}.
Proof. By the definition of CW ∗(ϕ) and by Remark 7.11, the boundary of cm,n

is the union of an edge path α in ∂2m and β in ∂2m±1 such that α∩β = ∂α = ∂β,
the vertex set of α is {P2m,k | n− 6 k 6 n}, and the vertex set of β is
{P2m±1,k | n 6 k 6 n+}. Here the signs ± stand for + or − according as
fn = R or L. By Lemma 8.6, we see that the condition (i) is satisfied, except
the last statement that v+ and v− are contained in the layer Ln of ∆(ϕ) in
this order. The last statement in (i), for the case fn = R, follows from the
fact that v+ and v−, respectively, are the images of the vertices (3m + 1, n)
and (3m+2, n) of CW∆(ϕ) and the fact that the layer Ln is the image of the
horizontal line of height n in CW∆(ϕ). The statement for the case fn = L is
proved similarly. The remaining conditions (ii) and (iii) follow from Lemma
8.5(1). ¤

In the above lemma, the union of the edge path α̃, β̃, ṽ+ and ṽ− forms a
simple closed edge path in CW∆(ϕ). Let c̃m,n be the 2-cell bounded by it
(see Figure 12). Consider first the case where the 2-cell cm,n is colored white
(i.e., fn = R). Then the horizontal edges of CW∆(ϕ) contained in c̃m,n are as
follows:

〈(3m + 1, k), (3m + 2, k)〉 (n− + 1 6 k 6 n),

〈(3m + 2, k), (3m + 3, k)〉 (n 6 k 6 n+ − 1).

Here, one or both families can be empty, if fn = fn−1 and/or fn = fn+1. By
using Lemma 8.13, we see that the images of these edges in cm,n constitute the
following three families of arcs, which have mutually disjoint interiors:

• an arc joining v− and v+,
• arcs joining v− with the vertices contained in the interior of α,
• arcs joining v+ with the vertices contained in the interior of β.

The same result holds when the color of cm,n is gray. This observation leads us
to the following recipe for recovering ∆(ϕ) from the colored 〈D〉-CW-complex
CW (ϕ).

Let c be a 2-cell of CW (ϕ). Then it contains exactly two vertices, v+ and
v−, which share the same color with c. We assume v+ lies ‘above’ v−. These
two vertices divide ∂c into two arcs, α and β. We assume α lies on the left or
right hand side of c according as the color of c is white or gray. In the 2-cell
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ṽ+ β̃

v+

ṽ−α̃

α β

v−

c̃m,n

cm,n

3m+1 3m+2 3m+3

n−

n−+1

n−+2

...

n−2

n−1

n

n+1

...

n+−1

n+

Figure 12. The 2-cell cm,n in CW (ϕ) and the chosen region
c̃m,n in CW∆(ϕ), with ϕ = RLLRRRLLLL. Here, n = 1 and
fn = f1 = R. Compare with Figure 9.

c, we draw the following families of arcs with mutually disjoint interiors (see
Figure 12):

• an arc joining v− and v+,
• arcs joining v− with the vertices contained in the interior of α,
• arcs joining v+ with the vertices contained in the interior of β,
• arcs joining consecutive vertices of α not already joined by the forego-

ing,
• arcs joining consecutive vertices of β not already joined by the forego-

ing.

Next, shrink each bigon into a straight edge until there are no bigons.
The number of bigons equals the number of vertices and is 2 more than the

number of triangles (see Figure 12). The arc joining v− and v+ is called the
central edge associated with the 2-cell c.

Perform the above operation at every 2-cell of CW (ϕ). Then it follows
from the preceding observation that the resulting CW -decomposition of C is
combinatorially isomorphic to ∆(ϕ).
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In order to reconstruct the layered structure Ln of ∆(ϕ), we need the fol-
lowing observation. Let v be a vertex of ∆(ϕ), and let

Lp, Lp+1, · · · ,Lq

be the layers of ∆(ϕ) containing v. For each n (p 6 n 6 q), let e
(`)
n , resp.

e
(r)
n , be the edge of Ln which is incident on v and lies on the left-hand, resp.

right-hand, side of v. Then the edges incident on v are located around v in
the following clockwise cyclic order:

(8.2) e(`)
p , e

(`)
p+1, · · · , e(`)

q , e(r)
q , e

(r)
q−1, · · · , e(r)

p .

We call e
(`)
p , e

(r)
p , e

(`)
q and e

(r)
q , respectively, the lower-left edge, the lower-right

edge, the upper-left edge, and the upper-right edge of v. If we could identify
one of the above four ‘characteristic’ edges of v, then we would know the ‘local
structure’ of the layered structure around the vertex v, because the information
on the characteristic edge together with the cyclic order (8.2) tells us how the
edges incident on v are paired by the layered structure. In fact, if we could

identify, say the lower-left edge e
(`)
p , of v, then the cyclic order (8.2) extends

to an order, by regarding e
(`)
p as the first edge, such that the i-th edge and

(2d + 1 − i)-th edge belong to the same layer for each i (1 6 i 6 d), where
d = q − p + 1 (and hence 2d is the degree of v). The following lemma enables
us to identify the four ‘characteristic’ edges of each of the vertices of CW (ϕ)
(see Figure 13).

Lemma 8.14. Under the setting of Lemma 8.13, the following holds. If cm,n

is a white 2-cell, then the central edge 〈v+, v−〉 is the upper-left edge of v− and
is the lower-right edge of v+. If cm,n is a gray 2-cell, then the central edge
〈v−, v+〉 is the upper-right edge of v− and is the lower-left edge of v+.

Proof. We prove the lemma when cm,n is a white 2-cell. The other case is
proved similarly. So, assume cm,n is a white 2-cell. Then v+ and v−, respec-
tively, are the images of the vertices (3m + 1, n) and (3m + 2, n) of CW∆(ϕ),
and the layer Ln of ∆(ϕ) contains the edge 〈v+, v−〉 by Lemma 8.13. Thus the
image, w+, of (3m,n) is the predecessor of v+ in Ln, and the image, w−, of
(3m + 3, n) is the successor of v− in Ln.

We first show that 〈v+, v−〉 is the lower-right edge of v+. Observe that there
is no slanted edge of CW∆(ϕ) which has endpoint (3m + 1, n) and which is
contained in R× [n−1, n] (cf. Definition 8.8 and Figure 14). Consider a small
half circle c̃ with center (3m + 1, n) contained in R× [n− 1, n] with endpoints
(3m + 1± ε, n) for some small positive real number ε. Then the interior of c is
contained in an open 2-cell of CW∆(ϕ) which has a horizontal edge of height
n− 1 and has the following horizontal edges:

〈(3m,n), (3m + 1, n)〉, 〈(3m + 1, n), (3m + 2, n)〉.
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v+

v−

Figure 13. The local layered structure around the vertices v+

and v−

Thus c̃ projects to an arc c around the vertex v+ such that (i) c is contained
in a triangle of ∆(ϕ), (ii) 〈w+, v+〉 and 〈v+, v−〉 are edges of the triangle and
each of them contains an endpoint of c, and that (iii) the remaining edge of
the triangle belongs to the layer Ln−1. Then it follows that 〈w+, v+, v−〉 is the
triangle of ∆(ϕ) containing c and that the edge 〈w+, v−〉 belongs to the layer
Ln−1. Hence 〈v+, v−〉 is the lower-right edge of v+.

Next, we show that 〈v+, v−〉 is the upper-left edge of v−. To this end, note
that the assumption fn = R implies that CW∆(ϕ) has the following two
slanted edges (see Figure 14):

〈(3m + 1, n), (3m + 2, n + 1)〉, 〈(3m + 3, n), (3m + 3, n + 1)〉.
Observe that these two slanted edges and the three horizontal edges

〈(3m + 1, n), (3m + 2, n)〉, 〈(3m + 2, n), (3m + 3, n)〉,
〈(3m + 2, n + 1), (3m + 3, n + 1)〉

bound a 2-cell of CW∆(ϕ). This implies that 〈v+, v−, w−〉 is a 2-simplex of
∆(ϕ) and that 〈v+, w−〉 is an edge of the layer Ln+1. Hence 〈v+, v−〉 is the
upper-left edge of v−. ¤
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c
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Figure 14. The layer Ln passing through v+ and v−

The above lemma leads us to the following recipe for recovering the layered
structure {Ln}n∈Z of ∆(ϕ) from the colored 〈D〉-CW-complex CW (ϕ).

Let v be a vertex of ∆(ϕ). Since it is also a vertex of CW (ϕ), it has a
color white or gray. Let e1, e2, · · · , e2d be the edges of ∆(ϕ) incident on v in
counter-clockwise or clockwise order according as v is white or gray. By the
construction of CW (ϕ), there are precisely two 2-cells of CW (ϕ) which have
v as a vertex and share the same color with v. Let c be such a 2-cell which
lies below v, and let 〈v+, v−〉 be the central edge associated with c, where v =
v+. We may assume, after cyclic permutation, that e1 = 〈v+, v−〉. Then the
couplings {(ei, e2d−i+1)}16i6d gives the desired “local layered structure around
v”. (In fact, e1 is the lower-right or upper-right vertex of v according as v
is white or gray by Lemma 8.14. So the above local layered structure at each
vertex v is consistent with the layered structure {Ln} of ∆(ϕ).) By combining
this local information at the vertices of ∆(ϕ), we obtain the layered structure.
Thus we have shown that the combinatorial structure of the layered 〈D〉-
simplicial complex (∆(ϕ), {Ln}) can be recovered from that of the colored
〈D〉-CW-complex CW (ϕ). This completes the proof of Theorem 8.1.

Remark 8.15. The main theorem, Theorem 8.1, is actually valid for all doubly
degenerate punctured-torus groups with “bounded geometry”. (See the cele-
brated paper [17] by Minsky, for the classification of punctured-torus groups.)
In fact, the description of the Cannon-Thurston maps given by Bowditch [4] is
valid for every such group and thus a fractal tessellation of the complex plane
is naturally associated with the group, for which an analogue of Theorem 7.10
holds. On the other hand, the canonical decompositions of the quotient hy-
perbolic manifolds associated with the punctured-torus groups are determined
by Akiyoshi [1] and Gueritaud [13]. In particular, an analogue of Theorem
5.3 holds for all punctured-torus groups. These two results guarantee that the
proof of Theorem 8.1 works for all doubly degenerate punctured-torus groups
with bounded geometry, and hence we have an analogue of Theorem 8.1 for
such groups.

Added February, 2010: It has been established by McMullen [16] (see also
[18, 19]) that the Cannon-Thurston map exists for all punctured-torus groups.
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Moreover, Mj and his student Das ([8]) have recently proved that the descrip-
tion of the Cannon-Thurston map in Theorem 6.1 is valid for all punctured-
torus groups without accidental parabolics, possibly with unbounded geome-
try. This shows that Theorem 8.1 can be extended to arbitrary doubly degen-
erate punctured-torus groups.

Remark 8.16. The referee has kindly provided a proof of Conjectures 14.3 of
[6] which proposed that, at each vertex of CW (ϕ), the four cyclically ordered
incident edges form well-defined angles, two of 180◦ and two of 0◦, and that
the two incident open two-cells that fill in the angles of 180◦ have the same
color as the vertex. The referee’s argument, which shows slightly more, is as
follows.

Let us view CW (ϕ) within Ĉ, where each of the multi-pinched columns now
has as closure a multi-pinched annulus with two ‘spikes’ terminating in the
accumulation point ∞. Every spike is considered to be the ‘opposite’ of the
other spike in the annulus, and two opposite spikes form an angle of 180◦.
The boundary of an annulus gives four cyclically ordered, oriented (fractal)
curves, ending at ∞, forming four well-defined angles with cyclic sequence
(180◦, 0◦, 180◦, 0◦).

Let us consider an arbitrary vertex expressed as ρĈ(P )(∞) for some elliptic
generator P ∈ π1(O). Observe that ρĈ(P )(∞) lies in exactly three columns of
CW (ϕ) and that we are now extending these columns to annuli. Moreover,
ρĈ(P )(∞) is incident to four of the 2-cells of CW (ϕ) which we think of as
being to the left, top, right, and bottom of ρĈ(P )(∞). By Proposition 7.3 (see
[6, Introduction and Proposition 7.7]), we know the following about the cyclic
sequence of visits of the Peano curve κ to the two points ∞ and ρĈ(P )(∞):
κ makes one or more visits to ρĈ(P )(∞) on the left, and then κ visits ∞ filling
in two adjacent spikes in succession, and then κ makes one or more visits
to ρĈ(P )(∞) on the top and the bottom, and then κ visits ∞ filling in the
opposite of the spike last visited and then an adjacent spike, and then κ makes
one or more visits to ρĈ(P )(∞) on the right, and then κ makes infinitely many
visits to ∞ filling in the complement of the two pairs of adjacent spikes, and
then κ makes one or more visits to ρĈ(P )(∞) on the left, restarting the cycle.
(The interested reader might like to study the behavior of the model Cannon-
Thurston map given by Theorem 6.1 by first analyzing how a double spider
can intersect with the complex conjugate of another double spider.) There are
four cyclically ordered, oriented germs of curves, ending at ∞, forming four
well-defined angles with cyclic sequence (180◦, 0◦, 180◦, 0◦).

If we now apply ρĈ(P
−1), or, equivalently, ρĈ(P ), we find that κ makes one

or more visits to ∞, and then κ visits ρĈ(P )(∞) filling in a pair of adjacent
spikes, and then κ makes one or more visits to ∞, and then κ visits ρĈ(P )(∞)
filling in a pair of adjacent spikes that includes the opposite of the spike last
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visited, and then κ makes one or more visits to ∞, and then κ makes infinitely
many visits to ρĈ(P )(∞) filling in the complement of the two pairs of adjacent
spikes, and then κ makes one or more visits to ∞, restarting the cycle. Also,
there are four cyclically ordered, oriented curves, ending at ρĈ(P ), forming four
well-defined angles with cyclic sequence (180◦, 0◦, 180◦, 0◦). Since the germs of
these curves are those determined by the visits κ makes to ∞, these germs are
precisely the germs of the edges of CW (ϕ) that are incident to ρĈ(P )(∞).

It remains to verify that the two 180◦-angles at ρĈ(P )(∞) correspond to Jor-
dan domains that have the same color as the vertex. By symmetry, we may
suppose that ρĈ(P )(∞) is a white vertex. Then the unique white column con-
taining ρĈ(P )(∞) has exactly two Jordan domains which contain ρĈ(P )(∞),
and their intersection is {ρĈ(P )(∞)}. Now κ fills in the top Jordan domain
and passes through ρĈ(P )(∞) and fills in the bottom Jordan domain. This
cannot be done with a visit that fills in a single spike while arriving and then a
single adjacent spike while retreating; hence it is necessarily in this visit that
we form the two 180◦-angles, as desired.

This proves [6, Conjectures 14.3].
It now follows that the planar symmetry group of CW (ϕ) respects the

columns. Thus, the column-respecting planar symmetry group of CW (ϕ)
computed in [6, Section 14] is the full planar symmetry group of CW (ϕ).

Acknowledgment. The authors thank the referee for reading the first draft
extremely carefully, and for valuable comments, particularly, the comments
included as Remarks 5.5, 7.13, and 8.16, and for the beautiful Figure 10.
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