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Abstract

Let R be a ring (associative, with 1), and let R⟨⟨a, b⟩⟩ denote the power-
series R-ring in two non-commuting, R-centralizing variables, a and b. Let
A be an R-subring of R⟨⟨a⟩⟩ and B be an R-subring of R⟨⟨b⟩⟩, and let α denote
the natural map A⨿R B → R⟨⟨a, b⟩⟩. This article describes some situations
where α is injective and some where it is not.

We prove that if A is a right Ore localization of R[a] and B is a right Ore
localization of R[b], then α is injective. For example, the group ring over R
of the free group on {1+ a, 1+ b} is R[(1+ a)±1]⨿R R[(1+ b)±1], which then
embeds in R⟨⟨a, b⟩⟩. We thus recover a celebrated result of R.H. Fox, via a
proof simpler than those previously known.

We show that α is injective if R is Π-semihereditary, that is, every finitely
generated, torsionless, right R-module is projective. (This concept was first
studied by M.F. Jones, who showed that it is left-right symmetric. It fol-
lows from a result of I. I. Sahaev that if w.gl.dimR 6 1 and R embeds in
a skew field, then R is Π-semihereditary. Also, it follows from a result of
V.C. Cateforis that if R is right semihereditary and right self-injective, then
R is Π-semihereditary.)

The arguments and results extend easily from two variables to any set of
variables.

The article concludes with some results contributed by G.M. Bergman
that describe situations where α is not injective. He shows that if R
is commutative and w.gl.dimR > 2, then there exist examples where the
map α′ : A⨿R B → R⟨⟨a⟩⟩ ⨿R R⟨⟨b⟩⟩ is not injective, and hence neither is
α. It follows from a result of K.R. Goodearl that when R is a commu-
tative, countable, non-self-injective, von Neumann regular ring, the map
α′′ : R⟨⟨a⟩⟩ ⨿R R⟨⟨b⟩⟩ → R⟨⟨a, b⟩⟩ is not injective. Bergman gives procedures
for constructing other examples where α′′ is not injective.

2010 Mathematics Subject Classification. Primary: 16S10; Secondary: 20C07, 20E05.

Key words. Ring coproduct, free-group group ring, power series, Ore localization.

1 Summary of the results

Some of the terms that we use in this section will be explained in more detail in
subsequent sections.

Throughout, we fix a ring R (associative, with 1). By an R-ring S we mean a
ring S together with a specified ring homomorphism R → S. We write U(R) for
the multiplicative group of units of R. We shall be considering the following.

1.1 Hypotheses. Let R⟨⟨a, b⟩⟩ denote the power-series R-ring in two non-com-
muting, R-centralizing variables, a and b. Let A be an R-subring of R⟨⟨a⟩⟩ and
B be an R-subring of R⟨⟨b⟩⟩. Let α denote the natural map A⨿R B → R⟨⟨a, b⟩⟩.
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2 Ring coproducts embedded in power-series rings

This article describes some situations where α is injective and some where it is
not.

In Section 2, we fix some of the notation, and we use a result of P.M. Cohn
to decompose the map from the domain of α to the image of α as a direct sum of
R-bimodule maps.

In Section 3, in Proposition 3.1, we shall see that if A is a right Ore localization
of R[a] and B is a right Ore localization of R[b], then α is injective.

1.2 Example. Let h := 1+ a, H := ⟨h⟩ 6 U(R⟨⟨a⟩⟩), and let RH denote the
group ring of H over R. It is not difficult to see that we may view R[a] as
R[h] ⊆ RH ⊆ R⟨⟨a⟩⟩ and that RH is a central Ore localization of R[h]. The anal-
ogous statements hold for k := 1+ b and K := ⟨k⟩ 6 U(R⟨⟨b⟩⟩). By Proposition 3.1
below, the map α : RH ⨿R RK → R⟨⟨a, b⟩⟩ is injective. Here, RH ⨿R RK may be
identified with the group ring over R of the group F freely generated by two symbols
1+ a, 1+ b. We thus recover the celebrated result given in 1953 by R.H. Fox [11],
that RF embeds in R⟨⟨a, b⟩⟩. Although Fox considers only the case R = Z, his
argument works for any ring. The proof given here is simpler than the previously
known proofs, such as the original proof reviewed recently in [1, pp. 366–371], and
the proof by G.M. Bergman [8, pp. 528–529] of the case where R is a field.

(One consequence of Fox’s result is that if R ̸= {0}, then the group F embeds
in U(R⟨⟨a, b⟩⟩). W.Magnus [21] had already given a short proof of the R = Z
case of this consequence in 1935, and deduced much useful information about free
groups. Some of this information eventually led to the discovery, in 1946, of the
important fact that F is an orderable group. Much later, Bergman [3] remarked
that orderability follows directly from Magnus’ embedding, since Z⟨⟨a, b⟩⟩ can easily
be given a ring ordering whose positive cone contains F .)

In Section 4, we review some definitions and results from ring theory. We
say that R is Π-semihereditary if every finitely generated, right R-submodule of
a direct product of copies of R is projective. (Completely reducible rings are
clearly Π-semihereditary, since all their modules are projective. It is also clear that
Π-semihereditary rings are right semihereditary and, hence, satisfy w.gl.dimR 6 1.)
This concept was studied first by M.F. Jones [16] who showed that it is left-right
symmetric. Earlier, K.R. Goodearl [12] had observed that a result of V.C.Cate-
foris [4] shows that if R is right semihereditary and right self-injective, then
R is Π-semihereditary; see Theorem 4.17 below. It follows from a result of
I. I. Sahaev [24] that if w.gl.dimR 6 1 and R embeds in a skew field, then R is
Π-semihereditary; see Corollary 4.15(i) below. We recall these and other examples
of Π-semihereditary rings.

In Section 5, we write α as a composite A⨿R B
α′

→ R⟨⟨a⟩⟩ ⨿R R⟨⟨b⟩⟩
α′′

→ R⟨⟨a, b⟩⟩.
Then, in Corollary 5.4, we show that α′, α′′, and α are injective if R is Π-semihered-
itary, or, more generally, if every finitely generated right R-submodule of R⟨⟨a⟩⟩ is
projective. The examples of the preceding section then apply.

The results of Sections 3 and 5 extend from two variables to any set of variables;
the arguments are very similar but the notation is more complicated. We leave the
details to the interested reader.

Section 6 contains results contributed by Bergman that describe situations where
α is not injective. Examples of non-injectivity of α can arise from non-injectivity ei-
ther of α′ or of α′′. (Examples of the former sort clearly lead to non-injectivity of α,
while an example of the latter sort does so on taking A = R⟨⟨a⟩⟩, B = R⟨⟨b⟩⟩.)
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Examples are given of both sorts. He obtains non-injectivity of α′ for any com-
mutative ring R with w.gl.dimR > 2, e.g. R = Q[x, y]. A result of Goodearl [12]
yields non-injectivity of α′′ whenever R is a commutative, countable, non-self-in-
jective, von Neumann regular ring, e.g. R = Q[ei : i ∈ Z]/(eiej − δi,jei : i, j ∈ Z).
Constructions are described that generalize the latter example.

2 The bimodule structure of ring coproducts

2.1 Notation. We denote by N the set of finite cardinals, {0, 1, 2, 3, . . .}.
For any R-bimodules M1 and M2, we will denote the R-bimodule M1 ⊗RM2 by

M1 ⊗M2 if R is understood.
For any R-bimodule M and any n ∈ N, we recursively define the R-bimodule

tensor power M⊗n by the formulas M⊗0 := R and M⊗(n+1) :=M⊗n ⊗M .

2.2 Notation. Suppose that Hypotheses 1.1 hold.
Let {a, b}∗ denote the free monoid on {a, b}. We shall usually write elements of

R⟨⟨a, b⟩⟩ as formal sums
∑

w∈{a,b}∗
f(w)·w, where f : w 7→ f(w) is an arbitrary function

from {a, b}∗ to R. The set {w ∈ {a, b}∗ : f(w) ̸= 0} is called the {a, b}∗-support of∑
w∈{a,b}∗

f(w)·w.

We view R ⊆ R[a] ⊆ R⟨⟨a⟩⟩ ⊆ R⟨⟨a, b⟩⟩ and R ⊆ R[b] ⊆ R⟨⟨b⟩⟩ ⊆ R⟨⟨a, b⟩⟩. Let
a := A ∩ aR⟨⟨a⟩⟩ and b := B ∩ bR⟨⟨b⟩⟩. Then a is a two-sided ideal of A, and, as
R-bimodules, A = R⊕ a. Analogous statements hold for B.

The ring coproduct of A and B amalgamating the two copies of R will be denoted
A ⨿R B, or by A ⨿ B if R is understood. Now A ⨿ B = (R ⊕ a) ⨿ (R ⊕ b). As
noted by P.M. Cohn [7, pp. 60–61], it is not difficult to show that there is then an
expansion as a direct sum of R-bimodules

A⨿B = R⊕ a⊕ b⊕ (a⊗b)⊕ (b⊗a)⊕ (a⊗b⊗a)⊕ (b⊗a⊗b)⊕ · · · .

We may write this in the form

(1) A⨿B = R⊕a⊕b⊕
⊕
n>1

(
(a⊗b)⊗n⊕ (b⊗a)⊗n⊕ ((a⊗b)⊗n⊗a)⊕ ((b⊗a)⊗n⊗b)

)
.

When α is applied to (1), the direct sums are replaced with sums, and the
tensor-product multiplications within A ⨿ B are replaced with the multiplications
of R⟨⟨a, b⟩⟩. Thus, we may write

(2) α(A⨿B) = R+ a+ b+
∑
n>1

(
(ab)n + (ba)n + ((ab)na) + ((ba)nb)

)
.

The {a, b}∗-support of a lies in {ai : i > 1}, and the {a, b}∗-support of b lies in
{bj : j > 1}. It follows that any two summands appearing in (2) have disjoint
{a, b}∗-supports. Hence, we recover directness in the summation, and may write

α(A⨿B) = R⊕ a⊕ b⊕
⊕
n>1

(
(ab)n ⊕ (ba)n ⊕ ((ab)na)⊕ ((ba)nb)

)
.

For any finite alternating string w formed from the letters a and b, let us write αw

for the map from the corresponding alternating tensor product of factors a and b in
A⨿B to the corresponding alternating product in R⟨⟨a, b⟩⟩. Thus, as an R-bimodule
map, A ⨿ B → α(A ⨿ B) decomposes as the direct sum of the three identity maps

R
α∅−−→ R, a

αa−−→ a, b
αb−→ b, and the further R-bimodule maps, n > 1,

(a⊗b)⊗n α(ab)n−−−−→ (ab)n, (b⊗a)⊗n α(ba)n−−−−→ (ba)n,

(a⊗b)⊗n ⊗ a
α(ab)na−−−−−→ (ab)na, (b⊗a)⊗n ⊗ b

α(ba)nb−−−−−→ (ba)nb.
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Thus α is injective if and only if each of the four maps is injective for all n > 1.

3 Ore localizations

We can now give a simple condition that ensures that α is injective.

3.1 Proposition. If Hypotheses 1.1 hold and, moreover, A is a right Ore localiza-
tion of R[a] and B is a right Ore localization of R[b], then α is injective.

Proof. We use Notation 2.2. We shall show below that for any n > 1, if α(ab)n is
injective, then α(ab)na is injective. The analogous arguments will clearly work for
the other three cases required.

Suppose then that (a⊗b)⊗n
α(ab)n−−−−→ (ab)n ⊆ R⟨⟨a, b⟩⟩ is injective. By considering

{a, b}∗-supports, we see that, for each d > 0, (a ⊗ b)⊗n⊗Rad → (ab)nad is then
injective. Again by considering {a, b}∗-supports, we see that the map⊕

d>0

(
(a⊗b)⊗n ⊗ (Rad)

)
→

⊕
d>0

(
(ab)nad

)
⊆ R⟨⟨a, b⟩⟩

is injective; that is, the map

(a⊗b)⊗n ⊗ (R[a]) → (ab)n(R[a]) ⊆ R⟨⟨a, b⟩⟩

is injective.
Since A is a right Ore localization of R[a], there exists some subset U of U(A)

such that the family (R[a]u : u ∈ U) forms a directed system under inclusion and
the direct limit of the system is A. For each u ∈ U , we have a commutative diagram

(a⊗b)⊗n ⊗ (R[a]) −−−−→ (ab)n(R[a])yu

yu

(a⊗b)⊗n ⊗ (R[a]u) −−−−→ (ab)n(R[a]u)

in which the maps on the top and the two sides are bijective. Hence, the map on
the bottom,

(a⊗b)⊗n ⊗ (R[a]u) → (ab)n(R[a]u) ⊆ R⟨⟨a, b⟩⟩,
is injective. On taking the directed union over u ∈ U , we find that the map

(a⊗ b)⊗n ⊗A→ (ab)nA ⊆ R⟨⟨a, b⟩⟩

is injective. By considering {a, b}∗-supports, we see that the latter map is the direct
sum of the two maps α(ab)n and α(ab)na. Hence, α(ab)na is injective.

The other three inductive implications can be proved in the same way. The
injectivity of α then follows by induction.

3.2 Remarks. In Example 1.2, we noted that one case of Proposition 3.1 is the
result of Fox [11] that the natural map RF → R⟨⟨a, b⟩⟩ is injective, where F is the
free group on two symbols 1+ a, 1+ b. Fox’s proof introduced R-linear endomor-
phisms of RF that are now called Fox derivatives; see [8, Example 7, p. 55]. To
indicate one important connection between the above proof of Proposition 3.1 and
Fox’s original argument, we remark that right multiplication by a gives a bijective
map

(a⊗b)⊗n ⊗ (Rad) → (a⊗b)⊗n ⊗ (Rad+1),

and the inverse map has the same action as that of the left Fox derivative on RF
with respect to 1+ a relative to the free generating set {1+ a, 1+ b}.

The original motivation of this article was to show that the proof of the embed-
ding became more transparent when more emphasis was placed on the ring-theoretic
viewpoint.
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4 Review of Π-semihereditary rings

In this section, we review some of the history of what we call Π-semihereditary rings.
This will provide us with some examples to which the results of the next section
apply. We shall recall the proofs since they are all fairly short, scattered over the
literature, and not always available in the formulation that will be required. No
new results are claimed, but we have tried to give proofs that minimize background
requirements.

4.1 Definitions. For each of the definitions given below, the dual left-right defini-
tion will also be understood.

Let M be a left R-module.
(1) Let X and Y be sets.
For m, n ∈ N, we let mY n denote the set of m× n matrices with coordinates

in Y . Absence of an exponent is to be read as an exponent 1.
Let

∏
X

Y denote the set whose elements are the functions X → Y , x 7→ yx,

represented as families (yx : x ∈ X). We shall sometimes write
∏
X

Y as Y X , and

think of the elements intuitively as ‘1×X matrices’. Similarly, we sometimes write∏
X

Y as XY , and think of the elements intuitively as ‘X × 1 matrices’.

In a natural way,
∏
X

R is an R-bimodule and
∏
X

M is a left R-module. By

the multiplication map (
∏
X

R)⊗M → (
∏
X

R)M ⊆
∏
X

M , we shall mean the left

R-module map determined by (rx : x ∈ X)⊗m 7→ (rxm : x ∈ X). We shall some-
times let (XR)⊗M → (XR)M ⊆ XM denote the underlying additive map; here,
XR has a right R-module structure and XM has an abelian group structure. When
M is an R-bimodule, the right R-action is to be maintained in all cases.

When M =
∏
Y

R, we let µX,Y denote the foregoing multiplication map. Here,

we have an R-bimodule map

(
∏
X

R)⊗ (
∏
Y

R)
µX,Y−−−→

∏
X×Y

R,

(rx : x ∈ X)⊗ (sy : y ∈ Y ) 7→ (rxsy : (x, y) ∈ X × Y ).

We shall sometimes denote the underlying additive map by XR ⊗ RY µX,Y−−−→ XRY ,
where we think of the elements of XRY imprecisely as ‘X × Y matrices’.

(2) We say that M is torsionless if there exists an injective left R-module map
from M to a direct product of copies of R. Clearly, submodules of torsionless
modules are torsionless.

(3) One says that M is coherent if every finitely generated submodule is finitely
presented. Clearly, submodules of coherent modules are coherent.

The ring R is left coherent if R is coherent as left R-module, that is, every finitely
generated left ideal of R is finitely presented as left R-module.

The ring R is left Π-coherent if, for every set Y , RY is coherent as left R-module,
or, equivalently, every finitely generated, torsionless, left R-module is finitely pre-
sented. This property was studied first by Jones [16, p. 103]. Clearly, left Π-coherent
rings are left coherent.

(4) We say that M is semihereditary if every finitely generated submodule is
projective. Clearly, semihereditary modules are coherent, and submodules of semi-
hereditary modules are semihereditary.

The ring R is left semihereditary if R is semihereditary as left R-module, that
is, every finitely generated left ideal of R is projective as left R-module.
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We now come to the property of interest to us, which was studied first by
Jones [16], who showed that it is left-right symmetric; see Theorem 4.11 below.
We say that the ring R is Π-semihereditary if, for every set X, XR is semiheredi-
tary as right R-module, or, equivalently, every finitely generated, torsionless right
R-module is projective. Prior to Jones’ work, Goodearl [12] had mentioned that
right self-injective, von Neumann regular rings have this property; see Theorem 4.17
below.

Clearly, Π-semihereditary rings are right semihereditary and right Π-coherent.
(5) We say that M is flat if, for all injective right R-module maps K → F , the

induced map K ⊗R M → F ⊗R M is injective, or, equivalently, for all finitely gen-
erated right ideals I of R, the multiplication map I ⊗R M → IM ⊆M = R⊗R M
is injective. See [23, Theorem 3.53]. Notice that it is therefore sufficent to consider
inclusion maps K → F where F is a finitely generated, free, right R-module and K
is a finitely generated R-submodule of F .

If every finitely generated submodule ofM is flat, thenM is flat. More generally,
if M is the direct limit of a directed system of flat modules, then M is flat. See [23,
Theorem 3.47].

If M is flat, then every left R-summand of M is flat. See [23, Theorem 3.45].
We write w.gl.dimR 6 1 if every finitely generated left ideal of R is flat as left

R-module, or, equivalently, every submodule of every flat left R-module is flat, or
equivalently every submodule of every flat right R-module is flat; see [23, Theo-
rem 9.24]. Otherwise, we write w.gl.dimR > 2.

(6) For any infinite cardinal κ, we say that R is left κ-Noetherian if every left
ideal of R is generated by κ (or fewer) elements. For example, if |R| 6 ℵ0, then R
is left ℵ0-Noetherian. Also, if |R| > ℵ0, then R is left |R|-Noetherian.

The next result is a variant of [6, Theorem 2.4] suitable for our purposes.

4.2 Theorem. (Cohn, 1959) For any flat left R-module F and left R-submodule K
of F , the following are equivalent.

(a) F/K is left R-flat.

(b) For all ℓ, m ∈ N and y ∈ ℓRm, (y(mF )) ∩ (ℓK) ⊆ y(mK) in ℓF .

Proof. If ℓ, m ∈ N and y ∈ ℓRm, then ℓR may be considered an arbitrary finitely
generated, free, right R-module and y(mR) an arbitrary finitely generated, right
R-submodule of ℓR. Thus, the left R-module M := F/K is flat if and only if the
natural map

(3) (y(mR))⊗R M → (ℓR)⊗R M

is injective for all ℓ, m, y.
Suppose that ℓ, m, and y are given.
We have an exact sequence

(4) (y(mR))⊗R K → (y(mR))⊗R F → (y(mR))⊗R M → 0,

and we shall re-interpret each term. Since F is left R-flat, (y(mR))⊗R F embeds
in (ℓR)⊗R F = ℓF , and the image is y(mF ). Hence, we may make the identification
(y(mR))⊗R F = y(mF ). The image of (y(mR))⊗R K in (y(mR))⊗R F = y(mF )
is then y(mK). Using (4), we now find that we may make the identification
(y(mR))⊗R M = (y(mF ))/(y(mK)).

In the special case where y is an identity matrix, we have the (obvious) iden-
tification (ℓR)⊗R M = (ℓF )/(ℓK). We now find that we may identify (3) with the
natural map (y(mF ))/(y(mK)) → (ℓF )/(ℓK). Then (a)⇔(b) follows.

The next two results are taken from [5, Proposition 2.2 and Corollary], attributed
to O.E. Villamayor.
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4.3 Theorem. (Villamayor, 1960) For any n ∈ N and left R-submodule K of Rn,
the following are equivalent.

(a) Rn/K is left R-flat.

(b) For all ℓ ∈ N and x ∈ ℓK ⊆ ℓRn, x ∈ x(nK).

Proof. The case F = Rn of Theorem 4.2 allows us to rewrite (a) as
(a′) For all ℓ, m ∈ N and y ∈ ℓRm, (y(mRn)) ∩ (ℓK) ⊆ y(mK) in ℓRn.

(a′)⇒(b). Suppose x ∈ ℓK. Taking m = n and y = x in (a′) we obtain
(x(nRn)) ∩ (ℓK) ⊆ x(nK) in ℓRn. Then x = xIn ∈ x(nRn) ∩ (ℓK) ⊆ x(nK).

(b)⇒(a′). Suppose y ∈ ℓRm. Consider any x ∈ (y(mRn)) ∩ (ℓK). We have
x ∈ ℓK, and then, by (b), x ∈ (x)(nK) ⊆ (y(mRn))(nK) ⊆ y(mK).

4.4 Theorem. (Villamayor, 1960) For any left R-module M , the following are
equivalent.

(a) M is finitely generated and projective.

(b) M is finitely presented and flat.

Proof. (a)⇒(b) is clear.
(b)⇒(a). Since M is a finitely presented left R-module, there exist n ∈ N and

a finitely generated left R-submodule K of Rn such that M = Rn/K. Since K
is finitely generated, there exist ℓ ∈ N and x ∈ ℓK ⊆ ℓRn such that K = (Rℓ)x.
By Theorem 4.3 (a)⇒(b), since M is R-flat, x ∈ x(nK), that is, there exists some
e ∈ nK such that x = x·e. Now the left R-module map Rn → K, y 7→ y·e, acts as
the identity on K because it does so on the rows of x, which form a generating set
of K. This proves that Rn/K is projective.

The following result is a variant of [20, Satz 2] which is the same as [9, Propo-
sition 2.1], attributed to M.Auslander.

4.5 Theorem. (Lenzing, 1969 &Auslander, 1970) For any finitely generated left
R-module M , the following are equivalent.

(a) M is finitely presented.

(b) For every set X, the multiplication map (XR)⊗R M → XM is injective.

(c) For some infinite set X such that R is left |X|-Noetherian, the multiplication
map (XR)⊗R M → XM is injective.

Proof. (a)⇒ (b). By (a), there exist m, n ∈ N and an exact sequence of left
R-modules Rm → Rn →M → 0. We then have a commutative diagram with exact
rows:

(XR)⊗R (Rm) −−−−→ (XR)⊗R (Rn) −−−−→ (XR)⊗R M −−−−→ 0

µX,m

∥∥∥ µX,n

∥∥∥ y
XRm −−−−→ XRn −−−−→ XM −−−−→ 0.

Hence, (XR)⊗R M → XM is injective (and surjective).
(b)⇒ (c) is clear.
(c)⇒ (a). By hypothesis, there exist n ∈ N and an exact sequence of left

R-modules 0 → K → Rn → M → 0, and it suffices to show that K is finitely
generated. We then have a commutative diagram with exact rows:

(XR)⊗R K −−−−→ (XR)⊗R (Rn) −−−−→ (XR)⊗R M −−−−→ 0y µX,n

∥∥∥ ∥∥∥
0 −−−−→ XK −−−−→ XRn −−−−→ XM −−−−→ 0,
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where (XR) ⊗R M → XM is injective by (c), and is here easily seen to be surjec-
tive. Hence, (XR)⊗R K → XK is surjective, that is, (XR)K = XK. Since R is left
|X|-Noetherian by (c), K is |X|-generated; hence, there exists some generating fam-
ily (kx : x ∈ X) which may be viewed as an element of XK, and it then has the form∑m

i=1(rx,i : x ∈ X)k′i, since
XK = (XR)K. Then, for each x ∈ X, kx =

∑m
i=1 rx,ik

′
i.

Hence, K =
∑

x∈X Rkx ⊆
∑m

i=1Rk
′
i ⊆ K. Thus, K is finitely generated.

The next two results are taken from [5, Theorems 2.1 and 4.1].

4.6 Theorem. (Chase, 1960) The following are equivalent.

(a) R is left coherent, i.e. every finitely generated left ideal is finitely presented.

(b) For every finitely generated left ideal I of R and every set X, the multiplication
map (XR)⊗R I → (XR)I ⊆ XI ⊆ XR = (XR)⊗R R is injective.

(c) For every set X, XR is right R-flat.

Proof (after Lenzing [20, Section 4]). (a)
Theorem 4.5⇐======⇒ (b)

clear⇐==⇒ (c).

4.7 Theorem. (Chase, 1960) The following are equivalent.

(a) R is left semihereditary, i.e. every finitely generated left ideal is projective.

(b) w.gl.dimR 6 1 and R is left coherent.

(c) w.gl.dimR 6 1 and, for every set X, XR is right R-flat.

(d) Every torsionless right R-module is flat.

(e) Every finitely generated, torsionless, right R-module is flat.

Proof. (a)
Theorem 4.4⇐======⇒ (b)

Theorem 4.6⇐======⇒ (c)
clear⇐==⇒ (d)

clear⇐==⇒ (e).

Goodearl [12, Theorem 1] generalized Theorem 4.5 to the non-finitely generated
case by showing that, for any left R-module M , all of the multiplication maps
(XR)⊗R M → XM are injective if and only if, for each finitely generated submodule
N ofM , the inclusion map N →M factors through a finitely presented module. We
record the special case we shall be using and its special proof. Recall the meaning
of µX,Y from Definitions 4.1(1).

4.8 Theorem. (Goodearl, 1972) For any non-empty set Y , the following are
equivalent.

(a) RY is coherent as left R-module.
(b) R is a left coherent ring, and, for every set X, µX,Y is injective.

(c) R is a left coherent ring, and, for some infinite set X such that R is left
|X|-Noetherian, µX,Y is injective.

Proof. Let M := RY , and let M denote the directed family of finitely generated left
R-submodules of M .

(a)⇒(b). Since Y is non-empty, R embeds in M , and, hence, R is co-
herent as left R-module, that is, R is a left coherent ring. Let N ∈ M.
By (a), N is finitely presented. By Theorem 4.5 (a)⇒(b), the multiplication map
(XR)⊗N → XN ⊆ XM is injective. On taking the direct limit of the system of

injective maps (XR)⊗N → XM over all N ∈ M, we see that (XR)⊗M
µX,Y−−−→ XM

is injective, as desired.
(b)⇒(c) is clear.
(c)⇒(a) (after Herbera-Trlifaj [13, Corollary 2.11] ). Let N ∈ M and consider

the natural commutative diagram
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(XR)⊗N −−−−→ XNy y
(XR)⊗M

µX,Y−−−−→ XM.

By Theorem 4.6 (a)⇒(c), XR is right R-flat, and, hence, the left map is injective.
By (c), the bottom map is injective. Hence, the top map is injective. By Theorem 4.5
(c)⇒(a), N is finitely presented. Thus, M is coherent as left R-module.

The following result is a variant of [2, (4.5)] that is suitable for our purposes.

4.9 Theorem. (Bass, 1960) Let Y be an infinite set such that R is right
|Y |-Noetherian. If M is a finitely generated, torsionless, left R-module, then M
embeds in RY . Hence, R is a left Π-coherent ring if and only if RY is a coherent
left R-module.

Proof. Since M is a finitely generated left R-module, on dualizing we find that the
right R-module M∗ := HomR(M,RR) embeds in a finitely generated, free, right
R-module. Since R is right |Y |-Noetherian, M∗ is |Y |-generated. On dualizing we
find that the left R-module M∗∗ := HomR(M

∗, RR) embeds in RY . Since M is
torsionless, the double-dual map M →M∗∗ is injective, and M embeds in RY .

4.10 Corollary. The following are equivalent.

(a) R is a left Π-coherent ring, i.e. every finitely generated, torsionless, left module
is finitely presented.

(b) R is a left coherent ring and, for all sets X and Y, µX,Y is injective.

(c) R is a left coherent ring and, for some infinite sets X and Y such that R is left
|X|-Noetherian and right |Y |-Noetherian, µX,Y is injective.

Proof. This follows from Theorems 4.8 and 4.9.

We now recall the aspect of [16, Theorem 2.11] that is of interest to us.

4.11 Theorem. (Jones, 1982) The following are equivalent.

(a) R is left and right semihereditary, and, for all sets X, Y , µX,Y is injective.

(b) R is left and right coherent, w.gl.dimR 6 1, and, for all sets X, Y , µX,Y is
injective.

(c) R is left coherent, w.gl.dimR 6 1, and R is right Π-coherent.

(d) Every finitely generated, torsionless, right R-module is flat and finitely pre-
sented.

(e) R is Π-semihereditary, i.e. every finitely generated, torsionless, right R-module
is projective.

These conditions are also equivalent to their left-right duals.

Proof. (a)
Theorem 4.7⇐======⇒ (b)

Corollary 4.10⇐=======⇒ (c)
Theorem 4.7⇐======⇒ (d)

Theorem 4.4⇐======⇒ (e), and
(a) is left-right symmetric.

In the remainder of this section, we recall some types of rings that are
Π-semihereditary. We first present a result from [24].

4.12 Theorem. (Sahaev, 1965) For each n ∈ N and each y ∈ nRn, let
•
y denote

In− y. The following are equivalent.

(a) There exists a finitely generated, non-finitely presented, flat, left R-module M .

(b) There exist n ∈ N and a function N → nRn, k 7→ yk, such that, for each
k ∈ N, yk

•
yk+1 = 0n ̸= yk+1

•
yk; equivalently, ykyk+1 = yk and yk+1yk ̸= yk+1;

equivalently,
•
yk

•
yk+1 =

•
yk+1, and

•
yk+1

•
yk ̸= •

yk.



10 Ring coproducts embedded in power-series rings

Proof. (a)⇒ (b). SinceM is finitely generated and not finitely presented, there exist
n ∈ N and a non-finitely generated left R-submodule K of Rn such thatM = Rn/K.
We view Rn as an (R, nRn)-bimodule.

We shall recursively construct a sequence (yk : k ∈ N) in nK ⊆ nRn. Set
y0 := 0n ∈ nK. We may now suppose that k ∈ N and yk ∈ nK. Since K is not
finitely generated, it is easy to see that there exists some xk ∈ n+1K ⊆ n+1Rn

such that (Rn)yk ⊂ (Rn+1)xk ⊆ K. By Theorem 4.3 (a)⇒(b), since M is
flat, xk ∈ xk(

nK), that is, there exists some yk+1 ∈ nK such that xk = xkyk+1.
Hence, xk

•
yk+1 = 0n. Now, (Rn)yk

•
yk+1 ⊆ (Rn+1)xk

•
yk+1 = {0}, and we see that

yk
•
yk+1 = 0n.
Also, (Rn)yk+1yk ⊆ (Rn)yk ⊂ (Rn+1)xk = (Rn+1)xkyk+1 ⊆ (Rn)yk+1, and we

see that yk+1yk ̸= yk+1. Thus, yk+1
•
yk ̸= 0n.

This completes the recursive construction of the sequence, and (b) holds.
(b)⇒ (a). Let F denote the (R, nRn)-bimodule Rn. Then (Fyk : k ∈ N) is a

family of left R-submodules of F . For each k ∈ N, Fyk = Fykyk+1 ⊆ Fyk+1; also
Fyk+2

•
yk+1 ̸= {0} = Fyk

•
yk+1, and, hence, Fyk+2 ̸= Fyk. Thus, (Fyk : k ∈ N ) is a

non-stationary, ascending chain of left R-submodules of F .
Set K :=

∪∞
k=0(Fyk) and M := F/K. Then M is a finitely generated,

non-finitely presented, left R-module. To prove (a), it suffices to show that M
is left R-flat, and here we may apply Theorem 4.3 (b)⇒ (a). Let ℓ ∈ N and x ∈ ℓK;
it remains to show that x ∈ x(nK). As x ∈ ℓK =

∪∞
k=0(

ℓ(Fyk)), there exists some
k ∈ N such that x ∈ ℓ(Fyk). Then x

•
yk+1 = 0. Since each row of yk+1 lies in K,

yk+1 ∈ nK. Now, x = xyk+1 ∈ x(nK), as desired.

4.13 Definitions. (1) We shall say that R is a left Sahaev ring if every finitely
generated, flat, left R-module is finitely presented, or, equivalently, projective, by
Theorem 4.4. The term ‘left S-ring’ is sometimes used in the literature.

Every subring of a left Sahaev ring is again a left Sahaev ring, since these are
the rings for which the condition in Theorem 4.12(b) fails. In particular, rings that
embed in skew fields are left and right Sahaev rings.

It is clear from the foregoing definition that left Noetherian rings are left Sahaev
rings. Both Sahaev [24] and S. Jøndrup [15, Lemma 1.4] discuss connections between
the condition in Theorem 4.12(b) and various chain conditions.

(2) A commutative Prüfer domain is a semihereditary, commutative domain.
A commutative Bézout domain is a commutative domain in which every finitely
generated ideal is principal.

(3) One says that R is a semifir if every finitely generated left ideal of R is free of
unique rank, as left R-module, and similarly on the right. It is sufficient to assume
the condition on the left; see [8, Theorem I.1.1].

We now present [15, Corollary 2].

4.14 Theorem. (Jøndrup, 1971) The following hold.

(i) If R is right semihereditary and not left Sahaev, then R is not right Sahaev.

(ii) If w.gl.dimR 6 1 and R is right Sahaev, then R is left Sahaev and Π-semi-
hereditary.

Proof. (i) We apply Theorem 4.12 (a)⇒(b), and we change y0 to 0n. We shall speak
of the kernel and image of each element of nRn viewed as an R-endomorphism of
nR acting on the left by matrix multiplication.

Let k ∈ N. Since yk+2
•
yk+1 ̸= 0n = yk

•
yk+1, Ker(yk+2) ̸⊇ Im(

•
yk+1) ⊆ Ker(yk).

Hence, Ker(yk+2) ̸= Ker(yk). Clearly
•
yk+1 acts as the identity on Ker(yk+1),

and we see that Ker(yk+1) ⊆ Im(
•
yk+1) ⊆ Ker(yk). Hence, Ker(y2k+2) ⊂ Ker(y2k).

Since R is right semihereditary, Im(y2k+2) is a projective R-submodule of nR, and,
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hence, Ker(y2k+2) is an R-summand of nR, and, therefore, of Ker(y2k). Thus,
Ker(y2k) = Ker(y2k+2)⊕ Lk for some Lk ̸= {0}. Then,

nR = Ker(y0) = Ker(y2k+2)⊕ (
k⊕

i=0

Li).

Each term of the directed system (nR/(
⊕k

i=0 Li) : k ∈ N) is then R-projective. On

taking the direct limit, we see that nR/(
⊕∞

i=0 Li) is finitely generated, not finitely
presented, and flat. Hence, R is not right Sahaev.

(ii) As w.gl.dimR 6 1, every finitely generated right ideal of R is flat, and hence
projective, since R is right Sahaev. Thus, R is right semihereditary. By the contra-
positive of (i), R is left Sahaev. Hence, R is left semihereditary. By Theorem 4.7
(a)⇒(e), every finitely generated, torsionless, right R-module is flat, and hence
projective, since R is right Sahaev.

4.15 Corollary. The following hold.

(i) If w.gl.dimR 6 1 (e.g. R is left or right (semi)hereditary) and R is left or right
Sahaev (e.g. R is left or right Noetherian or R embeds in a skew field ), then
R is Π-semihereditary.

(ii) If R is a commutative principal ideal domain, or more generally, a commuta-
tive Bézout domain, or, even more generally, a commutative Prüfer domain,
then R is Π-semihereditary.

Proof. (i) is Theorem 4.14(ii) and its left-right dual, while (ii) gives some cases of (i)
where R is semihereditary and embeds in a field.

The following is [14, Theorem 2B], attributed to Cohn.

4.16 Theorem. (Cohn, 1969) Semifirs are left and right semihereditary, left and
right Sahaev rings. Hence, semifirs are Π-semihereditary.

Proof (after Jøndrup [15, Corollary 3]). It is clear that semifirs are left and right
semihereditary. From the proof of Theorem 4.14(i), it may be seen that if R is right
semihereditary and not left Sahaev, then, for some n ∈ N, nR is a direct sum of n+1
non-zero right R-submodules; this cannot happen if R is a semifir. Hence semifirs
are left (and right) Sahaev rings, and Corollary 4.15(i) applies.

We now turn to the final topic of this section, self-injective rings; for background
on injective modules, see [23, pp. 65–68].

At the beginning of the proof of [12, Theorem 2 (c)⇒(a)], Goodearl notes the
consequence of [4, Theorem 2.1 (a)⇒(b)] that, over a right self-injective, von Neu-
mann regular ring, every torsionless right module is projective. This seems to have
been one of the very earliest occasions on which the projectivity of finitely generated
torsionless modules was considered.

4.17 Theorem. (Cateforis, 1969) If R is right semihereditary and right self-injec-
tive, then R is Π-semihereditary.

Proof. By definition, R is Π-semihereditary if each finitely generated, torsionless,
right R-module M is projective. Since M is finitely generated, we may write
M = F/K where F is a finitely generated, free, right R-module, and K is a submod-
ule of F . In particular, F is right R-injective. Let L denote the set of submodules
of F whose intersection with K is {0}. Clearly, L ̸= ∅. By Zorn’s lemma, L con-
tains some ⊆-maximal element L. Then F ⊇ K⊕L. We then have injective right
R-module maps K → F/L, k 7→ k+L, and K → F , k 7→ k. Since F is right
R-injective, the domain of the latter map can be transported along the former map
to give a right R-module map ϕ : F/L→ F such that, for all k ∈ K, ϕ(k+L) = k.
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Define ϕ′ : F → F by f 7→ ϕ(f+L). Then Ker(ϕ′) ⊇ L, and, for all k ∈ K,
ϕ′(k) = k. If Im(ϕ′) = K, then F/K is projective, as desired. Thus, it suffices to
assume that Im(ϕ′) ⊃ K, and obtain a contradiction.

Define ϕ′′ : F → M by f 7→ ϕ′(f)+K ∈ F/K =M . Then there exists some
m ∈ Im(ϕ′′)−{0}. Thus, F ⊃ Ker(ϕ′′) ⊇ K⊕L.

Since M is torsionless, we may compose ϕ′′ with a map from M to R which
does not vanish on m, and thus obtain a map ψ : F → R with F ⊃ Ker(ψ) ⊇ K⊕L.
Then Im(ψ) is a finitely generated right ideal of R. Since R is right semihereditary,
Im(ψ) is projective. Hence, F = Ker(ψ)⊕L′ for some L′ ̸= {0}. Now F ⊇ K⊕L⊕L′

and this contradicts the ⊆-maximality of L in L, as desired.

4.18 Remarks. Recall that if R is von Neumann regular, then every finitely pre-
sented right R-module is projective by Theorem 4.4, hence every finitely generated
right ideal of R is a summand of R, and hence R is right semihereditary.

Recall also that if R is right semihereditary and right self-injective, then every
finitely generated right ideal is projective, hence injective, hence a summand of R,
and R is von Neumann regular.

We shall be using [22, Corollary], which is as follows.

4.19 Theorem. (Osofsky, 1964) If R is right self-injective and right hereditary,
then R is completely reducible.

Proof. Suppose not. We shall obtain a contradiction. Let U denote the set of right
ideals of R that are not finitely generated. By Remarks 4.18, R is von Neumann
regular; since R is not completely reducible, U ̸= ∅. By Zorn’s lemma, U contains
some ⊆-maximal element I.

Since R is right hereditary, I is right R-projective. Since R is von Neumann
regular, results of Kaplansky show that I is a direct sum of infinitely many nonzero
right ideals of R; in the case where I is ℵ0-generated, this follows from [18, Proof
of Lemma 1], and in the case where I is not ℵ0-generated, it follows from [17,
Theorem 1]. There then exists some decomposition I = I ′ ⊕ I ′′ with I ′, I ′′ ∈ U.

We shall now show that there exists some right ideal I ′ of R with the properties
that I ′ ⊆ I ′, I ′ ̸∈ U, and I ′ ∩ I ′′ = {0}; in Remarks 4.20, we shall give an alter-
native argument which does not require background on injective hulls. Recall that
Eckmann and Schopf [10] showed that, since R is right self-injective, I ′ has a right
R-injective hull I ′ in R which is a maximal right R-essential extension of I ′ in R;
see [23, proof of Theorem 3.30 (iii)⇒(i)]. Then I ′ is a right R-summand of R, and,
hence, I ′ is right R-cyclic. Thus, I ′ ̸∈ U. Also, since I ′ ∩ I ′′ = {0}, it follows that
I ′ ∩ I ′′ = {0}, as claimed.

Since I ′ ̸∈ U, we have I ̸= I ′ and I ⊂ I ′. Since I ′′ ∈ U, it can be seen that
I ′ ⊕ I ′′ ∈ U. Now I = I ′ ⊕ I ′′ ⊂ I ′ ⊕ I ′′. This contradicts the maximality of I in U

and completes the proof.

4.20 Remarks. Here is an alternative proof of the existence of an I ′. Let
M := R/I ′, and consider the double-dual map ϕ : M →M∗∗ as in the proof of The-
orem 4.9. There exists a right ideal I ′ of R such that Ker(ϕ) = I ′/I ′, and then
Im(ϕ) ≃ R/I ′. By Theorem 4.17, R is right Π-coherent. It is clear that Im(ϕ)
is a finitely generated, torsionless, right R-module, and, hence, Im(ϕ) is finitely
presented. Thus, I ′ is finitely generated, and, hence, I ′ ̸∈ U. We shall now show
that I ′ ∩ I ′′ = {0}. Consider any x ∈ I ′′. Then xR = eR for some idempotent
e ∈ R, since R is von Neumann regular. Since eR ⊆ I ′′, we see that eR ∩ I ′ = {0},
and, hence, eR embeds in R/I ′ =M . Since R is right self-injective, eR is right
R-injective. Thus, eR becomes a summand of M which, as eR is projective,
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must then embed in M∗∗. We now see that eR ∩ I ′ = {0}. It then follows that
I ′ ∩ I ′′ = {0}, as claimed.

The following combines [12, Theorem 2 (a)⇒(c)] and the commutative case of
Theorem 4.19.

4.21 Theorem. Let R be a commutative, Π-coherent, von Neumann regular ring.

(i) (Goodearl, 1972) R is self-injective.

(ii) (Osofsky, 1964) If R is ℵ0-Noetherian or, more generally, hereditary, then R
is completely reducible.

Proof. (i) (based loosely on Kobayashi [19, Theorem 2]) By Baer’s criterion [23,
Theorem 3.20], to show that R is self-injective, it suffices to show that, for each ideal
I of R, each R-module map ϕ : I → R is given by multiplication by some element
of R.

Now π1 : R
2 → R, (x, y) 7→ x, and ψ : R2 → RI , (x, y) 7→ (ϕ(x·i)− y·i : i ∈ I),

are R-module maps. Then Im(ψ) is a finitely generated, torsionless R-module.
Since R is Π-coherent, Ker(ψ) is a finitely generated R-submodule of R2. Hence,
π1(Ker(ψ)) is a finitely generated ideal of R. Since R is von Neumann regular, there
exists some idempotent e ∈ R such that π1(Ker(ψ)) = R·e. For each x ∈ R, we now
see that x ∈ R·e if and only if there exists some y ∈ R such that, for each i ∈ I,
ϕ(x·i) = y·i, that is, ϕ(i·x) = i·y, since R is commutative.

We apply the ‘if’ part taking x ∈ I and y = ϕ(x). For each i ∈ I, we have
ϕ(i·x) = i·ϕ(x) = i·y. Hence, x ∈ R·e. Thus, I ⊆ R·e and i·e = i for all i ∈ I.

We now apply the ‘only if’ part taking x = e. There exists some y ∈ R such
that, for each i ∈ I, ϕ(i·e) = i·y, that is, ϕ(i) = i·y, as desired.

(ii) Recall that a right ℵ0-Noetherian, von Neumann regular ring is right hered-
itary, by [18, Lemma 1]. Now (ii) follows from (i) and Theorem 4.19.

4.22 Remarks. If w.gl.dimR > 2, then R is not Π-semihereditary.
If w.gl.dimR = 1 and R is right Sahaev, then R is left Sahaev and Π-semihered-

itary, by Theorem 4.14(ii). This class includes all the semifirs that are not skew
fields, by Theorem 4.16. It also includes all the Prüfer domains that are not fields.

If w.gl.dimR = 0 and R is left or right self-injective, then R is Π-semihereditary,
by Theorem 4.17. This class includes all the right semihereditary, right self-injective
rings. It also includes all the commutative Π-semihereditary rings which have
w.gl.dimR = 0, by Theorem 4.21(i). It also includes all the completely reducible
rings.

If w.gl.dimR = 0 and R is right Sahaev, then clearly every finitely generated
right R-module is projective, and R is then completely reducible. Such rings are
included in the previous case.

Thus, we have two disjoint classes of examples of Π-semihereditary rings.

5 If R is Π-semihereditary, then α is injective

For the remainder of the article, we fix the following.

5.1 Notation. For each n ∈ N, we have a multiplication map that will be denoted

(
∏
N
R)⊗n βn−−→

∏
Nn

R.

Whenever Hypotheses 1.1 hold, we have a natural factorization of α that will be

denoted A⨿R B
α′

−→ R⟨⟨a⟩⟩ ⨿R R⟨⟨b⟩⟩
α′′

−−→ R⟨⟨a, b⟩⟩.
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5.2 Proposition. If Hypotheses 1.1 hold and A, B, and
∏
N
R are left and right

R-flat, then A⨿R B
α′

−→ R⟨⟨a⟩⟩ ⨿R R⟨⟨b⟩⟩ is injective.

Proof. Clearly, the R-bimodule map
∏
N
R→ aR⟨⟨a⟩⟩, (ri : i ∈ N) 7→

∑
i>0(ria

i+1),

is bijective. Similarly for bR⟨⟨b⟩⟩.
We see that aR⟨⟨a⟩⟩ and bR⟨⟨b⟩⟩ are left and right R-flat.
We use Notation 2.2. Now, A = R ⊕ a and B = R ⊕ b; hence, a and b are left

and right R-flat.
Let n ∈ N. For 1 6 i 6 n, let Mi denote one of aR⟨⟨a⟩⟩, a, bR⟨⟨b⟩⟩, or b. It

follows by induction that the R-bimodule M1 ⊗ M2 ⊗ · · · ⊗ Mn is left and right
R-flat. It then follows by induction that each of the natural maps

(a⊗ b)⊗n → (aR⟨⟨a⟩⟩ ⊗ bR⟨⟨b⟩⟩)⊗n,

(b⊗ a)⊗n → (bR⟨⟨b⟩⟩ ⊗ aR⟨⟨a⟩⟩)⊗n,

(a⊗ b)⊗n ⊗ a → (aR⟨⟨a⟩⟩ ⊗ bR⟨⟨b⟩⟩)⊗n ⊗ aR⟨⟨a⟩⟩,
(b⊗ a)⊗n ⊗ b → (bR⟨⟨b⟩⟩ ⊗ aR⟨⟨a⟩⟩)⊗n ⊗ bR⟨⟨b⟩⟩,

is injective. By using the standard R-bimodule decompositions of A ⨿ B and
R⟨⟨a⟩⟩ ⨿R⟨⟨b⟩⟩, we see that, as an R-bimodule map, α′ is a direct sum of these
injective maps, and hence is injective.

5.3 Proposition. Suppose that Hypotheses 1.1 hold.

(i) R⟨⟨a⟩⟩ ⨿R R⟨⟨b⟩⟩ α′′

−−→ R⟨⟨a, b⟩⟩ is injective if and only if, for each n ∈ N,
(
∏
N
R)⊗n βn−−→

∏
Nn

R is injective.

(ii) If R is left or right coherent and β2 is injective, then α′′ is injective.

(iii) If
∏
N
R is left or right R-coherent, then α′′ is injective.

Proof. (i) We may assume that A = R⟨⟨a⟩⟩, B = R⟨⟨b⟩⟩ and α = α′′. We use
Notation 2.2. Let n ∈ N. Consider the map (a ⊗ b)⊗n → (ab)n ⊆ R⟨⟨a, b⟩⟩.
The R-bimodule isomorphisms

∏
N
R → a and

∏
N
R → b give an embedding

(
∏
N
R)⊗(2n) → R⟨⟨a⟩⟩ ⨿R⟨⟨b⟩⟩ with image (a ⊗ b)⊗n. They also give an embed-

ding
∏
N2n

R → R⟨⟨a, b⟩⟩ with image (̂ab)n, the closure of (ab)n in R⟨⟨a, b⟩⟩. Thus

the map (a ⊗ b)⊗n → (̂ab)n is a copy of β2n. We now see that α is a direct sum
of R-bimodule maps that consist of one copy of β0 and two copies of βn for each
n > 1. In particular, α is injective if and only if all the βn, n ∈ N, are injective.

(ii) By symmetry, we may assume that R is left coherent.
We shall show by induction that, for each n ∈ N, βn is injective. It is clear that

β0 is injective. Suppose that n > 0, and that βn is injective. Notice that βn+1 may
be factored as

(
∏
N
R)⊗ ((

∏
N
R)⊗n)

(
∏
N
R)⊗βn

−−−−−−→ (
∏
N
R)⊗ (

∏
Nn

R)
β′
2−→

∏
Nn+1

R.

Since R is left coherent, by Theorem 4.6 (a)⇒(c),
∏
N
R is right R-flat, and, hence,

(
∏
N
R)⊗βn is injective. Since there exists a bijection between Nn and N, we see that

β′
2 may be identified with β2 and is then injective. Hence, the composition βn+1 is

injective. This completes the inductive argument. By (i), α′′ is injective.
(iii) By symmetry, we may assume that

∏
N
R is left R-coherent. By Theo-

rem 4.8 (a)⇒(b), R is left coherent and β2 is injective. By (ii), α′′ is injective.
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5.4 Corollary. With Hypotheses 1.1, the following hold.

(i) If
∏
N
R is a left or right semihereditary R-module, then α is injective.

(ii) If R is a Π-semihereditary ring, then α is injective.

(iii) If R is right semihereditary (e. g. w.gl.dimR = 0) and R is right self-injective,
then α is injective (and w.gl.dimR = 0).

(iv) If w.gl.dimR 6 1 (e. g. R is left or right semihereditary) and R is left or right
Sahaev, then α is injective (and R is left and right semihereditary and left and
right Sahaev).

Proof. (i) By symmetry, we may assume that
∏
N
R is left R-semihereditary. By

Proposition 5.3(iii), α′′ is injective.
Notice that

∏
N
R is left R-coherent and that every left R-submodule of

∏
N
R is

flat. In particular, R is left coherent and w. gl. dimR 6 1. By Theorem 4.6 (a)⇒(c),∏
N
R is right R-flat, and then all its right R-submodules are flat. Hence,

∏
N
R, R⟨⟨a⟩⟩,

R⟨⟨b⟩⟩, A, and B, are left and right R-flat. By Proposition 5.2, α′ is injective.
Hence, α is injective.
(ii) follows from (i).
(iii) follows from (ii) and Theorem 4.17.
(iv) follows from (ii) and Corollary 4.15(i).

In the next section, we shall see results of Bergman and Goodearl that show
that α can fail to be injective whenever R is a commutative ring such that either
w. gl. dimR > 2 or R is ℵ0-Noetherian, non-self-injective, and von Neumann regular.

6 Non-injectivity phenomena

In this section, we give examples contributed by G.M. Bergman where Hypothe-
ses 1.1 hold and α is not injective. Throughout, we use the factorization of α as

A⨿R B
α′

−→ R⟨⟨a⟩⟩ ⨿R R⟨⟨b⟩⟩
α′′

−−→ R⟨⟨a, b⟩⟩.
We begin with a general example where R[a] ⊆ A ⊆ R[a, (1+ a)−1] and

R[b] ⊆ B ⊆ R[b, (1+ b)−1], but α′ is not injective.

6.1 Proposition. (Bergman) Suppose that R has two-sided ideals I, J such that
the multiplication map I ⊗ J → IJ is not injective, e.g. R = Z/p2Z, p prime, or
R = Q[x, y]. Then, with a suitable choice of A and B, Hypotheses 1.1 hold and α′,
α are not injective.

Proof. For R = Z/p2Z, p prime, we may take I = J = pR, where p⊗ p 7→ 0.
For R = Q[x, y], we may take I = J = xR+ yR, where (x⊗ y)−(y ⊗ x) 7→ 0.
Let h := 1+ a and H := ⟨h⟩ 6 U(R⟨⟨a⟩⟩). Then R[h] = R[a], and we view

R[h] ⊆ RH ⊆ R⟨⟨a⟩⟩. We have R-bimodule decompositions

RH =
⊕
i∈Z

hiR = R[h]⊕
⊕

i6−1

(hiR).

In RH, take A to be the subring R[h]⊕
⊕

i6−1

(hiI). Since h−1 = 1−h−1a, R+ aA = A.

Let k := 1+ b, K := ⟨k⟩ 6 U(R⟨⟨b⟩⟩). We view R[b] = R[k] ⊆ RK ⊆ R⟨⟨b⟩⟩,
and we have an R-bimodule decomposition

RK = R[k]⊕
⊕

i6−1

(Rki).
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InRK, takeB to be the subring R[k]⊕
⊕

i6−1

(Jki). Since k−1 = 1−k−1b, R+ bB = B.

We use Notation 2.2. Here,

a = aA = aR[h]⊕
⊕

i6−1

(hiaI), and b = bB = bR[k]⊕
⊕

i6−1

(Jbki).

In particular, h−1aI is an R-bimodule direct summand of a, and Jbk−1 is an
R-bimodule direct summand of b. Hence (h−1aI) ⊗ (Jbk−1) may be viewed as
an R-bimodule direct summand of a ⊗ b, and also of A ⨿ B. This summand does
not map injectively to (h−1aI)(Jbk−1) in (RH) ⨿ (RK). It follows that α′ is not
injective in this case. Hence, α is not injective.

Recall that w.gl.dimR > 2 if and only if there exists a right ideal I of R that is
not right R-flat; recall also that I is not right R-flat if and only if there exists a left
ideal J of R such that the multiplication map I ⊗R J → IJ is not injective. The
next result then follows from Proposition 6.1.

6.2 Corollary. Suppose that R is commutative and that w.gl.dimR > 2. Then with
a suitable choice of A and B, Hypotheses 1.1 hold and α is not injective.

6.3 Remarks. Suppose that R is a commutative Sahaev ring and that Hypothe-
ses 1.1 hold.

By Corollary 6.2, if α is injective for all choices of A and B, then w.gl.dimR 6 1.
Conversely, by Corollaries 5.4 and 4.15 (i), if w.gl.dimR 6 1, then α is injective.
Thus, among the commutative Sahaev rings R, the ones for which α is always

injective are the ones with w.gl.dimR 6 1, that is, the semihereditary ones.
Hence, among the commutative domains R, the ones for which α is always

injective are the commutative Prüfer domains.
Also, among the commutative Noetherian rings R, the ones for which α is always

injective are the hereditary ones.

We now give examples where Hypotheses 1.1 hold and β2 is not injective, and,
hence, by Proposition 5.3(i), α′′ is not injective. These are then examples where
A = R⟨⟨a⟩⟩ and B = R⟨⟨b⟩⟩ in Hypotheses 1.1 and α is not injective. We remark
that if we had been working in the setting of commutative rings of power series,
then α′′ would have looked like β2.

The following result gives a method for constructing examples where β2 is not
injective.

6.4 Proposition. (Bergman) Let Q be a field. For i = 1, 2, let Ri be a commutative,
augmented Q-ring whose augmentation ideal Ii is not finitely generated, and let Xi

be an infinite set such that Ii is |Xi|-generated. Let R := (R1 ⊗Q R2)/(I1 ⊗Q I2), a
commutative Q-ring. Then µX1,X2 : (

X1R)⊗R (RX2) → X1RX2 is not injective.
In detail, for i = 1, 2, any family mi := (ri,ji : ji ∈ Xi) that generates Ii as

ideal of Ri may be viewed as an element of
∏
Xi

R, and then m1 ⊗m2 is a non-zero
element of Ker(µX1,X2).

Proof. Notice that R1 ⊗Q R2 = (Q ⊕ I1) ⊗Q (Q ⊕ I2) = Q ⊕ I1 ⊕ I2 ⊕ (I1 ⊗Q I2),
R = Q ⊕ I1 ⊕ I2, R1 and R2 are subrings of R, I1 and I2 are ideals of R with
product zero, and R is a commutative augmented Q-ring with augmentation ideal
I := I1 ⊕ I2.

Here, µX1,X2 carries m1⊗m2 to (r1,j1r2,j2 : (j1, j2) ∈ X1×X2), which is zero, by
our definition of R. Thus, it remains to show that m1⊗m2 ̸= 0 in (X1R)⊗R (RX2),
and we shall do this by finding a quotient R-module in which the image of m1⊗m2

is not zero.
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Let M1 := X1(R/I2), a quotient R-module of X1R with trivial I2-action. Let
M2 := (R/I1)

X2 , a quotient R-module of RX2 with trivial I1-action. For i = 1, 2, set
M i := Mi/(MiI) = Mi/(MiIi), a quotient R-module of

∏
Xi

R with trivial I-action,

and let mi denote the image of mi in M i. Then we have a map

(X1R)⊗R (RX2) →M1 ⊗R M2 =M1 ⊗Q M2,

with m1⊗Rm2 mapping to m1 ⊗Q m2. It suffices to show that m1 ⊗Q m2 ̸= 0, and,
since Q is a field, it suffices to show that m1 ̸= 0 and m2 ̸= 0. By symmetry it
suffices to assume that m1 = 0 and obtain a contradiction, as follows.

The natural bijection R1 → R/I2 induces a bijection X1R1 →M1, and it carries
(X1R1)I1 to M1I1. Since m1 ∈ X1R1 and m1 = 0, we have m1 ∈ (X1R1)I1. Hence,

there is some expression m1 =
∑ℓ

k=1 vkrk with each vk ∈ X1R1 and each rk ∈ I1.
For each j1 ∈ X1, the j1st coordinate of m1 is r1,j1 , and, hence, r1,j1 lies in the
ideal of R1 generated by {rk : 1 6 k 6 ℓ}, a finite subset of I1. It follows that I1 is
a finitely generated ideal of R1. This is a contradiction, as desired.

The following expands on the last two paragraphs of [12].

6.5 Proposition. If R is a commutative, ℵ0-Noetherian, von Neumann regular
ring that is not completely reducible, then the map α′′ : R⟨⟨a⟩⟩ ⨿R⟨⟨b⟩⟩ → R⟨⟨a, b⟩⟩
is not injective.

Proof. By Theorem 4.21(ii), R is not Π-coherent. By the contrapositive of
Corollary 4.10 (c)⇒(a), β2 is not injective. By Proposition 5.3(i), α′′ is not in-
jective.

6.6 Example. If Q is a field and R = Q[ej : j ∈ N]/(ekeℓ − δk,ℓek : k, ℓ ∈ N), then
α′′ is not injective, since R satisfies the hypotheses of Proposition 6.5; the countable
case was first seen in the last two paragraphs of [12]. Let us give an alternative
proof by showing that this R has the form considered in Proposition 6.4 with X1

and X2 countable. Partition N into two infinite subsets X1 and X2. For i = 1, 2,
let mi := {ej : j ∈ Xi}, let Ii denote the ideal of R generated by mi, and let Ri

denote the Q-subring of R generated by mi. Then we may make the identifica-
tion R = (R1 ⊗Q R2)/(I1 ⊗Q I2), and, by Proposition 6.4, m1 ⊗m2 represents a
non-zero element of Ker(µX1,X2). We may identify µX1,X2 with β2.

Here is a result similar to Proposition 6.4, which uses a different, rather curious
argument to prove that an appropriate element of KerµX,X is not zero.

6.7 Proposition. (Bergman) Let Q be a non-zero commutative ring, X an infinite
set, I the free Q-module on X, R the commutative augmented Q-ring Q ⊕ I with
I2 = {0}, and m the element (x : x ∈ X) of

∏
X

R. Then m⊗m represents a non-zero

element of Ker(µX,X).

Proof. It is clear that m⊗R m is an element of Ker(µX,X), and it remains to show
that m⊗Rm ̸= 0 in (XR)⊗R (RX); we shall do this by finding a quotient R-module
in which the image of m⊗R m is not zero.

Define R-bimodules P := X(R ⊗Q R)X and P := (R/I) ⊗R P ⊗R (R/I), and
make the identification P = P/(IP + PI). We have natural R-bimodule maps

(XR)⊗Q (RX) → X(R⊗Q R)X = P → P .

Since I acts trivially on P on the left and the right, the R-bimodule map
(XR)⊗Q (RX) → P is R-centralizing, and, hence, factors through the universal
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R-centralizing quotient (XR) ⊗R (RX) of the domain. Under the resulting map
(XR) ⊗R (RX) → P , our element m ⊗R m is mapped to p + IP + PI where
p := (x ⊗Q y : (x, y) ∈ X × X) ∈ P . Thus to show that m ⊗R m ̸= 0, it suf-
fices to show that p ̸∈ IP + PI.

For every x, y ∈ X and t ∈ R⊗QR, we shall write cx⊗y(t) ∈ Q for the coefficient
of x ⊗ y in the expression for t with respect to the Q-basis (X ∪ {1}) ⊗ (X ∪ {1})
of R⊗Q R.

Consider any q = (qx,y : (x, y) ∈ X ×X) ∈ P . For each x0 ∈ X, it can be
seen that x0P = X(x0Q⊗Q R)X . Hence, if q ∈ x0P , then, for all (x, y) ∈ X ×X,
cx⊗y(qx,y) = 0 if x ̸= x0. Similar statements hold for Px0. If q ∈ IP + PI, then
there exist finite subsets X0, Y0 ⊆ X such that q ∈

∑
x0∈X0

x0P +
∑

y0∈Y0
Py0.

Since X is infinite, there exist x ∈ X−X0 and y ∈ X−Y0, and then cx⊗y(qx,y) = 0.
Since Q ̸= {0}, cx⊗y(qx,y) ̸= 1. Hence, q ̸= p. This shows that m ⊗R m ̸= 0, as
desired.

In the previous two propositions, we have created elements of Ker(µX1,X2) of
the form m1 ⊗m2, and this requires the existence of zero-divisors in R. By using
elements of Ker(µX1,X2) of the form m1 ⊗ m2 − m3 ⊗ m4, we can avoid having
zero-divisors in R, as follows.

6.8 Proposition. (Bergman) Let Q be a field, and let R be the subring of Q[x, y]
generated by {xiy : i ∈ N}. In particular, R is a commutative domain. In

∏
N
R, let

m1 := m2 := (x2i+1y : i ∈ N), m3 := (x2iy : i ∈ N), m4 := (x2i+2y : i ∈ N).

Then m1 ⊗m2 −m3 ⊗m4 lies in Ker(β2)− {0}.

Proof. For i, j ∈ N, both m1 ⊗m2 and m3 ⊗m4 have x2i+2j+2y2 as their (i, j)th
component. Thus m1 ⊗m2 −m3 ⊗m4 ∈ Ker(β2).

Let I denote the ideal of R generated by {x2iy, x2iy2 : i ∈ N}, and let R′ := R/I.
Then R′ is the commutative augmented Q-ring with augmentation ideal of square
zero and Q-basis X := {x2i+1y : i ∈ N}. In

∏
N
R′, let m := (x2i+1y : i ∈ N). By

Proposition 6.7, in (
∏
N
R′)⊗2, m ⊗m ̸= 0. The natural map (

∏
N
R)⊗2 → (

∏
N
R′)⊗2

carriesm1⊗m2−m3⊗m4 to (m⊗m)−(0⊗0) ̸= 0. Hence,m1⊗m2−m3⊗m4 ̸= 0.
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