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1 The result

1.1 Notation. Throughout, G = (G, ·, 1, ) will be a multiplicative group, and A and B
will be finite subsets of G, thought of as row vectors.

We shall consider the matrix A tr · B, where (−) tr denotes the transpose; we usually
imagine A tr ·B as the content of a ‘multiplication table’

· B

A tr A tr ·B

For each i ∈ N, we define A·iB to be the set of those elements of G which appear (at
least) i times in the matrix A tr ·B. We abbreviate A·1B as AB.

We set Ω(A,B) := |A|+ |B| − 1
2 |AB| − 1

2 |A·2B|.

1.2 Theorem. [2, Theorem 1.2] If A and B are finite subsets of an abelian group G such
that |A| ≥ 2 and |B| ≥ 2, then Ω(A,B) ≤ max{2, |gH| : H ≤ G, g ∈ G, gH ⊆ A·2B}.
We present a proof taken from [3, Theorem 1.7]. In fact, [2, Theorem 1.2] provides the
stronger inequality Ω(A, B) ≤ max{2, | Stab(A·2B)| }; of course, if A·2B is empty, then
|AB| = |A||B| ≥ |A||B| − (|A| − 2)(|B| − 2) = 2Ω(A,B) + |AB| − 4 and Ω(A,B) ≤ 2.

Proof by induction on (|B|, |A|). Consider the case where |B| = 2. Say B = {b1, b2}. Then
|AB| + |A·2B| = |Ab1 ∪ Ab2| + |Ab1 ∩ Ab2| = |Ab1| + |Ab2| = 2|A|. It then follows that
Ω(A, B) = |B| = 2, as desired. Thus, we may assume that |B| ≥ 3.

Similarly, we may assume that |A| ≥ 3.
We may assume that the implication holds for smaller pairs (|B|, |A|).
By replacing B with Bb, for any b ∈ B, we may assume that 1 ∈ B.
Consider the case where AB = A. Let H = 〈B〉, the subgroup generated by B. Then

AB = A·2B = A = AH and Ω(A,B) = |B| ≤ |H|, as desired. Thus, we may assume that
AB 6= A.

Hence, AB 6⊆ A; hence, there exists a ∈ A such that aB 6⊆ A. By replacing A with aA
we may assume that a = 1.

Let C = A ∩ B, A′ = A − B = A − C, B′ = B − A = B − C. Then {1} ⊆ C ⊂ B,
1 ≤ |C| ≤ |B| − 1, and A = C ∨ A′, B = C ∨ B′, where ∨ denotes the disjoint union. Now

A tr ·B is partitioned,
· B

A tr A tr ·B
=

· C B′

C tr C tr · C C tr ·B′

A′ tr A′ tr · C A′ tr ·B′

1
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Case 1. |C| = 1; thus,
· B

A tr A tr ·B
=

· 1 B′

1 1 B′

A′ tr A′ tr A′ tr ·B′

If |AB −AB′| ≥ 2, we perform the B-truncation, (A,B) 7→ (A,B′).

· B

A tr A tr ·B
=

· 1 B′

A tr A tr A tr ·B′
7→

· B′

A tr A tr ·B′

Clearly, A·2B′ ⊆ A·2B. Moreover, Ω(A,B′) ≥ Ω(A,B) because |B′| = |B| − 1 and
|AB′| ≤ |AB| − 2. Here, the desired conclusion follows by the induction hypothesis. Thus,
we may assume that

1 ≥ |AB −AB′| = |((A ∨B′) ∪A′B′)− (B′ ∪A′B′)| = |A−A′B′| = |A| − |A ∩A′B′|.
Similarly, we may assume that 1 ≥ |B −A′B′| ≥ |B′ −A′B′| = |B′| − |B′ ∩A′B′|.
Now A·2B ⊇ ({1} ∨A′ ∨B′) ∩A′B′. Hence

|A·2B| ≥ |(A ∨B′) ∩A′B′| = |A ∩A′B′|+ |B′ ∩A′B′| ≥ |A| − 1 + |B′| − 1 = |A|+ |B| − 3.

Since AB ⊇ {1} ∨A′ ∨B′, we see that |AB| ≥ |A|+ |B| − 1.
Hence 2 Ω(A, B) ≤ 4, as desired.

Case 2. |C| 6= 1; thus, 2 ≤ |C| ≤ |B| − 1.
Here, we perform the Dyson transform, (A,B) 7→ (A ∪B, A ∩B) = (C ∨A′ ∨B′, C).

· B

A tr A tr ·B
=

· C B′

C tr C tr · C C tr ·B′

A′ tr A′ tr · C A′ tr ·B′
7→

· C

C tr C tr · C
A′ tr A′ tr · C
B′ tr B′ tr · C

Clearly, |C ∨ A′ ∨ B′| + |C| = |A| + |B|. Since G is abelian, B′ tr · C = (C tr · B′) tr. Hence,
(C ∨ A′ ∨ B′)·iC ⊆ A·iB, for all i ∈ N. In particular, (C ∨ A′ ∨ B′)·2C ⊆ A·2B and
Ω(C∨A′∨B′, C) ≥ Ω(A,B). Here, the desired conclusion follows by the induction hypothesis.

This completes the proof.

2 Kemperman’s Theorem

John Olson [6] extracted the following statement from [4] by combining Theorem 5, the proof
of Theorem 5, and Theorem 3, thereof.

2.1 Kemperman’s Theorem. Let A and B be finite (nonempty) subsets of a group G, and
let (a, b) ∈ A × B. Then |A| + |B| − |AB| ≤ max{|H| : H ≤ G, aHb ⊆ AB}. Moreover, if
AB 6= A·2B then |A|+ |B| − |AB| ≤ 1.

Proof by induction on (2|AB| − |A| − |B|, |AB| − |A|). We prove both parts in parallel putting
in boxes the additional steps corresponding to the proof of the second part.

Suppose that ab ∈ A·[=1]B.
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By replacing (A,B) with (aA,Bb), we may assume that (a, b) = (1, 1). Thus, 1 ∈ A ∩ B
and AB ⊇ A ∪B.

We have 1 ∈ A·[=1]B.

Case 1. A(A ∩B) = A.
Let H = 〈A ∩B〉.

For each x ∈ B − {1}, 1 ∈ A1 but 1 6∈ Ax, and, hence, Ax 6= A. Thus, H is trivial.

Now

AB ⊇ A ∪B ⊇ A = AH ⊇ H = 〈A ∩B〉 ⊇ A ∩B.

Hence AB ⊇ H, and |H| ≥ |A ∩B| = |A|+ |B| − |A ∪B| ≥ |A|+ |B| − |AB|, as desired.

Case 2. There exists some x ∈ A ∩B such that Ax 6= A.
Let

A+ = A ∪Ax, B− = B ∩ xB, A− = A ∩Ax, B+ = B ∪ xB.

Notice that 1 lies in all four of these sets, since x ∈ A ∩ B. Also, A+B− ⊆ AB and
A−B+ ⊆ AB.

We claim that 1 ∈ A+·[=1]B
−.

Suppose that (c, d) ∈ A+ ×B− such that cd = 1. Notice c = d and

(d, d) ∈ A+ ×B− = (A×B−) ∪ (Ax×B−) ⊆ (A×B) ∪ (Ax× xB).

Now, 1 6∈ xB ⊇ {xd}, xd 6= 1, (d x, xd) 6= (1, 1), (d x, xd) 6∈ A×B, and (d, d) 6∈ Ax×xB.
Thus (d, d) ∈ A×B, and, hence d = 1.
Thus, 1 ∈ A+·[=1]B

−, as claimed.
Similarly, 1 ∈ A−·[=1]B

+.

Notice that |A+|+ |A−| = |A+|+ |A−x| = |A|+ |Ax| = 2|A|, and similarly, |B+|+ |B−| =
2|B|. Thus,

either |A+|+ |B−| ≤ |A|+ |B| or |A−|+ |B+| < |A|+ |B|.
We can apply the induction hypothesis to (A+, B−) in the former case, and to (A−, B+) in
the latter case. The result then follows by induction.
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