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1 The result

1.1 Notation. Throughout, G = (G,-,1,7) will be a multiplicative group, and A and B
will be finite subsets of G, thought of as row vectors.

We shall consider the matrix A% - B, where (=)' denotes the transpose; we usually
imagine A% - B as the content of a ‘multiplication table’

B
Atr Atr . B

For each i € N, we define A-;B to be the set of those elements of G which appear (at
least) ¢ times in the matrix A - B. We abbreviate A-1 B as AB.
We set Q(A, B) := |A| + |B| — %|AB| — %|A'QB|. O

1.2 Theorem. [2, Theorem 1.2] If A and B are finite subsets of an abelian group G such
that |A| > 2 and |B| > 2, then Q(A,B) < max{2, |¢gH| : H<G,g€ G, gH C A-»B}.

We present a proof taken from [3, Theorem 1.7]. In fact, [2, Theorem 1.2] provides the
stronger inequality Q(A, B) < max{2, |Stab(A4-2B)|}; of course, if A-2B is empty, then
|AB| = |A||B| > |A||B] — (J4] — 2)(|B| — 2) = 2Q(A, B) + |AB| — 4 and (A4, B) < 2.

Proof by induction on (|B|,|A|). Consider the case where |B| = 2. Say B = {b1,b2}. Then
Q(A, B) = |B| = 2, as desired. Thus, we may assume that |B| > 3.

Similarly, we may assume that |A| > 3.

We may assume that the implication holds for smaller pairs (| B, |A]).

By replacing B with Bb, for any b € B, we may assume that 1 € B.

Consider the case where AB = A. Let H = (B), the subgroup generated by B. Then
AB = A9B = A= AH and Q(A, B) = |B| < |H|, as desired. Thus, we may assume that
AB # A.

Hence, AB ¢ A; hence, there exists a € A such that aB € A. By replacing A with @A
we may assume that a = 1.

Let C =ANB, A =A-B=A-C,B =B—-—A=DB-C. Then {1} C C C B,
1<|C)<|B|-1,and A=CV A’, B=CV B, where V denotes the disjoint union. Now

C B’
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1 B’
. B
Case 1. |C| = 1; thus, e = 1 1 B

A" B At || At | oAt g

If |[AB — AB’| > 2, we perform the B-truncation, (A, B) — (A, B’).

B . 1 B’ . B’
Atr Atr . B Atr Atr Atr . BI Atr Atr . Bl

Clearly, A-2B’" C A-2B. Moreover, Q(A,B’) > Q(A, B) because |B’| = |B| — 1 and
|AB’| < |AB| — 2. Here, the desired conclusion follows by the induction hypothesis. Thus,
we may assume that

1>|AB — AB'| = |(AVB)UA'B) — (B'UA'B')| = |A— A'B'| = |A| — |[AN A'B|.

Similarly, we may assume that 1 > |B— A'B’'| > |B’ — A'B'| = |B’| - |[B'n A’'B'|.
Now A-oB D ({1} VA’V B')N A’B’. Hence

|AwB| > [(AVB)YNA'B'| = |[ANAB'|+|B' NAB| > |A—1+|B'|—1=|A| +|B| - 3.

Since AB D {1} V A’ v B’, we see that |[AB| > |A| + |B| — 1.
Hence 2 (A, B) < 4, as desired.

Case 2. |C| # 1; thus, 2 < |C] < |B| — 1.
Here, we perform the Dyson transform, (A,B) — (AUB,ANB)=(CV A" v B C).

C
B : C B’
Ctr Ctr .C
= Ctr Ctr .C Ctr . B’ —
A" || A" B At || At o | At BY A AT C
B/tr Bltr .C

Clearly, |CV A’V B'| + |C| = |A| + |B|. Since G is abelian, B'*" - C = (C'** - B’)'". Hence,
(Cv A vVDB),C C A;B, for all i € N. In particular, (CV A"V B")-2C C A-»xB and
Q(CVA'VB',C) > Q(A, B). Here, the desired conclusion follows by the induction hypothesis.

This completes the proof. O

2 Kemperman’s Theorem

John Olson [6] extracted the following statement from [4] by combining Theorem 5, the proof
of Theorem 5, and Theorem 3, thereof.

2.1 Kemperman’s Theorem. Let A and B be finite (nonempty) subsets of a group G, and
let (a,b) € Ax B. Then |A|+ |B| — |AB| < max{|H| : H < G, aHb C AB}. Moreover, if
AB # A-3B then |A| + |B| — |AB| < 1.

Proof by induction on (2|AB| — |A| — |B|, |AB| — |A|). We prove both parts in parallel putting
in boxes the additional steps corresponding to the proof of the second part.

’ Suppose that ab € A-—;)B. ‘
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By replacing (A, B) with (@A, Bb), we may assume that (a,b) = (1,1). Thus, 1 € AN B
and ABD AUB.

’We have 1 € A-_B. ‘

Case 1. A(ANB) = A.
Let H= (AN B).

’ For each x € B — {1}, 1 € Al but 1 ¢ Az, and, hence, Ax # A. Thus, H is trivial.

Now

AB 2 AuB 2> A = AH O H

(AnB) 2> AnNB.
Hence AB D H, and |H| > |ANB| = |A|+ |B| — |[AU B| > |A| + |B| — |AB], as desired.

Case 2. There exists some © € AN B such that Az # A.
Let
At =AUAx, B =BnzB, A =AnAz, B'=BUzB.

Notice that 1 lies in all four of these sets, since + € AN B. Also, ATB~ C AB and
A-Bt C AB.

We claim that 1 € A*-_1jB".

Suppose that (c,d) € AT x B~ such that c¢d = 1. Notice ¢ = d and

(d,dye At x B~ = (AxB)U(AzxB~) C (AxB)U(Ax xTB).

Now, 1 ¢ 2B D {zd}, xd # 1, (dZ,zd) # (1,1), (d7,zd) € Ax B, and (d,d) ¢ Az xTB.
Thus (d,d) € A x B, and, hence d = 1.

Thus, 1 € A*-—;)B™, as claimed.

Similarly, 1 € A7~[:1]B+.

Notice that |[AT|+|A™| = |AT|+ |A™z| = |A| + |Az| = 2|A|, and similarly, |BT|+|B~| =
2|B|. Thus,

either |AT|+|B~| < |A|+|B] or |A7|+|B" < |A|l+|B|.

We can apply the induction hypothesis to (AT, B™) in the former case, and to (A=, BT) in
the latter case. The result then follows by induction. O
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