L^2 -Betti numbers of one-relator groups

Warren Dicks and Peter A. Linnell

September 24, 2006

Abstract

We determine the L^2 -Betti numbers of all one-relator groups and all surface-plus-one-relation groups. We also obtain some information about the L^2 -cohomology of left-orderable groups, and deduce the non- L^2 result that, in any left-orderable group of homological dimension one, all two-generator subgroups are free.

2000 Mathematics Subject Classification. Primary: 20F05; Secondary: 16S34, 20J05. Key words. Left ordered group, L^2 -Betti number, one-relator group, Thompson's group.

1 Notation and background

Let G be a (discrete) group, fixed throughout the article.

We use $\mathbb{R} \cup \{-\infty, \infty\}$ with the usual conventions; for example, $\frac{1}{\infty} = 0$, and $3 - \infty = -\infty$. Let \mathbb{N} denote the set of finite cardinals, $\{0, 1, 2, \ldots\}$. We call $\mathbb{N} \cup \{\infty\}$ the set of vague cardinals, and, for each set X, we define its vague cardinal $|X| \in \mathbb{N} \cup \{\infty\}$ to be the cardinal of X if X is finite, and to be ∞ if X is infinite.

Mappings of right modules will be written on the left of their arguments, and mappings of left modules will be written on the right of their arguments.

Let $\mathbb{C}[[G]]$ denote the set of all functions from G to \mathbb{C} expressed as formal sums, that is, a function $a\colon G\to\mathbb{C},\ g\mapsto a(g)$, will be written as $\sum_{g\in G}a(g)g$. Then $\mathbb{C}[[G]]$ has a natural $\mathbb{C}G$ -bimodule structure, and contains a copy of $\mathbb{C}G$ as $\mathbb{C}G$ -sub-bimodule. For each $a\in\mathbb{C}[[G]]$, we define $\|a\|:=(\sum_{g\in G}|a(g)|^2)^{1/2}\in[0,\infty]$, and $\mathrm{tr}(a):=a(1)\in\mathbb{C}$.

Define

$$l^2(G):=\{a\in\mathbb{C}[[G]]:\|a\|<\infty\}.$$

We view $\mathbb{C} \subseteq \mathbb{C}G \subseteq l^2(G) \subseteq \mathbb{C}[[G]]$. There is a well-defined external multiplication map

$$l^2(G) \times l^2(G) \to \mathbb{C}[[G]], \quad (a,b) \mapsto a \cdot b,$$

where, for each $g \in G$, $(a \cdot b)(g) := \sum_{h \in G} a(h)b(h^{-1}g)$; this sum converges in \mathbb{C} , and, moreover, $|(a \cdot b)(g)| \leq ||a|| \, ||b||$, by the Cauchy-Schwarz inequality. The external multiplication extends the multiplication of $\mathbb{C}G$.

The group von Neumann algebra of G, denoted $\mathcal{N}(G)$, is the ring of bounded $\mathbb{C}G$ -endomorphisms of the right $\mathbb{C}G$ -module $l^2(G)$; see [19, §1.1]. Thus $l^2(G)$ is an $\mathcal{N}(G)$ - $\mathbb{C}G$ -bimodule. We view $\mathcal{N}(G)$ as a subset of $l^2(G)$ by the map $\alpha \mapsto \alpha(1)$, where 1 denotes the identity element of $\mathbb{C}G \subseteq l^2(G)$. It can be shown that

$$\mathcal{N}(G) = \{ a \in l^2(G) \mid a \cdot l^2(G) \subseteq l^2(G) \},$$

and that the action of $\mathcal{N}(G)$ on $l^2(G)$ is given by the external multiplication. Notice that $\mathcal{N}(G)$ contains $\mathbb{C}G$ as a subring and also that we have an induced 'trace map' $\operatorname{tr}: \mathcal{N}(G) \to \mathbb{C}$. The elements of $\mathcal{N}(G)$ which are injective, as operators on $l^2(G)$, are precisely the (two-sided) non-zerodivisors in $\mathcal{N}(G)$, and they form a left and right Ore subset of $\mathcal{N}(G)$; see [19, Theorem 8.22(1)].

Let $\mathcal{U}(G)$ denote the ring of unbounded operators affiliated to $\mathcal{N}(G)$; see [19, §8.1]. It can be shown that $\mathcal{U}(G)$ is the left, and the right, Ore localization of $\mathcal{N}(G)$ at the set of its non-zerodivisors. For example, it is then clear that,

if x is an element of G of infinite order, then x-1 is invertible in $\mathcal{U}(G)$. (1.0.1)

Moreover, $\mathcal{U}(G)$ is a von Neumann regular ring in which one-sided inverses are two-sided inverses, and, hence, one-sided zerodivisors are two-sided zerodivisors; see [19, §8.2].

There is a continuous, additive von Neumann dimension that assigns to every left $\mathcal{U}(G)$ -module M a value $\dim_{\mathcal{U}(G)} M \in [0, \infty]$; see Definition 8.28 and Theorem 8.29 of [19]. For example,

if e is an idempotent element of $\mathcal{N}(G)$, then $\dim_{\mathcal{U}(G)} \mathcal{U}(G)e = \operatorname{tr}(e)$; (1.0.2)

see Theorem 8.29 and $\S\S6.1-2$ of [19].

Consider any subring Z of \mathbb{C} , and any resolution of Z by projective, or, more generally, flat, left ZG-modules

$$\cdots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow Z \longrightarrow 0,$$
 (1.0.3)

and let \mathcal{P} denote the unaugmented complex

$$\cdots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow 0.$$

By Definition 6.50, Lemma 6.51 and Theorem 8.29 of [19], we can define, for each $n \in \mathbb{N}$, the *nth* L^2 -Betti number of G as

$$b_n^{(2)}(G) := \dim_{\mathcal{U}(G)} H_n(\mathcal{U}(G) \otimes_{ZG} \mathcal{P}),$$

where $\mathcal{U}(G)$ is to be viewed as a $\mathcal{U}(G)$ -ZG-bimodule. Of course,

$$H_n(\mathcal{U}(G) \otimes_{ZG} \mathcal{P}) = \operatorname{Tor}_n^{ZG}(\mathcal{U}(G), Z) \simeq \operatorname{Tor}_n^{\mathbb{Z}G}(\mathcal{U}(G), \mathbb{Z}) = H_n(G; \mathcal{U}(G)),$$

where, for the purposes of this article, it will be convenient to understand that $H_n(G; -)$ applies to right G-modules. Thus the L^2 -Betti numbers do not depend on the choice of Z, nor on the choice of \mathcal{P} .

- **1.1 Remark.** If G contains an element of infinite order, then (1.0.1) implies that $\mathcal{U}(G) \otimes_{ZG} Z = 0$, and $\mathcal{U}(G) \otimes_{ZG} P_1 \longrightarrow \mathcal{U}(G) \otimes_{ZG} P_0 \longrightarrow 0$ is exact, and $H_0(G;\mathcal{U}(G)) = 0$, and $b_0^{(2)}(G) = 0$.
- **1.2 Remarks.** In general, there is little relation between the nth L^2 -Betti number, $b_n^{(2)}(G) = \dim_{\mathcal{U}(G)} H_n(G; \mathcal{U}(G)) \in [0, \infty]$, and the nth (ordinary) Betti number,

$$b_n(G) := \dim_{\mathbb{Q}} H_n(G; \mathbb{Q}) \in [0, \infty].$$

We say that G is of type FL if, for $Z = \mathbb{Z}$, there exists a resolution (1.0.3) such that all the P_n are finitely generated free left $\mathbb{Z}G$ -modules and all but finitely many of the P_n are 0.

If G is of type FL, then it is easy to see that the L^2 -Euler characteristic

$$\chi^{(2)}(G) := \sum_{n \ge 0} (-1)^n b_n^{(2)}(G)$$

is equal to the (ordinary) Euler characteristic

$$\chi(G):=\sum_{n\geq 0} (-1)^n b_n(G).$$

We say that G is of type VFL if G has a subgroup H of finite index such that His of type FL. In this event, the (ordinary) Euler characteristic of G is defined as $\chi(G) := \frac{1}{[G:H]}\chi(H)$; this is sometimes called the virtual Euler characteristic. Here again, $\chi^{(2)}(G) = \chi(G)$; see [19, Remark 6.81].

$\mathbf{2}$ Summary of results

In outline, the article has the following structure. More detailed definitions can be found in the appropriate sections.

In Section 3, we prove a useful technical result about $\mathcal{U}(G)$ for special types of groups.

In Section 4, we calculate the L^2 -Betti numbers of one-relator groups. Let us describe the results.

For any element x of a group G, we define the exponent of x in G, denoted $\exp_{\mathcal{C}}(x)$, as the supremum in $\mathbb{Z} \cup \{\infty\}$ of the set of those integers m such that x equals the mth power of some element of G. Then $\exp_G(x)$ is a nonzero vague cardinal. We write $G/\langle x \rangle$ to denote the quotient group of G modulo the normal subgroup of G generated by x.

Suppose that G has a one-relator presentation $\langle X \mid r \rangle$. Thus r is an element of the free group F on X, and $G = F/\langle r \rangle$.

Set
$$d := |X| \in [0, \infty], m := \exp_F(r) \in [1, \infty], \text{ and } \chi := 1 - d + \frac{1}{m} \in [-\infty, 1].$$

Set $d:=|X|\in[0,\infty], m:=\exp_F(r)\in[1,\infty],$ and $\chi:=1-d+\frac{1}{m}\in[-\infty,1].$ It is known that if $d<\infty$ then G is of type VFL and $\chi(G)=\chi$. If $d=\infty$, then G is not finitely generated and $\chi = -\infty$; here we define $\chi(G) = -\infty$, which is non-standard, but it is reasonable.

In general, $\max\{\chi(G),0\} = \frac{1}{|G|}$.

In Theorem 4.2, we will show that,

for
$$n \in \mathbb{N}$$
, $b_n^{(2)}(G) = \begin{cases} \max\{\chi(G), 0\} & \text{if } n = 0, \\ \max\{-\chi(G), 0\} & \text{if } n = 1, \\ 0 & \text{if } n \ge 2. \end{cases}$ (2.0.1)

Lück [19, Example 7.19] gave some results and conjectures concerning the L^2 -Betti numbers of torsion-free one-relator groups, and (2.0.1) shows that the conjectured statements are true.

In Section 5, we calculate the L^2 -Betti numbers of an arbitrary surface-plus-onerelation group $G = \pi_1(\Sigma)/\langle \alpha \rangle$. Here Σ is a connected orientable surface, and α is an element of the fundamental group, $\pi_1(\Sigma)$. The surface-plus-one-relation groups were introduced and studied by Hempel [12], and further investigated by Howie [15]; these authors called the groups 'one-relator surface groups', but we are reluctant to adopt this terminology.

If Σ is not closed, then $\pi_1(\Sigma)$ is a countable free group, see [20], and G is a countable one-relator group. In light of Theorem 4.2, we may assume that Σ is a closed surface.

Let g denote the genus of the closed surface Σ , and let $m = \exp_{\pi_1(\Sigma)}(\alpha)$. It is not difficult to deduce from known results that G is of type VFL and

$$\chi(G) = \begin{cases} 1 & \text{if } g = 0, \\ 0 & \text{if } g = 1, \\ 2 - 2g + \frac{1}{m} & \text{if } g \ge 2. \end{cases}$$

Then $\chi(G) \in (-\infty, 1]$ and $\max\{\chi(G), 0\} = \frac{1}{|G|}$. In Section 5, we will show that (2.0.1) is also valid for surface-plus-one-relation groups.

For any group G, $b_0^{(2)}(G) = \frac{1}{|G|}$; see [19, Theorem 6.54(8)(b)]. It is obvious that if G is finite then $b_n^{(2)}(G) = 0$ for all $n \ge 1$. Thus, in essence, the foregoing results assert that if G is an infinite one-relator group, or an infinite surface-plus-one-relation group, then

$$b_n^{(2)}(G) = \begin{cases} -\chi(G) & \text{if } n = 1, \\ 0 & \text{if } n \neq 1, \end{cases}$$

and we emphasize that, in this case, we understand that $\chi(G) = -\infty$ if G is not finitely generated.

In Section 6, we consider a variety of situations where Z is a nonzero ring and there exists some positive integer n such that $P_n = ZG^2$ in a projective ZG-resolution (1.0.3) of $_{ZG}Z$. For example, this happens for two-generator groups and for two-relator groups.

Thus, in Corollary 6.8, we recover Lück's result [19, Theorem 7.10] that all the L^2 -Betti numbers of Thompson's group F vanish; see [6] for a detailed exposition of the definition and main properties of F.

2.1 Definitions. Recall that G is *left orderable* if there exists a total order \leq of G which is left G-invariant, that is, whenever $g, x, y \in G$ and $x \leq y$, then $gx \leq gy$. One then says that \leq is a *left order* of G. The reverse order is also a left order. Since every group is isomorphic to its opposite through the inversion map, we see that 'left-orderable' is a short form for 'one-sided-orderable'.

A group is said to be *locally indicable* if every finitely generated subgroup is either trivial or has an infinite cyclic quotient. Burns and Hale [5] showed that every locally indicable group is left orderable. This often provides a convenient way to prove that a given group is left orderable.

Recall that the cohomological dimension of G with respect to a ring Z, denoted $\operatorname{cd}_Z G$, is the least $n \in \mathbb{N}$ such that $P_{n+1} = 0$ in some projective ZG-resolution (1.0.3) of ${}_{ZG}Z$. The cohomological dimension of G, denoted $\operatorname{cd} G$, is $\operatorname{cd}_{\mathbb{Z}} G$. A classic result of Stallings and Swan says that the groups of cohomological dimension at most one are precisely the free groups.

Similarly, the homological dimension of G with respect to a ring Z, denoted $\operatorname{hd}_Z G$, is the least $n \in \mathbb{N}$ such that $P_{n+1} = 0$ in some flat ZG-resolution (1.0.3) of ZGZ. The homological dimension of G, denoted $\operatorname{hd} G$, is $\operatorname{hd}_Z G$.

We understand that Robert Bieri, in the 1970's, first raised the question as to whether the groups of homological dimension at most one are precisely the locally free groups. Notice that a locally free group has homological dimension at most one, since the augmentation ideal of a locally free group is a directed union of finitely generated free left submodules. Recently, in [16], it was proved that if the homological dimension of G is at most one and G satisfies the Atiyah conjecture (or, more generally, the group ring $\mathbb{Z}G$ embeds in a one-sided Noetherian ring), then G is locally free. In Corollary 6.12, we show that if G is locally indicable, or, more generally, left orderable, and the homological dimension of G is at most one, then every two-generator subgroup of G is free.

Finally, in Proposition 6.13, we calculate the first three L^2 -Betti numbers of an arbitrary left-orderable two-relator group of cohomological dimension at least three.

2.2 Notation. We will frequently consider maps between free modules over a ring U, and we will use the following format.

Let X and Y be sets.

By an $X \times Y$ row-finite matrix over U we mean a function $(u_{x,y}) : X \times Y \to U$, $(x,y) \mapsto u_{x,y}$ such that, for each $x \in X$, $\{y \in Y \mid u_{x,y} \neq 0\}$ is finite.

We write $\bigoplus_X U$ to denote the direct sum of copies of U indexed by X. If $n \in \mathbb{N}$, and $X = \{1, \ldots, n\}$, we identify X = n and also write $\bigoplus_n U$ as U^n . An element of $\bigoplus_X U$ will be viewed as a $1 \times X$ row-finite matrix (u_{1x}) over U. Then $\bigoplus_X U$ is a left U-module in a natural way.

A map $\bigoplus_X U \to \bigoplus_Y U$ of left *U*-modules will be thought of as right multiplication by a row-finite $X \times Y$ matrix $(u_{x,y})$ in a natural way, and we will write $\bigoplus_X U \xrightarrow{(u_{x,y})} \bigoplus_Y U$.

3 Preliminary results about $\mathcal{U}(G)$

For $a=\sum_{g\in G}a(g)g\in\mathbb{C}[[G]]$, we let $a^*=\sum_{g\in G}\overline{a(g^{-1})}g$ where \overline{z} indicates the complex conjugate of z. This involution restricts to $\mathbb{C}(G)$ and $\mathcal{N}(G)$, and extends in a unique way to $\mathcal{U}(G)$. Furthermore, if $a,b\in\mathcal{N}(G)$, then $(ab)^*=b^*a^*$ and $a^*a=0$ if and only if a=0.

In Sections 4 and 5, we shall see that the narrow hypotheses of the following result hold whenever G is a one-relator group or a surface-plus-one-relation group.

3.1 Theorem. Suppose that G has a normal subgroup H such that H is the semidirect product $F \rtimes C$ of a free subgroup F by a finite subgroup C, and that G/H is locally indicable, or, more generally, left orderable.

Let
$$m = |C|$$
, and let $e = \frac{1}{m} \sum_{c \in C} c \in \mathbb{C}G$.

Then the following hold.

- (i) Each torsion subgroup of G embeds in C.
- (ii) Each nonzero element of $e\mathbb{C}Ge$ is invertible in $e\mathcal{U}(G)e$.
- (iii) For all $x \in \mathcal{U}(G)e$ and $y \in e\mathbb{C}G$, if xy = 0 then x = 0 or y = 0.

- *Proof.* (i) Each torsion subgroup of G lies in H and has trivial intersection with F, and therefore embeds in C.
- (ii) Notice that e is a projection, that is, e is idempotent and $e^* = e$. Clearly, $\operatorname{tr}(e) = \frac{1}{m}$. Also, $e\mathcal{U}(G)e$ is a ring and $e\mathbb{C}Ge$ is a subring of $e\mathcal{U}(G)e$. Moreover, in $e\mathcal{U}(G)e$, one-sided inverses are two-sided inverses.

Let $a \in e\mathbb{C}Ge - \{0\}$. We want to show that a is left invertible in $e\mathcal{U}(G)e$.

Let T be a transversal for the right (or left) H-action on G, and suppose that T contains 1. Write $a = t_1 a_1 + \cdots + t_n a_n$ where the t_i are distinct elements of T, and, for each $i, a_i \in \mathbb{C}(H)e - \{0\}$.

Let \leq be a left order for G/H. We may assume that $t_1H \prec \cdots \prec t_nH$. To show that a is left invertible in $e\mathcal{U}(G)e$, it suffices to show that $(ea_1^*t_1^{-1}e)a$ is left invertible in $e\mathcal{U}(G)e$. On replacing a with $(ea_1^*t_1^{-1}e)a = a_1^*t_1^{-1}a$, we see that we may assume that $t_1 = 1$ and $a_1 \in e\mathbb{C}He - \{0\}$.

By (i), m is the least common multiple of the orders of the finite subgroups of H. Now the strong Atiyah conjecture holds for H; see [18] or [19, Chapter 10]. Hence $\dim_{\mathcal{U}(H)} \mathcal{U}(H) a_1 \geq \frac{1}{m} = \operatorname{tr}(e)$. Of course, $\mathcal{U}(H) a_1 \subseteq \mathcal{U}(H) e$, and thus $\dim_{\mathcal{U}(H)} \mathcal{U}(H) a_1 \leq \dim_{\mathcal{U}(H)} \mathcal{U}(H) e = \operatorname{tr}(e)$. Hence $\dim_{\mathcal{U}(H)} \mathcal{U}(H) a_1 = \operatorname{tr}(e)$.

Also,
$$\mathcal{U}(H)(a_1+1-e)=\mathcal{U}(H)a_1\oplus\mathcal{U}(H)(1-e)$$
. Hence

$$\dim_{\mathcal{U}(H)} \mathcal{U}(H)(a_1 + 1 - e) = \dim_{\mathcal{U}(H)} \mathcal{U}(H)a_1 + \dim_{\mathcal{U}(H)} \mathcal{U}(H)(1 - e)$$
$$= \operatorname{tr}(e) + \operatorname{tr}(1 - e) = 1.$$

This implies that $a_1 + 1 - e$ is invertible in $\mathcal{U}(H)$. The *-dual of [17, Theorem 4] now implies that $a + 1 - e = 1(a_1 + 1 - e) + t_2a_2 + \cdots + t_na_n$ is invertible in $\mathcal{U}(G)$. It is then straightforward to show that a is invertible in $e\mathcal{U}(G)e$.

- (iii) Suppose that $y \neq 0$. Then $x^*xyy^* = 0$, $yy^* \in e\mathbb{C}Ge \{0\}$ and $x^*x \in e\mathcal{U}(G)e$. By (ii), yy^* is invertible in $e\mathcal{U}(G)e$. Hence $x^*x = 0$ and x = 0.
- **3.2 Remark.** The above proof shows that the conclusions of Theorem 3.1(ii) and (iii) hold under the following hypotheses: H is a normal subgroup of G; G/H is left orderable; the strong Atiyah conjecture holds for H; and, e is a nonzero projection in $\mathbb{C}H$ such that $\frac{1}{\operatorname{tr}(e)}$ is the least common multiple of the orders of the finite subgroups of H.

The degenerate case of Theorem 3.1(ii) where H=F=C=1 follows directly from [17, Theorem 2].

3.3 Theorem. If G is locally indicable, or, more generally, left orderable, then every nonzero element of $\mathbb{C}G$ is invertible in $\mathcal{U}(G)$.

4 One-relator groups

We shall now calculate the L^2 -Betti numbers of one-relator groups.

4.1 Notation. Suppose that G is a one-relator group, and let $\langle X \mid r \rangle$ be a one-relator presentation of G.

Here r is an element of the free group F on X and $G = F/\langle r \rangle$.

Let $m = \exp_F(r)$ and let d = |X|. These are vague cardinals. Here $m \neq 0$; moreover, $m = \infty$ if and only if r = 1, in which case G = F.

If $m < \infty$, then $r = q^m$ for some $q \in F$. Let c denote the image of q in G, and let $C = \langle c \rangle \leq G$. Then C has order m. Let $e = \frac{1}{m} \sum_{x \in C} x \in \mathbb{C}G$.

If $m = \infty$, we define $e = 0 \in \mathbb{C}G$.

In any event e is a projection and $tr(e) = \frac{1}{m}$.

There is an exact sequence of left $\mathbb{Z}G$ -modules

$$\begin{split} 0 & \longrightarrow \oplus_X \mathbb{Z} G \longrightarrow \mathbb{Z} G \longrightarrow \mathbb{Z} \longrightarrow 0 & \text{if } m = \infty, \\ 0 & \longrightarrow \mathbb{Z} [G/C] \longrightarrow \mathbb{Z} \longrightarrow 0 & \text{if } d = 1 \text{ and } m < \infty, \\ 0 & \longrightarrow \mathbb{Z} [G/C] \longrightarrow \oplus_X \mathbb{Z} G \longrightarrow \mathbb{Z} G \longrightarrow \mathbb{Z} \longrightarrow 0 & \text{if } d \geq 2 \text{ and } m < \infty. \end{split}$$

see [7], specifically, Lemma 6.21 and (*) on p. 167 in the proof of Theorem 6.22. In all cases, there is then an exact sequence of left $\mathbb{C}G$ -modules

$$0 \longrightarrow \mathbb{C}Ge \xrightarrow{(a_{1,x})} \oplus_X \mathbb{C}G \xrightarrow{(b_{x,1})} \mathbb{C}G \longrightarrow \mathbb{C} \longrightarrow 0; \tag{4.1.1}$$

for each $x \in X$, $b_{x,1}$ is the image of x-1 in $\mathbb{C}G$, and $a_{1,x}$ is the left Fox derivative $\begin{array}{l} \frac{\partial r}{\partial x}=(me)\frac{\partial q}{\partial x}\in e\mathbb{C}G.\\ \text{If }d<\infty,\text{ then }G\text{ is of type VFL and} \end{array}$

$$\chi(G) = 1 - d + \frac{1}{m} \in (-\infty, 1]; \tag{4.1.2}$$

see Theorem 6.22 and Corollary 6.15 of [7], for the cases where $m < \infty$ and $m = \infty$, respectively.

In the case where $d=\infty$, that is, G is a non-finitely-generated one-relator group, we define $\chi(G) := -\infty$. This is non-standard, but it extends (4.1.2).

It is easy to verify that $\frac{1}{|G|} = \max\{\chi(G), 0\}$. In fact, by abelianizing G, we see that G is finite if and only if either d=1 and $m<\infty$, or d=0 (and hence $m=\infty$).

We shall now prove the following.

4.2 Theorem. If G is a one-relator group, then, for $n \in \mathbb{N}$,

$$b_n^{(2)}(G) = \begin{cases} \max\{\chi(G), 0\} \ (=\frac{1}{|G|}) & \text{if } n = 0, \\ \max\{-\chi(G), 0\} & \text{if } n = 1, \\ 0 & \text{if } n \ge 2. \end{cases}$$
 (4.2.1)

Proof. Suppose that Notation 4.1 holds.

Unaugmenting (4.1.1) and applying $\mathcal{U}(G) \otimes_{\mathbb{C}G}$ – gives

$$0 \longrightarrow \mathcal{U}(G)e \xrightarrow{(a_{1,x})} \bigoplus_{X} \mathcal{U}(G) \xrightarrow{(b_{x,1})} \mathcal{U}(G) \longrightarrow 0; \tag{4.2.2}$$

the homology of (4.2.2) is then $H_*(G; \mathcal{U}(G))$.

We claim that

if
$$y \in \mathcal{U}(G)e - \{0\}$$
 and $a \in e\mathbb{C}G - \{0\}$, then $ya \neq 0$. (4.2.3)

This is vacuous if $m = \infty$.

If $m < \infty$, let H denote the normal subgroup of G generated by c. Then $G/H = \langle X \mid q \rangle$ is a torsion-free one-relator group. Hence G/H is locally indicable

by [3, Theorem 3], [13, Theorem 4.2] or [14, Corollary 3.2]. Also H is the free product of certain G-conjugates of C, by [11, Theorem 1]. By mapping each of these conjugates of C isomorphically to C, we obtain an epimorphism H oup C. Applying [8, Proposition I.4.6] to this epimorphism, we see that its kernel F is free. Clearly, $H = F \rtimes C$. Now (4.2.3) holds by Theorem 3.1(iii).

Since $(a_{1,x})$ is injective in (4.1.1), either e=0 or there is some $x_0 \in X$ such that $a_{1,x_0} \neq 0$. It follows from (4.2.3) that $(a_{1,x})$ is injective in (4.2.2), and hence $\mathrm{H}_2(G;\mathcal{U}(G))=0$. On taking $\mathcal{U}(G)$ -dimensions, we find $b_2^{(2)}(G)=0$, and $\dim_{\mathcal{U}(G)} \mathrm{im}((a_{1,x}))=\frac{1}{m}$. If either $d\geq 2$, or d=1 and $m=\infty$, then, by abelianizing, we see that there

If either $d \geq 2$, or d = 1 and $m = \infty$, then, by abelianizing, we see that there is some $x_1 \in X$ whose image in G has infinite order. By (1.0.1), we see that $(b_{x,1})$ is surjective in (4.2.2), and hence $H_0(G; \mathcal{U}(G)) = 0$. On taking $\mathcal{U}(G)$ -dimensions, we find that $b_0^{(2)}(G) = 0$, $\dim_{\mathcal{U}(G)} \operatorname{im}((b_{x,1})) = 1$, and $\dim_{\mathcal{U}(G)} \ker((b_{x,1})) = d - 1$. Now

$$b_1^{(2)}(G) = \dim_{\mathcal{U}(G)} \ker((b_{x,1})) - \dim_{\mathcal{U}(G)} \operatorname{im}((a_{1,x})) = d - 1 - \frac{1}{m} = -\chi(G).$$

Thus (4.2.1) holds.

This leaves the cases where either d=0 or d=1 and $m<\infty$. Here G is finite cyclic, and again (4.2.1) holds.

5 Surface-plus-one-relation groups

We next calculate the L^2 -Betti numbers for an arbitrary surface-plus-one-relation group $G = \pi_1(\Sigma)/\langle \alpha \rangle$, where Σ is a connected orientable surface, possibly with boundary and not necessarily compact, and $\langle \alpha \rangle$ is the normal closure of a single element $\alpha \in \pi_1(S)$.

By the results of the previous section, we may assume that the implicit presentation of G has more than one relator. As explained in Section 2, Σ must a closed surface. Let g denote the genus of Σ . Then $g \in \mathbb{N}$ and

$$\pi_1(\Sigma) = \langle x_1, x_2, \dots, x_{2q-1}, x_{2q} \mid [x_1, x_2][x_3, x_4] \cdots [x_{2q-1}, x_{2q}] \rangle,$$

where [x,y] denotes $xyx^{-1}y^{-1}$. Since this is a one-relator presentation, we have $\alpha \neq 1$. In particular, g is nonzero. The non one-relator cases are included in the following.

5.1 Theorem. Let Σ be a closed orientable surface of genus at least one, let $S = \pi_1(\Sigma)$, let α be a nontrivial element of S, and let $G = S/\langle \alpha \rangle$.

Let g denote the genus of Σ , let $m = \exp_S(\alpha)$, and let Q be a nonzero ring in which $\frac{1}{m}$ is defined, that is, if $m < \infty$ then mQ = Q. Then the following hold.

(i) G is of type VFL and
$$\chi(G) = \min\{2 - 2g + \frac{1}{m}, 0\} = \begin{cases} 0 & \text{if } g = 1, \\ 2 - 2g + \frac{1}{m} & \text{if } g \ge 2. \end{cases}$$

(ii)
$$\operatorname{cd}_{Q} G = \min\{2, g\} = \begin{cases} 1 & \text{if } g = 1, \\ 2 & \text{if } g \geq 2. \end{cases}$$

(iii) For
$$n \in \mathbb{N}$$
, $b_n^{(2)}(G) = -\delta_{n,1}\chi(G) = \begin{cases} -\chi(G) & \text{if } n = 1, \\ 0 & \text{if } n \neq 1. \end{cases}$

Proof. We break the proof up into a series of lemmas and summaries of notation.

- **5.2 Notation.** As in [8, Examples I.3.5(v)], the expression $S_1 *_{S_0} s$ will denote an HNN extension, where it is understood that S_1 is a group, S_0 is a subgroup of S_1 and s is an injective group homomorphism $s: S_0 \to S_1$, $a \mapsto a^s$. The image of this homomorphism is denoted S_0^s .
- **5.3 Lemma (Hempel).** If $g \geq 2$, then there exists an HNN-decomposition $S = S_1 *_{S_0} s$ such that S_1 is a free group, α lies in S_1 , and the normal subgroup of S_1 generated by α intersects both S_0 and S_0^s trivially.

Hence, $G = S/\langle \alpha \rangle$ has a matching HNN-decomposition $S/\langle \alpha \rangle = S_1/\langle \alpha \rangle *_{S_0} s$.

Proof. This was implicit in the proof of [12, Theorem 2.2], and was made explicit in [15, Proposition 2.1]. \Box

5.4 Lemma (Hempel). If $m < \infty$, there exists $\beta \in S$ such that $\beta^m = \alpha$, and the image of β in G has order m.

Proof. As this is obvious for g=1, we may assume that $g\geq 2$. Thus we have matching HNN-decompositions $S=S_1*_{S_0}s$ and $G=S/\langle \alpha \rangle = S_1/\langle \alpha \rangle *_{S_0}s$, as in Lemma 5.3.

Let $m' = \exp_{S_1} \alpha$. Since $\alpha \neq 1$ and S_1 is free, we see that $m' < \infty$. Choose $\beta \in S_1$ such that $\beta^{m'} = \alpha$. Let c denote the image of β in G, and let $C = \langle c \rangle \leq G$. Then C has order m', and every torsion subgroup of $S_1/\langle \alpha \rangle$ embeds in C. From the HNN decomposition for G, we see that any finite subgroup of G is conjugate to a subgroup of $S_1/\langle \alpha \rangle$, and hence has order dividing m'.

A similar argument shows that for any positive integer i, $S/\langle \alpha^i \rangle$ has a matching HNN decomposition, and therefore has a subgroup of order m'i and a subgroup of order i. It follows that if $\alpha = \gamma^j$ for some positive integer j then $S/\langle \alpha \rangle$ has a subgroup of order j, and hence j divides m'. It now follows that $m = m' < \infty$. \square

5.5 Notation. Let β denote an element of S such that $\beta^m = \alpha$.

Let c denote the image of β in G. Let $C = \langle c \rangle$, a cyclic subgroup of G of order m. Let $e = \frac{1}{m} \sum_{x \in C} x$, an idempotent element of $\mathbb{C}G$ with $\operatorname{tr}(e) = \frac{1}{m}$; we shall also view e as an idempotent element of QG.

Let H denote the normal subgroup of G generated by c; thus, $G/H \ \simeq \ S/ \backslash\!\!\backslash\, \beta \,\backslash\!\!\backslash.$

- **5.6 Lemma.** (i) H has a free subgroup F such that $H = F \times C$.
- (ii) G/H is locally indicable.
- (iii) Every torsion subgroup of G embeds in C.
- (iv) If $x \in \mathcal{U}(G)e \{0\}$ and $y \in e\mathbb{C}G \{0\}$, then $xy \neq 0$.

Proof. (i). As this is clear for g = 1, we may assume that $g \geq 2$.

By Lemma 5.3 with β in place of α , there exists an HNN-decomposition $S = S_1 *_{S_0} s$ where S_1 is a free group, β lies in S_1 , and the normal subgroup of S_1 generated by β intersects both S_0 and S_0^s trivially. Hence α lies in S_1 , and the normal subgroup of S_1 generated by α intersects both S_0 and S_0^s trivially. It follows that we can make identifications

$$G = S/\langle \alpha \rangle = S_1/\langle \alpha \rangle *_{S_0} s$$
 and $G/H = S/\langle \beta \rangle = S_1/\langle \beta \rangle *_{S_0} s$.

Thus we have matching HNN-decompositions for S, G and G/H.

Let us apply Bass-Serre theory, following, for example, [8, Chapter 1]. Consider the action of H on the Bass-Serre tree for the above HNN-decomposition of G. Then H acts freely on the edges. Let H_0 denote the normal subgroup of $S_1/\langle \alpha \rangle$ generated by c. Then H_0 is a vertex stabilizer for the H-action, and the other vertex stabilizers are G-conjugates of H_0 . By Bass-Serre theory, or the Kurosh Subgroup Theorem, H is the free product of a free group and various G-conjugates of H_0 .

By [11, Theorem 1], H_0 itself is a free product of certain $S_1/\langle \alpha \rangle$ -conjugates of C.

Thus H is the free product a free group and various G-conjugates of C. If we map each of these G-conjugates of C isomorphically to C, and map the free group to 1, we obtain an epimorphism $H \rightarrow C$. Applying [8, Proposition I.4.6] to this epimorphism, we see that its kernel F is free. Clearly, $H = F \rtimes C$. This proves (i).

(ii). Since $G/H = S/\langle \beta \rangle$ and β is not a proper power in S, G/H is locally indicable by [12, Theorem 2.2].

(iii) and (iv) hold by Theorem
$$3.1$$
.

Let us dispose of the case where q = 1, which is well known and included only for completeness.

- **5.7 Lemma.** If g = 1, then the following hold.
 - (i) H = C and G/C is infinite cyclic generated by xC for some $x \in G$.
- (ii) $0 \longrightarrow \mathbb{Z}[G/C] \xrightarrow{x-1} \mathbb{Z}[G/C] \longrightarrow \mathbb{Z} \longrightarrow 0$ is an exact sequence of left $\mathbb{Z}G$ -mod-
- (iii) $0 \longrightarrow QGe \xrightarrow{x-1} QGe \longrightarrow Q \longrightarrow 0$ is an exact sequence of left QG-modules.
- (iv) $\langle x \rangle$ is an infinite cyclic subgroup of G of finite index, G is of type VFL, $\chi(G) = 0$ and $\operatorname{cd}_{\mathcal{O}} G = 1$.
- (v) The homology of $0 \longrightarrow \mathcal{U}(G)e \xrightarrow{x-1} \mathcal{U}(G)e \longrightarrow 0$ is $H_*(G;\mathcal{U}(G))$.
- (vi) For each $n \in \mathbb{N}$, $b_n^{(2)}(G) = 0$.
- **5.8 Remark.** For g = 1, Lemma 5.7(ii) gives the augmented cellular chain complex of a one-dimensional E(G) which resembles the real line.
- **5.9 Notation.** Henceforth we assume that $q \geq 2$.

Let $X = \{x_1, x_2, \dots, x_{2g-1}, x_{2g}\}$, let F be the free group on X, and let $r_1 = [x_1, x_2] \cdots [x_{2g-1}, x_{2g}] \in F$. Then $S = \langle X \mid r_1 \rangle$.

Let q_2 be any element of F which maps to β in S, and let $r_2 = q_2^m$. Then $G = \langle X \mid r_1, r_2 \rangle.$

For $i \in \{1, 2\}, j \in \{1, \dots, 2g\}$, we set $a_{i,j} := \frac{\partial r_i}{\partial x_j} \in \mathbb{Z}G$, the left Fox derivatives, and $b_{j,1} := x_j - 1 \in \mathbb{Z}G$. Notice that $me = \sum_{x \in C} x \in \mathbb{Z}G$ and $a_{2,j} = \frac{\partial r_2}{\partial x_j} = (me)\frac{\partial q_2}{\partial x_j}$.

Notice that
$$me = \sum_{x \in C} x \in \mathbb{Z}G$$
 and $a_{2,j} = \frac{\partial r_2}{\partial x_j} = (me) \frac{\partial q_2}{\partial x_j}$.

5.10 Lemma (Howie). The sequence of left $\mathbb{Z}G$ -modules

$$0 \longrightarrow \mathbb{Z}G \oplus \mathbb{Z}[G/C] \xrightarrow{(a_{i,j})} \mathbb{Z}G^{2g} \xrightarrow{(b_{j,1})} \mathbb{Z}G \longrightarrow \mathbb{Z} \longrightarrow 0$$
 (5.10.1)

is exact.

Proof. Howie [15, Theorem 3.5] describes a K(G,1), and it is straightforward to give it a CW-structure as follows.

We take a K(S,1) with one zero-cell, 2g one-cells, and a two-cell which is a 2g-gon, and then the exact sequence of left $\mathbb{Z}S$ -modules arising from the augmented cellular chain complex of the universal cover of the K(S,1) is

$$0 \longrightarrow \mathbb{Z}S \xrightarrow{(a_{1,j})} \mathbb{Z}S^{2g} \xrightarrow{(b_{j,1})} \mathbb{Z}S \longrightarrow \mathbb{Z} \longrightarrow 0,$$

where we view the $a_{1,j}$ and $b_{j,1}$ as elements of $\mathbb{Z}S$.

We take a K(C,1) with one cell in each dimension such that the infinitely repeating exact sequence of left $\mathbb{Z}C$ -modules arising from the augmented cellular chain complex of the universal cover of the K(C,1) is

$$\cdots \longrightarrow \mathbb{Z}C \xrightarrow{me} \mathbb{Z}C \xrightarrow{c-1} \mathbb{Z}C \xrightarrow{me} \mathbb{Z}C \xrightarrow{c-1} \mathbb{Z}C \longrightarrow \mathbb{Z} \longrightarrow 0.$$

By [15, Theorem 3.5], we get a K(G,1) by melding the one-skeleton of our K(C,1) into the one-skeleton of our K(S,1) in the natural way; the attaching map of the two-cell at the homology level is then $(a_{2,j})$. The exact sequence of left $\mathbb{Z}G$ -modules arising from the augmented cellular chain complex of the three-skeleton of the universal cover of the K(G,1) is

$$\mathbb{Z}G \xrightarrow{(0,1-c)} \mathbb{Z}G^2 \xrightarrow{(a_{i,j})} \mathbb{Z}G^{2g} \xrightarrow{(b_{j,1})} \mathbb{Z}G \longrightarrow \mathbb{Z} \longrightarrow 0.$$

The lemma now follows easily.

We now imitate the proof of [11, Theorem 2].

5.11 Lemma. G is of type VFL and
$$\chi(G) = 2 - 2g + \frac{1}{m}$$
.

Proof. Let p be a prime divisor of m. It was shown in [1] that S is residually a finite p-group; see [10, Theorem B] for an alternative proof. Hence there exists a finite p-group P = P(p) and a homomorphism $S \to P$ whose kernel does not contain $\beta^{\frac{m}{p}}$, and we assume that P has smallest possible order. The centre Z(P) of P is nontrivial. By minimality of P, $\beta^{\frac{m}{p}}$ lies in the kernel of the composite $S \to P \to P/Z(P)$. Thus $\beta^{\frac{m}{p}}$, and β^{m} , are mapped to Z(P). By minimality of P, β^{m} is mapped to 1 in P.

By considering the direct product of such P(p), one for each prime divisor p of m, we find that there is a finite quotient of S in which the image of β has order exactly m.

Hence there exists a normal subgroup N of G such that N has finite index in G and $N \cap C = \{1\}$. It follows that N acts freely on G/C. The number of orbits is

$$|N \setminus (G/C)| = |N \setminus G/C| = |(N \setminus G)/C| = [G:N]/m,$$

where the last equality holds since C acts freely on $N \setminus G$, on the right.

Now (5.10.1) is a resolution of \mathbb{Z} by free left $\mathbb{Z}N$ -modules. Thus N is of type FL, and, in particular, N is torsion-free. It is now a simple matter to calculate $\chi(G) \ (= \frac{1}{|G:N|} \chi(N))$.

Together Lemma 5.7(iv) and Lemma 5.11 give Theorem 5.1(i). By Lemma 5.10, the following is clear.

5.12 Corollary. The sequence of left QG-modules

$$0 \longrightarrow QG \oplus QGe \xrightarrow{(a_{i,j})} QG^{2g} \xrightarrow{(b_{j,1})} QG \longrightarrow Q \longrightarrow 0$$

is exact. \Box

5.13 Lemma. $cd_Q G = 2$.

Proof. By Corollary 5.12, $\operatorname{cd}_Q G \leq 2$. It remains to show that $\operatorname{cd}_Q G > 1$. Let us suppose that $\operatorname{cd}_Q G \leq 1$ and derive a contradiction.

By Notation 5.5 and Lemma 5.6(ii), H is the (normal) subgroup of G generated by the elements of finite order. By Dunwoody's Theorem [8, Theorem IV.3.13], G is the fundamental group of a graph of finite groups; by [8, Proposition I.7.11], H is the normal subgroup of G generated by the vertex groups. From the presentation of G as in [8, Notation I.7.1], it can be seen that G/H is a free group.

Since $G/H = S/\langle \beta \rangle$, the abelianization of G/H has \mathbb{Z} -rank 2g or 2g-1. Thus the rank of the free group G/H is 2g or 2g-1. Hence $\chi(S/\langle \beta \rangle)$ is 1-2g or 2-2g. But $\chi(S/\langle \beta \rangle) = 3-2g$ by Lemma 5.11. This is a contradiction.

Together Lemma 5.7(iv) and Lemma 5.13 give Theorem 5.1(ii). By Corollary 5.12 with $Q = \mathbb{C}$, the following is clear.

5.14 Corollary. The homology of

$$0 \longrightarrow \mathcal{U}(G) \oplus \mathcal{U}(G)e \xrightarrow{(a_{i,j})} \mathcal{U}(G)^{2g} \xrightarrow{(b_{j,1})} \mathcal{U}(G) \longrightarrow 0$$
 is $H_*(G; \mathcal{U}(G))$.

We now come to the subtle part of the argument.

5.15 Lemma. $\mathcal{U}(G) \oplus \mathcal{U}(G)e \xrightarrow{(a_{i,j})} \mathcal{U}(G)^{2g}$ is injective.

Proof. Let (u,v) be an arbitrary element of the kernel. Thus, $(u,v) \in \mathcal{U}(G) \oplus \mathcal{U}(G)e$ and

for each
$$j \in \{1, \dots, 2g\}$$
, $ua_{1,j} + va_{2,j} = 0$ in $\mathcal{U}(G)$. (5.15.1)

Consider first the case where u does not lie in $v\mathbb{C}G$. We shall obtain a contradiction.

We form the right $\mathbb{C}G$ -module $W = \mathcal{U}(G)/(v\mathbb{C}G)$, and let $w = u + v\mathbb{C}G \in W$. By (5.15.1),

for each
$$j \in \{1, \dots, 2g\}, \quad wa_{1,j} = 0 \text{ in } W.$$
 (5.15.2)

Let $K = \{x \in G \mid wx = w\}$. Clearly, K is a subgroup of G.

We claim that K = G; it suffices to show that $\{x_1, \ldots, x_{2g}\} \subseteq K$.

We will show by induction that, if $j \in \{0, 1, \ldots, g\}$, then $\{x_1, \ldots, x_{2j}\} \subseteq K$. This is clearly true for j = 0. Suppose that $j \in \{1, \ldots, g\}$ and that it is true for j - 1. We will show it is true for j. Let $k = [x_1, x_2] \cdots [x_{2j-3}, x_{2j-2}]$; then k lies in K by the induction hypothesis. Recall that $r_1 = [x_1, x_2] \cdots [x_{2g-1}, x_{2g}]$. By (5.15.2) and Notation 5.9,

$$0 = wa_{1,2j-1} = w \frac{\partial r_1}{\partial x_{2j-1}} = wk(1 - x_{2j-1}x_{2j}x_{2j-1}^{-1})$$

and

$$0 = wa_{1,2j} = w \frac{\partial r_1}{\partial x_{2j}} = wkx_{2j-1}(1 - x_{2j}x_{2j-1}^{-1}x_{2j}^{-1}).$$

Since $K = \{x \in G \mid w(1-x) = 0\}$, we see that K contains

$$k(x_{2j-1}x_{2j}x_{2j-1}^{-1})k^{-1}$$
 and $(kx_{2j-1})(x_{2j}x_{2j-1}^{-1}x_{2j}^{-1})(kx_{2j-1})^{-1}$.

Thus K contains

$$x_{2j-1}x_{2j}x_{2j-1}^{-1}$$
 and $x_{2j-1}(x_{2j}x_{2j-1}^{-1}x_{2j}^{-1})x_{2j-1}^{-1}$,

and it follows easily that K contains $x_{2j}^{-1}x_{2j-1}^{-1}$, x_{2j-1} and x_{2j} . This completes the proof by induction.

Hence, K = G, and w is fixed under the right G-action on W. Thus, the subset $u + v\mathbb{C}G$ of $\mathcal{U}(G)$ is closed under the right G-action on $\mathcal{U}(G)$. We denote the set $u + v\mathbb{C}G$ viewed as right G-set by $(u + v\mathbb{C}G)_G$. Notice that $u + v\mathbb{C}G$ does not contain 0.

By Lemma 5.6(iv), the surjective map $e\mathbb{C}G \to v\mathbb{C}G$, $x \mapsto vx$, is either injective or zero. In either event, $v\mathbb{C}G$ is a projective right $\mathbb{C}G$ -module. By the left-right dual of [9, Corollary 5.6] there exists a right G-tree with finite edge stabilizers and vertex set $(u+v\mathbb{C}G)_G$. It follows that there exists a (left) G-tree T with finite edge stabilizers and vertex set $G(u+v\mathbb{C}G)^*\subseteq G(\mathcal{U}(G)-\{0\})$.

Each vertex stabilizer for T is torsion, by (1.0.1), and hence embeds in C, by Lemma 5.6(iii). By [8, Theorem IV.3.13], $\operatorname{cd}_Q G \leq 1$ which contradicts Lemma 5.13; in essence, T is a one-dimensional $\underline{\mathrm{E}}(G)$. Alternatively, one can use T to prove that $b_2^{(2)}(G) = 0$ and deduce that (u, v) = (0, 0), which is also a contradiction.

Thus u lies in $v\mathbb{C}G$, and there exists $y \in e\mathbb{C}G$ such that u = vy.

We consider first the case where $v \neq 0$. For each $j \in \{1, \ldots, 2g\}$,

$$v(ya_{1,j} + a_{2,j}) = ua_{1,j} + va_{2,j} = 0$$

by (5.15.1), and, by Lemma 5.6(iv), $0 = ya_{1,j} + a_{2,j} = ya_{1,j} + ea_{2,j}$. Hence, (y, e) lies in the kernel of $\mathbb{C}G \oplus \mathbb{C}Ge \xrightarrow{(a_{i,j})} \mathbb{C}G^{2g}$; since this map is injective by Corollary 5.12, we see e = 0, which is a contradiction.

Thus
$$v = 0$$
, and hence $u = 0$.

By Lemma 5.15 and Remark 1.1 it is straightforward to obtain the following.

5.16 Lemma. The $\mathcal{U}(G)$ -dimensions of the kernel and the image of the map $\mathcal{U}(G) \oplus \mathcal{U}(G)e \xrightarrow{(a_{i,j})} \mathcal{U}(G)^{2g}$ are 0 and $1 + \frac{1}{m}$, respectively.

The $\mathcal{U}(G)$ -dimensions of the image and the kernel of the map $\mathcal{U}(G)^{2g} \xrightarrow{(b_{j,1})} \mathcal{U}(G)$ are 1 and 2g-1, respectively.

For
$$n \in \mathbb{N}$$
, $b_n^{(2)}(G) = \begin{cases} (2g-1) - (1 + \frac{1}{m}) & \text{if } n = 1, \\ 0 & \text{if } n \neq 1. \end{cases}$

Together Lemma 5.7(vi) and Lemma 5.16 give Theorem 5.1(iii). This completes the proof of Theorem 5.1. $\hfill\Box$

Left-orderable groups 6

Throughout this section we will frequently make the following assumption.

6.1 Hypotheses. There exist nonzero rings Z and U such that ZG is a subring of U and each nonzero element of ZG is invertible in U.

This holds, for example, if G is locally indicable, or, more generally, left orderable, with Z being any subring of \mathbb{C} , and U being $\mathcal{U}(G)$, by Theorem 3.3.

Notice that ZG has no nonzero zerodivisors, and hence G is torsion free.

6.2 Lemma. Let U be a ring, and let X and Y be sets.

Let A and B be nonzero row-finite matrices over U in which each nonzero entry is invertible, such that A is $X \times 2$, B is $2 \times Y$, and the product AB is the zero $X \times Y$ matrix.

Then $\bigoplus_X U \xrightarrow{A} U^2 \xrightarrow{B} \bigoplus_Y U$ is an exact sequence of free left U-modules.

Moreover, U^2 has a left U-basis v_1 , v_2 such that $\ker B = \operatorname{im} A = Uv_1$ and B induces an isomorphism $Uv_2 \simeq \operatorname{im} B$.

Proof. Write $A = (a_{x,i})$ and $B = (b_{i,y})$.

There exists $x_0 \in X$ such that $(a_{x_0,1}, a_{x_0,2}) \neq (0,0)$. We take $v_1 = (a_{x_0,1}, a_{x_0,2})$. Clearly $Uv_1 \subseteq \operatorname{im} A \subseteq \ker B$. Without loss of generality, there exists $y_0 \in Y$ such that b_{1,y_0} is invertible in U. We take $v_2 = (1,0)$.

Since AB = 0, $a_{x_0,1}b_{1,y_0} + a_{x_0,2}b_{2,y_0} = 0$. Thus $a_{x_0,1} = -a_{x_0,2}b_{2,y_0}b_{1,y_0}^{-1}$. Hence $a_{x_0,2}$ cannot be zero, and is therefore invertible.

Hence v_1 , v_2 is a basis of U^2 , and $b_{2,y_0}b_{1,y_0}^{-1} = -a_{x_0,2}^{-1}a_{x_0,1}$. Consider any $(a_1, a_2) \in \ker B$. Then $a_1b_{1,y_0} + a_2b_{2,y_0} = 0$, and

$$(a_1, a_2) = (-a_2 b_{2,y_0} b_{1,y_0}^{-1}, a_2) = a_2 (-b_{2,y_0} b_{1,y_0}^{-1}, 1)$$

= $a_2 (a_{x_0,2}^{-1} a_{x_0,1}, 1) = a_2 a_{x_0,2}^{-1} (a_{x_0,1}, a_{x_0,2}) = a_2 a_{x_0,2}^{-1} v_1 \in Uv_1,$

as desired. Finally, $Uv_2 \simeq (Uv_1 + Uv_2)/Uv_1 = U^2/\ker B \simeq \operatorname{im} B$.

6.3 Remark. We see from the proof that the hypotheses that A and B are nonzero and every nonzero entry in A and B is invertible can be replaced with the hypotheses that some element of the first row of B is invertible, and some element of the second column of A is invertible.

There are other variations, but the stated form is most convenient for our purposes.

6.4 Proposition. Suppose that Hypotheses 6.1 hold, and suppose that there exists a positive integer n and a resolution (1.0.3) of Z by projective left ZG-modules such that $P_n = ZG^2$. Then either the map $P_{n+1} \to P_n$ in (1.0.3) is the zero map or $H_n(G; U) = 0.$

Proof. We may assume that $P_{n+1} \to P_n$ is nonzero. Then we have an exact sequence

$$P_{n+1} \to P_n \to P_{n-1},\tag{6.4.1}$$

and we want to deduce that

$$U \otimes_{ZG} P_{n+1} \to U \otimes_{ZG} P_n \to U \otimes_{ZG} P_{n-1}$$
 (6.4.2)

remains exact.

This is clear if $P_n \to P_{n-1}$ is the zero map. Thus we may assume that the maps in (6.4.1) are nonzero.

By adding a suitable ZG-projective summand to P_{n+1} with a zero map to P_n , we may assume that P_{n+1} is ZG-free without affecting the images. Similarly, we may assume that P_{n-1} is ZG-free without affecting the kernels. Thus we may assume that we have specified ZG-bases of P_{n+1} , P_n and P_{n-1} , and that the maps in (6.4.1) are represented by nonzero matrices over ZG.

The maps in (6.4.2) are then represented by nonzero matrices over U with all coefficients lying in ZG. Now we may apply Lemma 6.2 to deduce that (6.4.2) is exact, as desired.

6.5 Remark. In Proposition 6.4, if we replace the hypothesis $P_n = ZG^2$ with the hypothesis $P_n = ZG^1$, then it is easy to see that at least one of the maps $P_{n+1} \to P_n$, $P_n \to P_{n-1}$ is necessarily the zero map.

Applying Proposition 6.4 with $U = \mathcal{U}(G)$, together with Theorem 3.3, we obtain the following two results.

- **6.6 Corollary.** Let G be a left-orderable group, and let Z be a subring of \mathbb{C} . Suppose that there exists a positive integer n and a resolution (1.0.3) of Z by projective left ZG-modules such that $P_n = ZG^2$. Then either $\operatorname{cd}_Z G \leq n$ or $b_n^{(2)}(G) = 0$.
- **6.7 Corollary.** If G is a left-orderable group, and there exists an exact $\mathbb{C}G$ -sequence of the form

$$\cdots \xrightarrow{\partial_3} \mathbb{C}G^2 \xrightarrow{\partial_2} \mathbb{C}G^2 \xrightarrow{\partial_1} \mathbb{C}G^2 \xrightarrow{\partial_0} \mathbb{C}G \xrightarrow{\epsilon} \mathbb{C} \longrightarrow 0 \tag{6.7.1}$$

in which all the ∂_n are nonzero, then all the $b_n^{(2)}(G)$ are zero.

Proof. Since ∂_0 is nonzero, we see that G is nontrivial. Since G is torsion-free, $b_0^{(2)}(G) = 0$. For $n \ge 1$, $b_n^{(2)}(G) = 0$ by Proposition 6.4.

6.8 Corollary (Lück [19, Theorem 7.10]). All the L^2 -Betti numbers of Thompson's group F vanish.

Proof. This follows from Corollary 6.7 since F is orderable, see [6], and has a resolution as in (6.7.1), see [4].

We now look at situations where we can deduce that a two-generator group is free.

- **6.9 Proposition.** Suppose that Hypotheses 6.1 hold. The following are equivalent.
- (a) G is a two-generator group, and $H_1(G; U) \simeq U$.
- (b) G is a two-generator group, and $H_1(G; U) \neq 0$.
- (c) G is free of rank two.

Proof. (a) \Rightarrow (b) is obvious.

(b) \Rightarrow (c). Let $\{x, y\}$ be a generating set of G. Then we have an exact sequence of left ZG-modules

$$\bigoplus_R ZG \longrightarrow ZG^2 \xrightarrow{\left(\begin{matrix} x-1 \\ y-1 \end{matrix} \right)} ZG \longrightarrow Z \longrightarrow 0,$$

where R is the set of relators which have a nonzero left Fox derivative in ZG. By Proposition 6.4 with n = 1, we see that R is empty, and that the augmentation ideal is left ZG-free on x - 1 and y - 1.

A result of Bass-Nakayama [21, Proposition 1.6] then says that G is freely generated by x and y. This can be seen geometrically, as follows. Let $\Gamma = \Gamma(G, \{x, y\})$ denote the Cayley graph of G with respect to the subset $\{x, y\}$. The above exact sequence is precisely the augmented cellular Z-chain complex of Γ . It is then straightforward to show that Γ is a tree, and that G is freely generated by x and y.

 $(c) \Rightarrow (a)$ is straightforward.

- **6.10 Corollary.** The following are equivalent.
- (a) G is a two-generator left-orderable group and $b_1^{(2)}(G) \neq 0$.
- (b) G is free of rank two.

6.11 Theorem. Suppose that Hypotheses 6.1 hold. If $\operatorname{hd}_Z G \leq 1$ then every two-generator subgroup of G is free.

Proof. Since the hypotheses pass to subgroups, we may assume that G itself is generated by two elements, and it remains to show that G is free.

We calculate $H_*(G; U)$ in the case where G is not free.

By Hypotheses 6.1, G is torsion free. As in Remark 1.1, if $H_0(G; U) \neq 0$, then G is free of rank zero. Thus we may assume that $H_0(G; U) = 0$.

By Proposition 6.9, if $H_1(G,U) \neq 0$, then G is free of rank two. Thus we may assume that $H_1(G;U) = 0$.

Since $\operatorname{hd}_{Z} G \leq 1$, $\operatorname{H}_{n}(G; U) = 0$ for all $n \geq 2$.

In summary, we may assume that $H_*(G; U) = 0$.

By [2, Theorem 4.6(b)], since G is countable and $\operatorname{hd}_Z G \leq 1$, we have $\operatorname{cd}_Z G \leq 2$; in essence, the augmentation ideal ω of ZG is a countably-related flat left ZG-module, hence the projective dimension of $_{ZG}\omega$ is at most one. Since G is a two-generator group, we have a resolution of Z by projective left ZG-modules

$$0 \longrightarrow P \longrightarrow ZG^2 \longrightarrow ZG \longrightarrow Z \longrightarrow 0.$$

Since $H_*(G; U) = 0$, we have an exact sequence of projective left U-modules

$$0 \longrightarrow U \otimes_{ZG} P \longrightarrow U^2 \longrightarrow U \longrightarrow 0.$$

This sequence splits, and we see that $_{U}(U \otimes_{\mathbb{Z}G} P)$ is finitely generated.

Hence $_{ZG}P$ is finitely generated, by the following standard argument. Let R be a set such that P is a ZG-summand of $\oplus_R ZG$, that is, P is a ZG-submodule of $\oplus_R ZG$ and we have a ZG-linear retraction of $\oplus_R ZG$ onto P. We may assume that R is minimal, that is, for each $r \in R$, the image of P under projection onto the rth coordinate is nonzero. Then $U \otimes_{ZG} P$ is a U-submodule of $\oplus_R U$, and here also R is minimal. Since U is finitely generated, R is finite, as desired.

Now $_{ZG}Z$ has a resolution by finitely generated projective left ZG-modules. By [2, Theorem 4.6(c)], $\operatorname{cd}_Z G \leq 1$; in essence, $_{ZG}\omega$ is finitely related and flat, and is therefore projective. Since G is torsion free, G is free by Stallings' Theorem; see Remark II.2.3(ii) (or Corollary IV.3.14) in [8].

6.12 Corollary. Suppose that G is locally indicable, or, more generally, that G is left orderable. If $hd G \leq 1$ then every two-generator subgroup of G is free.

We now turn from two-generator groups to two-relator groups.

6.13 Proposition. Suppose that G is left orderable, that G has a presentation $\langle X \mid R \rangle$ with |R| = 2, and that $\operatorname{cd} G \geq 3$.

Then
$$b_0^{(2)}(G) = 0$$
, $b_1^{(2)}(G) = |X| - 2$, and $b_2^{(2)}(G) = 0$.

Proof. The given presentation of G yields an exact sequence of $\mathbb{Z}G$ -modules

$$\cdots \longrightarrow \bigoplus_{V} \mathbb{Z}G \xrightarrow{A} \mathbb{Z}G^{2} \xrightarrow{B} \bigoplus_{X} \mathbb{Z}G \xrightarrow{C} \mathbb{Z}G \longrightarrow \mathbb{Z} \longrightarrow 0.$$

Then $H_*(G,\mathcal{U}(G))$ is the homology of the sequence

$$\cdots \longrightarrow \bigoplus_{Y} \mathcal{U}(G) \xrightarrow{A} \mathcal{U}(G)^{2} \xrightarrow{B} \bigoplus_{X} \mathcal{U}(G) \xrightarrow{C} \mathcal{U}(G) \longrightarrow 0. \tag{6.13.1}$$

Since G is left orderable, G is torsion free. Since $\operatorname{cd} G \neq 0$, G is non-trivial. Hence G has an element of infinite order. By Remark 1.1, $b_0^{(2)}(G) = 0$ and the $\mathcal{U}(G)$ -dimension of $\ker C$ in (6.13.1) is |X| - 1.

Since G is left orderable, all nonzero elements of $\mathbb{C}G$ are invertible in $\mathcal{U}(G)$ by Theorem 3.3. Since $\operatorname{cd} G \geq 3$, $b_2^{(2)}(G) = 0$ by Corollary 6.6. Moreover, by Lemma 6.2, the $\mathcal{U}(G)$ -dimension of im B in (6.13.1) is one.

Finally, $b_1^{(2)}$ is the difference between the $\mathcal{U}(G)$ -dimensions of ker C and im B in (6.13.1), that is, |X|-2. Of course, the hypotheses clearly imply that $|X| \geq 2$. \square

Suppose that G is a left-orderable two-relator group. We know the first three L^2 -Betti numbers of G if $\operatorname{cd} G \geq 3$ by Proposition 6.13. If $\operatorname{cd} G \leq 1$, then G is free, and again one knows the L^2 -Betti numbers. There remains the case where $\operatorname{cd} G = 2$; here all we know are the L^2 -Betti numbers of torsion-free surface-plus-one-relation groups; these groups are left-orderable by [12, Theorem 2.2] and they are clearly two-relator groups.

Acknowledgments

The research of the first-named author was funded by the DGI (Spain) through Project BFM2003-06613.

References

- [1] Gilbert Baumslag, On generalised free products, Math. Z. 78(1962), 423–438.
- [2] Robert Bieri, Homological dimension of discrete groups, second edition, Queen Mary College Mathematical Notes, London, 1981.
- [3] S. D. Brodskiĭ, Equations over groups and groups with one defining relation, Siberian Math J. 25(1984), 235–251.
- [4] Kenneth S. Brown and Ross Geoghegan, An infinite-dimensional torsion-free FP_{∞} group, Invent. Math. **77**(1984), 367–381.
- [5] R. G. Burns and V. W. D. Hale, A note on group rings of certain torsion-free groups, Canad. Math. Bull. 15(1972), 441–445.
- [6] J. W. Cannon, W. J. Floyd and W. R. Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. 42(1996), 215–256.
- [7] I. M. Chiswell, Euler characteristics of discrete groups, pp. 106–254 in: Groups: topological, combinatorial and arithmetic aspects (ed. T. W. Müller), London Math. Soc. Lecture Note Ser. 311, CUP, Cambridge, 2004.
- [8] Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Stud. Adv. Math. 17, CUP, Cambridge, 1989.
 Errata at: http://mat.uab.cat/~dicks/DDerr.html.

- [9] Warren Dicks and M. J. Dunwoody, Retracts of vertex sets of trees and the almost stability theorem, math.GR/0510151 version 3
- [10] Eldon Dyer and A. T. Vasquez, Some properties of two-dimensional Poincaré duality groups, pp. 45–54 in: Algebra, topology, and category theory: a collection of papers in honor of Samuel Eilenberg (eds. Alex Heller, Myles Tierney and Samuel Eilenberg), Academic Press, New York, 1976.
- [11] J. Fischer, A. Karrass and D. Solitar, On one-relator groups having elements of finite order, Proc. Amer. Math. Soc. 33(1972), 297–301.
- [12] John Hempel, One-relator surface groups, Math. Proc. Cambridge Philos. Soc. 108(1990), 467–474.
- [13] James Howie, On locally indicable groups, Math. Z. 180(1982), 445-461.
- [14] James Howie, A short proof of a theorem of Brodskii, Publ. Mat. 44(2000), 641–647.
- [15] James Howie, Some results on one-relator surface groups, Bol. Soc. Mat. Mexicana (3), 10 (Special Issue) (2004), 255–262. Erratum ibid, 545–546.
- [16] Peter Kropholler, Peter Linnell and Wolfgang Lück, Groups of small homological dimension and the Atiyah conjecture, math.GR/0401312.
- [17] Peter A. Linnell, Zero divisors and $L^2(G)$, C. R. Acad. Sci. Paris Sér. I Math. **315**(1992), 49–53.
- [18] Peter A. Linnell, Division rings and group von Neumann algebras, Forum Math. 5(1993), 561–576.
- [19] Wolfgang Lück, L^2 -invariants: theory and applications to geometry and K-theory, Ergeb. Math. Grenzgeb.(3) 44, Springer-Verlag, Berlin, 2002.
- [20] Ian Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106(1963), 259–269.
- [21] Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12(1969), 585-601.

Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

 $E ext{-}mail\ address: dicks@mat.uab.cat} \ URL: \ http://mat.uab.cat/\sim dicks/$

DEPARTMENT OF MATHEMATICS, VIRGINIA TECH, BLACKSBURG, VA 24061-0123, USA

 $E ext{-}mail\ address: linnell@math.vt.edu}$

URL: http://www.math.vt.edu/people/linnell/