WARREN DICKS AND M. J. DUNWOODY,

GROUPS ACTING ON GRAPHS,

 CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 17, CAMBRIDGE UNIVERSITY PRESS, 1989.ERRATA

(MAY 4, 2016)

PLACE

CHANGE

$54 \quad$ Change " (e) " to " (v) " twice.
$6^{7} \quad$ Interchange labels "srse" and "srsre".
$9^{1-2} \quad$ Change to "repetitions of vertices and no repetitions of edges. Clearly such a path is reduced.".
11_{8} Change " $E X$ " to " $V X$ ".
11_{5} Change boldface subscript " ι " to ordinary subscript " ι ".
11_{5} Change "and" to "and"
$12^{6} \quad$ Change "elements 1,1 " to "element 1 ".
13^{11} Change" $t_{e}\left(G(e)\right.$ " to " $G(e)^{t_{e}}$ ".
$17^{13} \quad$ Delete "so $G / N \approx \pi(G \backslash T)$ ".
18_{11} Change " $E X^{ \pm 1}$ " to " $E T^{ \pm 1}$ ".
$27^{1} \quad$ Interchange " $G_{\tau e}=G_{\left\{p, p^{\prime}\right\}}$ " and " G_{e} ".
$29_{5} \quad$ Interchange " V " and " E ".
32_{12} Change " u_{1} " to " g_{1} ".
$33^{13} \quad$ Change " $\alpha(e)\left(\alpha_{\tau e}\left(g^{t_{e}}\right) u\right)$ " to " $\alpha(e)\left(\alpha_{\bar{\tau} e}\left(g^{t_{e}}\right)(u)\right)$ ".
$35_{9} \quad$ Change " $\underset{v \in V}{*} G(v)$ " to " $G=\underset{v \in V}{*} G(v)$ ".
39^{10} Change " 69 " to " 71 ".
$39_{10} \quad$ Change " $e=E Y_{0}$ " to " $e \in E Y_{0}$ ".
$40^{7} \quad$ Delete one "meet any".
41_{17} Change "thdn" to "then".
$41_{19} \quad$ Change " $g \ldots$ " to " $g_{2} \ldots$ ".
44 Stallings (1991) uses similar techniques to prove many other results.
$45{ }^{1} \quad$ Change " G " to " $*_{i \in I} G_{i}$ ".
$45^{7} \quad$ Insert Corollary: If $\alpha: F \rightarrow G$ is a homomorphism of free groups then there exist subgroups F_{1} and F_{2} of F such that $F=F_{1} * F_{2}$, and α is injective on F_{1}, and α is trivial on F_{2}. (Herbert Federer and Bjarni Jónsson, Some properties of free groups, Trans. Amer. Math. Soc., 63 (1950), 1-27.)
45_{10} Change "take" to "takes".
453 Change "Gerardin" to "Gérardin".

46^{10-12}	Change "Theorem 8.3 seems to have been first stated explicitly in Serre (1977), but is essentially contained in Reidemeister (1932), Section 4, 20." to "Theorem 8.3 is due to Serre (1977). Reidemeister (1932) came close to discovering it."
$46_{6,5}$	Delete "Serre . . by".
46_{3}	Change "Wagner (1957)," to "Grushko (1940) for the case where F has finite rank, and to Wagner (1957) for the general case,"
50_{10}	Change " $\left(v, v^{\prime}\right)$ " to " $\left(v^{\prime}, v\right)$ ".
53^{5}	Change " $=v\left(e^{*}\right)$ " to " $=v(e)^{*}$ ".
54_{18}	Change " $s(v)=s(w)$ then $e(v)=e(w)$ for all $e \in E$ " to " $e(v)=e(w)$ for all $e \in E$ then $s(v)=s(w) "$.
54_{3}	After " $\delta\left(s s^{\prime}\right) \subseteq \delta s$ " insert " $\cup \delta s^{\prime \prime}$ "
55^{2}	Change " $s^{\prime}(v)$ " to " $s\left(v^{\prime}\right)$ ".
55_{11}	Add "and not containing 0,1 " after " E_{n-1} ".
$57_{13,3}$	Change " $E^{\prime} \cup E$ " to " $E \cup E^{\prime \prime}$ ".
$61^{17,23}$	Change " $\iota s, \tau s=\tau s *, \iota s *$ " to " $\iota s=\iota s^{*}, \tau s, \tau s^{*}$ " twice.
71_{10}	Change"Fredenthal" to "Freudenthal".
77^{18}	Change"and" to "and".
83^{10}	Change " $S^{\prime \prime}$ " to " $E^{\prime \prime}$ ".
83^{11}	Change " $\{\mathrm{e}\}$ " to " $\{e\}$ ".
92^{16}	Delete " \tilde{T}_{1} to a path of".
99_{7}	Change "succesor" to "successor".
100_{11}	Change " $H-H$ " to " $G-H$ ".
1013	Change "amost" to "almost".
1025	Change " $<$ " to " \leq ".
103^{9-13}	Change to "If $(p, q, r)=(2,3,6)$ then $a c b, b a c$ generate a free abelian subgroup of rank two and index 6; see Magnus (1974),p.69."
105^{19}	Bass (1993) gives a (short) proof that G has a free subgroup of index n.
1079	Change " G indexed by A " to " A indexed by G ".
1075	Change "of $A G$ " to "of (G, A)".
115^{14}	Change "Theorem 3.1" to "Theorem 3.13".
1349	Change "(1968)" to "(1971)".
132_{14}	Change " B " to " R ".
1345	Change to "Theorem 6.12 is due to Hopf for G finitely generated, and the general case is new".
1343	Change "Theorem 4.12" to "Theorem 4.11".
$136{ }^{9}$	Change the first " P " to " G ".
$136{ }^{10}$	Change " H^{*} " to " H_{*} " and " H^{i} " to " H_{i} ".
$134{ }^{2}$	After "Brown(1982)" add "and Zimmerman (1981)".
136^{12}	Change " H_{*} " to " H^{*} " and " H_{i} " to " H^{i} ".
1402	Change "he" to "the".
142_{13}	Change " P " to " Q " and " P '" to " Q^{\prime} ".
142_{12}	Change " P " to " Q ".
142_{11}	Change " $P \rightarrow P^{\prime \prime}$ " to " $Q \rightarrow Q^{\prime \prime}$ ".

142_{10}	Change " $P \rightarrow P^{\prime \prime}$ " to " $Q \rightarrow Q^{\prime \prime}$ ".
$142{ }_{7}$	Change " Q " to " B " twice.
$143{ }^{11-13}$	Change " P " to " Q ", " P '" to " Q '", " P " " to " $Q^{\prime \prime}$ ", twice each.
1433	Change "moduls" to "modules".
$144_{3,2}$	Change the seven occurrences of " P " to " Q ".
$146^{2,3}$	Change " $\partial(p \otimes q)=\partial_{P} p \otimes q+(-1)^{\operatorname{deg}}{ }^{q} p \otimes \partial_{q} q$ " to $" \partial(p \otimes q)=(-1)^{\operatorname{deg} q} \partial_{P} p \otimes q+p \otimes \partial_{q} q$ ".
$14610-4$	Should read $\begin{aligned} & "\left(\partial_{P \otimes Q} x\right) \cap \phi \\ & =\left[(-1)^{\operatorname{deg} q} \partial_{P} p \otimes q+p \otimes \partial_{Q} q\right] \cap \phi \\ & =(-1)^{\operatorname{deg} q} \partial_{P} p \otimes \phi q+p \otimes \phi \partial_{Q} q \\ & =(-1)^{\operatorname{deg} q} \partial_{P \otimes C}(p \otimes \phi q)+\left[(p \otimes q) \cap \phi \partial_{Q}\right] \\ & =(-1)^{\operatorname{deg} q} \partial_{P \otimes C}[(p \otimes q) \cap \phi]+\left[(p \otimes q) \cap \partial_{\mathrm{Hom}(Q, C)} \phi\right] \\ & =(-1)^{\operatorname{deg} q} \partial_{P \otimes C}(x \cap \phi)+\left(x \cap \partial_{\operatorname{Hom}(Q, C)} \phi\right) \end{aligned}$ If, further, ϕ is homogeneous, then either $\partial_{P \otimes C}(x \cap \phi)=0$ or $\operatorname{deg} \phi=-\operatorname{deg} q$, and in both cases we can write (4) $\quad\left(\partial_{P \otimes Q} x\right) \cap \phi=\left((-1)^{\operatorname{deg} \phi} \partial_{P \otimes C}(x \cap \phi)\right)+x \cap \partial_{\operatorname{Hom}(Q, C)} \phi^{\prime \prime}$.
148^{13}	In 2.16 Proposition, in the display change " $\operatorname{Ext}_{R}(B, C)$ " to " $\operatorname{Ext}_{R}^{n}(B, C)$ " twice, and after the display change "commutes" to "commutes with sign $(-1)^{n} "$.
1489	In 2.17 Proposition, in the display change " $\operatorname{Ext}_{R}^{n}\left(B^{\prime}, C\right)$ " to " $\operatorname{Ext}_{R}\left(B^{\prime}, C\right)$ ", and change" $\operatorname{Ext}_{R}^{n+1}\left(B^{\prime \prime}, C\right)$ " to " $\operatorname{Ext}_{R}\left(B^{\prime \prime}, C\right)$ ", and after the display delete "with $\operatorname{sign}(-1)^{n+1}$ ".
1485	Interchange " η " and " ξ ".
149^{10}	Change " $\partial_{P \otimes C}(x \cap \phi)-(-1)^{\operatorname{deg} \phi}\left(x \cap \partial_{\operatorname{Hom}(Q, C)} \phi\right.$ " to $"\left((-1)^{\operatorname{deg} \phi} \partial_{P \otimes C}(x \cap \phi)\right)+x \cap \partial_{\text {Hom }(Q, C)} \phi "$.
$149^{11,12}$	Delete "with sign $-(-1)^{\operatorname{deg} \phi}=(-1)^{n+1}$ ".
149^{15}	In 2.18 Proposition, in the display change "Ext ${ }_{R}^{n-1}$ " to "Ext ${ }_{R}^{n+1}$ ".
$149{ }^{17}$	In 2.18 Proposition, after the display change "commutes with $\operatorname{sign}(-1)^{n}$ " to "commutes with $\operatorname{sign}(-1)^{n+1}$ ".
154^{16}	Change the first "is" to "in".
155^{1}	In top display change " $(-1)^{n+1} \xi \cap-$ " to " $\xi \cap-$ ".
$155{ }_{1}$	Change "exact at R " to "exact at $R G$ ".
156^{5}	Change "Theorem I.9.2" to "Corollary I.9.4".
1584	Change "contractible n-manifold X " to " K-orientable K-acyclic K-homology n-manifold X, as defined in Section 3 of Dicks-Leary (1995)".
$163^{5,7}$	Change " $\left[1, R_{p}\right]$ " to " $\left[2, R_{p}\right]$ " twice.
$163{ }^{13}$	Add "and $m_{p, 1}$ denotes 1".
170_{13}	Change "Thus H is $F P_{\infty}$ " to "Thus G is $F P_{\infty}$ ".
$171{ }^{17-19}$	Change " notice" to "notice that the G-action arises by embedding G in $H \succ \mathrm{Sym}_{n}$ and defining actions of H^{n} and Sym_{n} separately.".

PLACE
$173^{9} \quad$ Delete " G-finite" after "locally finite".
$173_{20-4} \quad$ Replace with
"Fix a vertex v_{0} of Y_{0}.
Consider any $w \in V_{0}$, and recursively construct an infinite reduced path P_{w} as follows. Start with the vertex w, thought of as a base vertex, and take the neighbours of w to be the base vertices of their respective components in the forest $Y_{0}-\operatorname{star}(w)$. Since $Y_{0}-\operatorname{star}(w)$ is infinite and has only finitely many components, one of the components is infinite. Choose one of these infinite components, and if there are more than one, choose one which does not contain v_{0}. This choice of infinite subtree corresponds to choosing an edge incident to w to be the first edge in our infinite path. We now repeat the same procedure with our chosen infinite subtree with base vertex. In this way, we recursively construct an infinite reduced path P_{w} which starts at w, and does not contain any edge f such that w lies in an infinite component of $Y_{0}-\{f\}$ not containing v_{0}.

Let e be an edge of Y_{0}. Let $Y_{0}\left(v_{0}, e\right)$ denote the Y_{0}-geodesic from v_{0} to a vertex of e, but not passing through e. Let $\delta Y_{0}\left(v_{0}, e\right)$ denote the finite set of edges of Y_{0} which have one vertex in $\delta Y_{0}\left(v_{0}, e\right)$ and the other vertex not in $Y_{0}\left(v_{0}, e\right)$. Thus e lies in $\delta Y_{0}\left(v_{0}, e\right)$, and $Y_{0}\left(v_{0}, e\right)$ forms one of the finite components of $Y_{0}-\delta Y_{0}\left(v_{0}, e\right)$. Let Y_{e} denote the the subtree of Y_{0} generated by the finitely many finite components of $Y_{0}-\delta Y_{0}\left(v_{0}, e\right)$, so Y_{e} is finite.

For $e \in E Y_{0}, w \in V Y_{0}$, we claim that if $e \in P_{w}$ then $w \in Y_{e}$. Suppose that w does not lie in Y_{e}, so w lies in an infinite component Y_{1} of $Y_{0}-\delta Y_{0}\left(v_{0}, e\right)$. Let f denote the element of $\delta Y_{0}\left(v_{0}, e\right)$ incident to Y_{1}. Then f lies between w and $Y_{0}\left(v_{0}, e\right)$. Hence f lies between w and v_{0}. Also, Y_{1} is an infinite component of $Y_{0}-\{f\}$ containing w, so by its construction, P_{w} stays in Y_{1} and does not cross f. Hence P_{w} does not meet $Y_{0}\left(v_{0}, e\right)$, so does not contain e. This proves the claim.

For any v in V, there is a unique element g of G such that $g v \in V_{0}$, because G acts freely on V, and we define $P_{v}=g^{-1} P_{g v}$. Thus P_{v} is an infinite reduced path in T which begins at v.

Consider any edge e of T. We claim that there are only finitely many $v \in V$ such that e belongs to P_{v}. Suppose then that $v \in V$ such that $e \in P_{v}$. There is a unique g in G such that $g v \in Y_{0}$, and then $g e \in g P_{v}=P_{g v}$. Hence $g e$ lies in Y_{0}, and $g v$ lies in the finite subtree $Y_{g e}$ of Y_{0}. Here g is the unique element of G such that $g e \in E Y_{0}$, and we have $v \in g^{-1} Y_{g e}$, so there are only finitely many possibilities for v, as desired.".
$174_{3} \quad$ Change "Thus we may assume that $n \geq 1$." to "If $n=1$ then G has an infinite cyclic subgroup of finite index by Theorem 4.4, and this case is easy. Thus we may assume that $n \geq 2$.".
$176_{5} \quad$ Change " K^{k} " to " H^{k}.
176_{2} Change "Thus in" to "Now let (G, W) be a $P D^{n}$ pair, so, by ".
$177_{11} \quad$ Change whole line to " K-orientable K-acyclic K-manifold X of dimension n, whose boundary components are K-acyclic".
177_{6}
178^{20}
$183{ }_{9}$
185_{12}
185_{11}
185_{7} In the display that comes before (7), in the label on the rightmost vertical arrow, delete " $(-1)^{n "}$.
186^{15} In the display in mid-page, change the two rightmost " $\xi \cap-$ " to " $-\xi \cap-$ ".
186_{12}
In (8) change " $\xi \cap \eta_{e}$ " to " $-\xi \cap \eta_{e}$ ".
$198^{7} \quad$ Change " $W-G w$ " to " $W-G w_{0}$ ".
198_{15} Insert " $E T=G e$ " after " G_{e} is finite".
$199^{14} \quad$ Insert " $E T=G e$ " after " G_{e} is finite".
202_{10}
$203{ }^{10}$
2024
203_{8}
$203_{7,6}$
205^{8}
205^{14}
205_{12}
$206_{12,13}$
207^{4}
208_{14}
209_{2}
211_{1}
212_{22-21}
212_{20}
219^{5}
219^{15}
2204
222_{15}
224^{5}
$224_{14} \quad$ One can change " $P \cap|K|$ " to " P ", since $P \subseteq|K|$.
$224_{7} \quad$ Change " $j\left(\gamma_{i}\right)$ " to " $j_{P}\left(\gamma_{i}\right)$ ".
$225{ }^{11}$
225_{2}
229_{3}
$231^{5} \quad$ Change the second " v_{1} " to " v_{2} ".
232^{15} Change "ET" to " $V T$ ".

$232{ }^{16}$	ge the second "ET" to
$236{ }^{9}$	At the end of the line add "Moreover it follows from the thinness of b_{2}^{*} or b_{1}^{*} that $\nu=\delta$."
240 ${ }_{13-12}$	Change " G, the automorphism group of K, is generated" to " G is the group of automorphisms of K generated".
$245{ }^{1-3}$	Delete " $H^{1}\left(K, \mathbb{Z}_{2}\right)$... that".
2453	Change " $H^{1}\left(K, \mathbb{Z}_{2}\right)=0$ " to "every scc separates M ".
$272{ }^{7}$	Insert in left hand column: "Bass, H. $\{45,46,71\}$ 1993. Covering theory for graphs of groups, J. Pure and Appl. Algebra 89, $3-47$. $\{105 \approx\}$."
272^{7}	In right hand column change the Burns entry to "Burns, R.G. 1971. On the intersection of finitely generated subgroups of a free group, Math. Z. 119, 121-130. \{39\} "
2736	In right hand column change "Gerardin" to "Gérardin".
2735	In left hand column change " 15 " to " 25 ".
$273{ }^{16-1}$	In right hand column delete the entry.
$273{ }^{25}$	In right hand column change "Normal Flächen" to "Normalfächen".
$273{ }_{4}$	In right hand column change "Raüme" to "Räume".
27422	Delete from left hand column "134,".
$274{ }^{20-45}$	In the right hand column, interchange lines 20-32 with lines 33-45, to obtain alphabetic order.
$274{ }^{27}$	In left hand column change "dreidemensionalen" to "dreidimensionalen".
$274{ }^{25}$	In right hand column change "isomorphismen" to "Isomorphismen".
$275{ }^{11}$	Insert in right hand column 1991. Foldings of G-trees, pp. 355-368 in Arboreal Group Theory (Roger C. Alperin, Editor), MSRI Publications 19, Springer-Verlag, Berlin, 1991. \{44~\}
2757	Change "Räume" to "Räumen".
$276{ }^{3}$	Insert in left hand column "(-)'".
2747	Insert in left hand column: "Magnus, W. Noneuclidean Tesselations and their Groups, Academic Press, New York, 1974. \{103\}"
$275{ }^{10}$	In the right hand column change " $\{71,100\}$ " to " $\{71,100,134\}$ ".
2751	In the right hand column add "Zimmerman, B.,
	1981. Über Homeömorphismen n-dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen, Comm. Math. Helv. 56, 474-481. \{134\}"
27612	The triangle in the right hand column should be unshaded.

