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Abstract
Let F be a free group, and let H be a subgroup of F .
The ‘Galois monoid’ EndH(F ) consists of all endomorphisms of F which

fix every element of H; the ‘Galois group’ AutH(F ) consists of all au-
tomorphisms of F which fix every element of H. The End(F )-closure
and the Aut(F )-closure of H are the fixed subgroups, Fix(EndH(F )) and
Fix(AutH(F )), respectively.

Martino and Ventura considered examples where

Fix(AutH(F )) 6= Fix(EndH(F )) = H.

We obtain, for two of their examples, explicit descriptions of EndH(F ),
AutH(F ), and Fix(AutH(F )), and, hence, give much simpler verifications
that Fix(AutH(F )) 6= Fix(EndH(F )), in these cases.
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1 Two Galois connections

The Galois theory of free groups consists of two, dual, components. The first
component is the study of the fixed subgroup for a given set of endomorphisms
of a free group; this has proven to be a very rich area of research, developed by
Nielsen, Scott, Dyer, Gersten, Bestvina, Handel, and many others. The dual
component is the study of the set of endomorphisms which fix a given subgroup
of a free group; currently this component is somewhat less productive. The
object of this article is to give more details for some of the examples of this
theory that arose in an article of Martino-Ventura [4], and, hence, substan-
tially simplify their proofs in these cases. We refer the reader to [4] for further
background, motivation and references concerning the many interesting results
which have been obtained about the Galois theory of free groups.

Throughout this section, let F be a free group and let H be a subgroup
of F .

1.1 Definitions. Let End(F ) denote the monoid of endomorphisms of F . Let
EndH(F ) denote the submonoid consisting of all endomorphisms of F which fix
every element of H.

Let Aut(F ) denote the group of invertible elements in End(F ), that is, the
group of automorphisms of F . Let AutH(F ) denote the subgroup consisting of
all automorphisms of F which fix every element of H.
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For any subset S of End(F ), let Fix(S) denote the set of elements of F that
are fixed by every element of S.

We think of AutH(F ) as a ‘Galois group’ and EndH(F ) as a ‘Galois monoid’.
Now Aut(−)(F ) is a function from the set of subgroups of F to the set of

subsets of Aut(F ), and Fix(−) is a function in the reverse direction. This pair
of functions form a Galois connection, and the images of the functions are the
sets of closed subsets. We say that H is Aut(F )-closed (in F ) if H = Fix(S) for
some subset S of Aut(F ). The Aut(F )-closure of H (in F ) is Fix(AutH(F )),
the smallest Aut(F )-closed subgroup of F containing H.

Replacing Aut with End everywhere in the previous paragraph gives another
Galois connection.

An F -retraction is an idempotent element of End(F ), and an F -retract is the
image, or set of fixed elements, of an F -retraction. Notice that all F -retracts
are End(F )-closed.

The End(F )-closure of H, Fix(EndH(F )) is a subgroup of the Aut(F )-clo-
sure of H, Fix(AutH(F )). In general, the relation between the two closures
is not well understood. A. Martino and E. Ventura [4], [2] gave a family of
ingeniously chosen examples where Fix(AutH(F )) 6= Fix(EndH(F )) = H; their
proof is lengthy and involves many deep results.

In Section 2, using only normal-form methods, we obtain, for two of their
examples, an explicit description of the Galois monoid EndH(F ), and, hence, a
simple proof that Fix(AutH(F )) 6= Fix(EndH(F )), in these cases.

In Section 3, we recall relevant results of Martino and Ventura.

2 Some Galois monoids

Throughout this section we use the following.

2.1 Notation. Let F be a free group of rank three, and let {a, b, c} be a basis
of F .

We denote an element ρ of End(F ) by the triple (aρ, bρ, cρ). Notice that we
write endomorphisms on the right of their arguments.

For x, y ∈ F , x̄ denotes x−1, [x, y] denotes xyx̄ȳ, and we write x ∼ y if x
and y are conjugate in F ; thus, x ∼ ȳxy.

Let φ = (a, b, cb) ∈ Aut(F ).
Let j ∈ Z, let dj = ba[cj , b]ā ∈ F , let Hj = 〈a, dj〉 = 〈a, ba[cj , b]〉 ≤ F , and

let ψj = (a, dj , 1) ∈ End(F ).
Notice that, for each n ∈ Z, φn = (a, b, cbn) and φnψj = (a, dj , d

n
j ).

2.2 Example. Suppose that Notation 2.1 holds, and let j = 1.
Thus, we have H1 = 〈a, ba[c, b]〉, φ = (a, b, cb), and ψ1 = (a, ba[c, b]ā, 1).
We shall show, in Corollary 2.6(i) below, that

EndH1(F ) = {φn, φnψ1 | n ∈ Z} = 〈φ〉 ∪ 〈φ〉ψ1 and, hence, AutH1(F ) = 〈φ〉.

It is then straightforward to verify the following.
Every non-invertible element of EndH1(F ) is an F -retraction with image H1.
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The multiplication in EndH1(F ) is described by the monoid presentation

EndH1(F ) = 〈φ, φ̄, ψ1 | ψ1φ = ψ2
1 = ψ1, φ̄φ = φφ̄ = 1〉monoid.

Let K = 〈a, b, cbc̄〉. The two closures of H1 are

Fix(AutH1(F )) = Fix({φ}) = K and Fix(EndH1(F )) = Fix({ψ1}) = H1.

Here, K = H1 ∗ 〈b〉 6= H1.
The closure of {ψ1} in End(F ) is EndFix({ψ1})(F ) = 〈φ〉 ∪ 〈φ〉ψ1.

2.3 Example. Suppose that Notation 2.1 holds, and let j = 2.
Thus, we have H2 = 〈a, ba[c2, b]〉, φ = (a, b, cb), and ψ2 = (a, ba[c2, b]ā, 1).
We shall show, in Corollary 2.6(ii) below, that

EndH2(F ) = {1, φnψ2 | n ∈ Z} = {1} ∪ 〈φ〉ψ2 and, hence, AutH2(F ) = {1}.

It is then straightforward to verify the following.
Every non-identity element of EndH2(F ) is an F -retraction with image H2.
The multiplication in EndH2(F ) is described by the monoid presentation

EndH2(F ) = 〈{φnψ2 | n ∈ Z} | {φnψ2 · φmψ2 = φnψ2 | m,n ∈ Z}〉monoid.

The two closures of H2 are

Fix(AutH2(F )) = Fix({1}) = F and Fix(EndH2(F )) = Fix({ψ2}) = H2.

Here, F 6= H2.
The closure of {ψ2} in End(F ) is EndFix({ψ2})(F ) = {1} ∪ 〈φ〉ψ2.

By adjoining a free-group free factor simultaneously to Hj and to F , one
obtains examples where F has arbitrary rank greater than two.

Our argument is concentrated in the next result.

2.4 Lemma. Suppose that Notation 2.1 holds. For all h ∈ 〈c〉 and all x ∈ F ,
the following hold.

(i). If h̄ābhx ∼ āx̄bx in F , then x ∈ {1, bh̄ b̄ahā}.
(ii). If x ∼ āx̄ba[h, b]x in F , then x ∈ {b, ba[h, b]ā}.

Proof. (i). Let B = {a, b, c, ā, b̄, c̄}. Each element of F has a unique expression
as a reduced monoid word in B, and, where the interpretation is clear, we shall
treat the elements of F as reduced monoid words in B. For each v ∈ B and
z ∈ F , we write |z|v to denote the number of times v occurs in (the reduced
monoid expression for) z.

Suppose that

(1) h̄ābhx ∼ āx̄bx.

Write x = bmyan where m, n ∈ Z, y ∈ F , y does not begin with b or b̄, and
y does not end with a or ā.
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By abelianizing (1) we see that the derived subgroup of F , denoted F ′,
contains x = bmyan; thus

(2) yF ′ = ānb̄mF ′

in F/F ′, a free abelian group with basis {aF ′, bF ′, cF ′}.
Notice that (1) can be rewritten as

(3) h̄ābhbmyan ∼ āȳby,

and that the right-hand side of (3) is cyclically reduced.
On applying |−|a to (3) we see that

(4) 0 + |y|a + max{n, 0} ≥ 0 + |y|ā + 0 + |y|a ,

and that equality holds in (4) if and only if no a is cancelled in the cyclic
reduction of the left-hand side of (3). Now (4) amounts to max{n, 0} ≥ |y|ā,
and, by (2), it is clear that equality holds. Thus |y|ā = max{n, 0}, and no a is
cancelled in the cyclic reduction of the left-hand side of (3).

Similarly, by applying |−|ā to (3), we find that |y|a = max{−n, 0}.
Also, by applying |−|b and |−|b̄ to (3), we find that |y|b̄ = max{m, 0},

|y|b = max{−m, 0}, and no b is cancelled in the cyclic reduction of the left-hand
side of (3).

We now consider five non-pairwise-disjoint cases.

Case 1: m = n = 0.
Here |y|a = |y|ā = |y|b = |y|b̄ = 0. Thus, each side of (3) has no occurrence

of a or b̄, has a unique occurrence of ā, and has a unique occurrence of b. In
each side, we can equate the cyclic subword between ā and b and we find that
1 = ȳ. Hence x = 1, as desired.

Case 2: m ≤ −1.
Here |y|b = −m and |y|b̄ = 0. Write y = y′by′′ as a reduced monoid word

such that y′ has no occurrence of b, and, hence, y′′ has −m−1 occurrences of b.
Notice that y′ 6= 1 because y does not begin with b. In each side of (3) there are
−m + 1 occurrences of b followed, cyclically, by −m occurrences of b̄. In each
side, we take the first of the −m + 1 occurrences of b as the terminating point.
For the left-hand side we get y′′anh̄ābhbmy′b, that is, y′′anh̄ābhb̄−my′b. For the
right-hand side we get yāȳb, that is, yāȳ′′b̄ȳ′b. Since there is no cancellation of
b or b̄, we can equate the cyclic subwords between the last b̄ and the first b, and
we find that y′ = ȳ′. Hence y′ = 1, which is a contradiction, as desired.

Case 3: m ≥ 1.
Here |y|b̄ = m and |y|b = 0. In each side of (3), there are m + 1 occurrences

of b followed, cyclically, by m occurrences of b̄. In each side, we take the last of
the m + 1 occurrences of b as the terminating point, and find that

yanh̄ābhbm = yāȳb.

Rearranging, we find that y = b̄m−1h̄ b̄ahān+1. Since y does not begin with b
or b̄, and does not end with a or ā, we see that m = 1, n = −1, y = h̄ b̄ah, and
x = bh̄ b̄ahā, as desired.
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Case 4: n ≤ −1.
This is similar to Case 3. Here |y|a = −n and |y|ā = 0. In each side of (3)

there are −n + 1 occurrences of ā followed, cyclically, by −n occurrences of a.
In each side, we take the first of the −n + 1 occurrences of ā as the starting
point, and find that ā−nh̄ābhbmy = āȳby. Thus y = b̄m−1h̄ b̄ahān+1, and, as in
Case 3, x = bh̄ b̄ahā, as desired.

Case 5: n ≥ 1.
This is similar to Case 2. Here |y|a = 0 and |y|ā = n. Write y = y′āy′′

as a reduced monoid word such that y′′ has no occurrence of ā, and, hence, y′

has n − 1 occurrences of ā. Notice that y′′ 6= 1 since y does not end with ā.
In each side of (3) there are n + 1 occurrences of ā followed, cyclically, by n
occurrences of a. In each side, we take the last of the n + 1 occurrences of ā as
the starting point, and find āy′′anh̄ābhbmy′ = āȳby = āȳ′′aȳ′by. Equating the
cyclic subwords between the last ā and the first a, we find that y′′ = ȳ′′. Hence
y′′ = 1, which is a contradiction, as desired.

This completes the proof of (i).

(ii). Suppose that x ∼ āx̄ba[h, b]x. Let y := b̄x. Then x = by and

by ∼ āȳahbh̄y.

Applying ρ := (a, h̄ābh, c) ∈ Aut(F ) and letting z := yρ, we find that

h̄ābhz ∼ āz̄bz.

By (i), z ∈ {1, bh̄ b̄ahā}. Applying ρ−1 = (a, ahbh̄, c), we see that

y = zρ−1 ∈ {1, a[h, b]ā}.

Left multiplying by b we find that x = by ∈ {b, ba[h, b]ā}, as desired.

We can now calculate some Galois monoids.

2.5 Theorem. Suppose that Notation 2.1 holds. For each element (x, y, z) of
EndHj (F ), the following hold.

(i). y ∈ {dj , b}.
(ii). If y = dj and j ≥ 1, then there exists some n ∈ Z such that z = dn

j .
(iii). If y = b and j = 1, then there exists some n ∈ Z such that z = cbn.
(iv). If y = b and j ≥ 2, then z = c.

Proof. (i). Here x = a and yx[zj , y] = ba[cj , b]. Hence yazjyz̄j ȳ = ba[cj , b] and
zjyz̄j = āȳba[cj , b]y. Thus y ∼ āȳba[cj , b]y. By Lemma 2.4(ii),

y ∈ {b, ba[cj , b]ā} = {b, dj}.

This proves (i).
(ii). Suppose that j ≥ 1 and that y = dj .
Let C denote the centralizer of zj in F .
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Now
zjdj z̄

j = ād̄jba[cj , b]dj = ā(a[cj , b]āb̄)ba[cj , b]dj = dj .

Hence dj ∈ C.
To show that z ∈ 〈dj〉, we may assume that z 6= 1, and, hence, zj 6= 1. Recall

that C = 〈z′〉 for some z′ ∈ F ; see [1, Proposition I.2.19]. (An easy normal-form
argument shows that there exists some z′ ∈ F such that z′ is not a proper power
and zj = z′n for some positive integer n. Another normal-form argument shows
that C = 〈z′〉. Alternatively, C is a free group with a non-trivial centre, and,
hence, C is cyclic.)

Thus dj = z′m for some integer m. Since bF ′ = djF
′ = z′mF ′ = (z′F ′)m

in F/F ′, a free abelian group with basis {aF ′, bF ′, cF ′}, we see that m = ±1.
Thus dj = z′±1.

Now z ∈ C = 〈z′〉 = 〈dj〉. This proves (ii).
(iii) and (iv). Suppose that j ≥ 1 and that y = b.
Then zjbz̄j = āb̄ba[cj , b]b = cjbc̄j . Hence c̄jzj commutes with b. A trivial

normal-form argument shows that there exists n ∈ Z such that c̄jzj = bn.
If j = 1, then z = cbn. This proves (iii).
If j ≥ 2, then the equation cjbn = zj clearly implies that n = 0 and z = c.

This proves (iv).

The cases of Theorem 2.5 where j = 1 and j = 2 give the key parts of
Examples 2.2 and 2.3, respectively.

2.6 Corollary. Suppose that Notation 2.1 holds.
(i). For each element (x, y, z) of EndH1(F ), there exists some n ∈ Z such that

either (x, y, z) = (a, b, cbn) or (x, y, z) = (a, d1, d
n
1 ). Conversely, all these

endomorphisms of F fix a and d1, and, hence, fix H1.
(ii). For each non-identity element (x, y, z) of EndH2(F ), there exists some

n ∈ Z such that (x, y, z) = (a, d2, d
n
2 ). Conversely, all these endomor-

phisms of F fix a and d2, and, hence, fix H2.

3 The relevant results of Martino and Ventura

Let F be a finitely generated free group and let H be a subgroup of F .
We say that H is one-auto fixed (in F ) if H = Fix({ρ}) for some ρ ∈ Aut(F ).

Thus a one-auto-fixed subgroup is Aut(F )-closed.
We define one-endo fixed analogously. Thus an F -retract is one-endo fixed,

and a one-endo-fixed subgroup is End(F )-closed.
E. Ventura [5, Theorem 3.9] showed that if the rank of F is at most two,

then the four concepts, one-endo fixed, End(F )-closed, one-auto fixed, and
Aut(F )-closed, all coincide.

A. Martino [2, Corollary 5.3] showed that if the rank of F is three, then the
two concepts one-auto fixed and Aut(F )-closed coincide.

If the rank of F is greater than three, it is not known whether or not the
Aut(F )-closed subgroups are just the one-auto-fixed subgroups. If the rank of F
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is greater than two, it is not known whether or not the End(F )-closed subgroups
are just the one-endo-fixed subgroups.

Martino-Ventura [3, Corollary 3.4] showed that if H is Aut(F )-closed, then
H is a free factor of some one-auto-fixed subgroup K of F . Also, by [3, Propo-
sition 5.4], there exists an example where H is not Aut(F )-closed but H is a
free factor of some one-auto-fixed subgroup K of F . We find it interesting that
the same phenomenon appeared, unsought, in Example 2.2, above.

We now recall the examples of Martino-Ventura [4], together with some
observations made to us by Armando Martino. Let Notation 2.1 hold, let
i, j, k be integers such that ijk 6= 0, and let H = Hi,j,k := 〈a, baicjbck b̄〉;
thus Hj = H1,j,−j . The six-tuple (i, j, k, a, b, c) in our notation corresponds
to (−s, r, t, b, cbs, a) in the notation of [4]. It is straightforward to show
that H is an F -retract, and, hence, H is one-endo fixed and End(F )-closed.
By [4, Proposition 18], H is not one-auto fixed, and, then, by [2, Corollary 5.3],
H is not Aut(F )-closed. Since it strictly contains the rank-two F -retract H,
Fix(AutH(F )) has rank at least three, and, hence, is a ‘maximal-rank fixed
subgroup’. Now [3, Proposition 5.1 and Corollary 5.2] imply the following:
AutH(F ) is infinite cyclic or trivial, depending as the image of Fix(AutH(F ))
in F/F ′ has rank 2 or 3; every non-identity element of AutH(F ) has fixed sub-
group exactly Fix(AutH(F )); every non-invertible element of EndH(F ) has fixed
subgroup exactly Fix(EndH(F )), that is, H.

Martino-Ventura use several results, some of them very deep, and their
methods do not yield a description of EndH(F ). In Examples 2.2 and 2.3
above, we obtained, directly, a description of EndHj (F ), for j = 1 and j = 2,
respectively. It is straightforward to check that the same techniques apply to
Hi,j,−j (with ij 6= 0), and to verify that no new types of behaviour arise. For
k 6= −j (with ijk 6= 0), we have been unable to calculate EndHi,j,k

(F ), or even
the Aut(F )-closure of Hi,j,k.
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