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Abstract. The aim of this paper is to consider certain conditions on the coef-
ficient A of the differential equation f ′′ +Af = 0 in the unit disc, which place all
normal solutions f to the union of Hardy spaces or result in the zero-sequence
of each non-trivial solution to be uniformly separated. The conditions on the
coefficient are given in terms of Carleson measures.

1. Introduction

We consider solutions of the linear differential equation

f ′′ + Af = 0 (1.1)

in the unit disc D of the complex plane C. Recall that, if f1 and f2 are linearly
independent solutions of (1.1), then the Schwarzian derivative

Sw =

(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

of the quotient w = f1/f2 satisfies Sw = 2A. One of our main objectives is to
explore conditions on the coefficient A placing all solutions of (1.1) to the union
of Hardy spaces, while the other aim is to study the geometric zero distribution of
non-trivial solutions f 6≡ 0 of (1.1). In other words, we study restrictions of the
Schwarzian derivative Sw of a locally univalent meromorphic function w = f1/f2

that place 1/w′ (which reduces to a constant multiple of f 2
2 ) to the union of Hardy

spaces, and consider the geometric distribution of complex a-points of w (which are
precisely the zeros of the solution f1 − af2 if a ∈ C, and the zeros of f2 if a =∞).

We begin by recalling some notation. For 0 < p < ∞, the Hardy space Hp

consists of those analytic functions in D for which

‖f‖Hp = lim
r→1−

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ
)1/p

<∞.

A positive Borel measure µ on D is called a Carleson measure, if there exists
a positive constant C such that∫

D
|f(z)|p dµ(z) ≤ C ‖f‖pHp , f ∈ Hp.
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These measures were characterized by Carleson as those positive measures µ for
which there exists a positive constant K such that µ(Q) ≤ K`(Q) for any Carleson
square Q ⊂ D, or equivalently, as those positive measures µ for which

sup
a∈D

∫
D

1− |a|2

|1− az|2
dµ(z) <∞.

For more information see [7, 9], for example.
The following spaces of analytic functions seem to be natural for the coefficient.

For 0 ≤ α <∞, the growth space H∞α contains those analytic functions A in D for
which

‖A‖H∞α = sup
z∈D

(1− |z|2)α|A(z)| <∞.

For 0 < p < ∞, the analytic function A in D is said to belong to the space F p if
|A(z)|p(1− |z|2)2p−1 dm(z) is a Carleson measure, and we denote

‖A‖F p =

(
sup
a∈D

∫
D
|A(z)|p(1− |z|2)2p−2(1− |ϕa(z)|2) dm(z)

)1/p

.

Here ϕa(z) = (a − z)/(1 − az) and dm(z) denotes the element of the Lebesgue
area measure on D. Note that F p ( H∞2 for any 0 < p < ∞ by subharmonicity.
Correspondingly, the “little-oh” space F p

0 (the closure of polynomials in F p), which
consists of those analytic functions in D for which |A(z)|p(1 − |z|2)2p−1 dm(z) is
a vanishing Carleson measure, and the space H∞α,0, which contains those analytic
functions in D for which

lim
|z|→1−

(1− |z|2)α|A(z)| = 0,

satisfy the inclusion F p
0 ( H∞2,0 for any 0 < p <∞. It is known that:

(i) for each 0 < p < ∞ there exists a positive constant α = α(p) such that, if
A is analytic in D and ‖A‖F 2 ≤ α, then all solutions f of (1.1) belong to
Hp, and each non-trivial solution f has at most one zero in D;

(ii) if A ∈ F 2
0 , then all solutions f of (1.1) belong to

⋂
0<p<∞H

p, and each
non-trivial solution f has at most finitely many zeros in D.

The assertion (i) follows from [17, Theorem 1.7]; note that by choosing a sufficiently
small 0 < α <∞ we have ‖A‖H∞2 ≤ 1, and hence each solution f of (1.1) vanishes
at most once in D [14, Theorem 1]. The case (ii) is a consequence of [17, p. 789];
in this case A ∈ H∞2,0, and hence all solutions have at most finitely many zeros in
D [18, Theorem 1]. Notice also that each non-trivial solution of (1.1) has at most
finitely many zeros provided that A ∈ F 2 is lacunary, since the lacunary series in
F 2 and F 2

0 are same.

2. Results

Our results concern interrelationships of the properties

(i) all solutions of (1.1) belong to the union of Hardy spaces;
(ii) the zero-sequence of each non-trivial solution of (1.1) is uniformly separated;

(iii) the growth of the analytic coefficient A.

In the light of the following results it seems plausible that |A(z)|2(1−|z|2)3 dm(z)
being a Carleson measure is sufficient for (i) and (ii). The following theorems give
many partial results in this direction. For example, the existence of one non-
vanishing solution allows us to reach this conclusion, see Corollary 3.
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We begin with the geometric zero distribution of solutions of (1.1). Recall that
the sequence {zn}∞n=1 ⊂ D is called uniformly separated if

inf
k∈N

∏
n∈N\{k}

∣∣∣∣ zn − zk1− znzk

∣∣∣∣ > 0,

while {zn}∞n=1 ⊂ D is said to be separated in the hyperbolic metric if there exists
a constant δ = δ({zn}∞n=1) > 0 such that %p(zn, zk) = |zn− zk|/|1− znzk| > δ for all
n, k ∈ N for which n 6= k.

Theorem 1. If A is analytic in D and |A(z)|(1−|z|2) dm(z) is a Carleson measure,
then the zero-sequence of each non-trivial solution f of (1.1) is uniformly separated.

For a non-trivial example in which the assertion of Theorem 1 can be verified
by a direct computation, see [11, Example 2]. Note that the statement converse to
Theorem 1 is false, since H∞2,0 \ F 1 6= ∅. Theorem 1 should be compared with [18,
Theorem 3] which states that, if A ∈ H∞2 , then the zero-sequence of each non-trivial
solution f of (1.1) is separated in the hyperbolic metric by a constant depending on
‖A‖H∞2 . For the interplay between the maximal growth of the coefficient A and the
minimal separation of the zeros of non-trivial solutions f of (1.1), we refer to [4].

The proof of Theorem 1 relies on Theorem A below, according to which all
solutions f of (1.1) belong to the Nevanlinna class N , that is

sup
0≤r<1

m(r, f) = sup
0≤r<1

1

2π

∫ 2π

0

log+ |f(reiθ)| dθ <∞, (2.1)

if A is analytic in D and ∫
D
|A(z)|(1− |z|2) dm(z) <∞. (2.2)

Condition (2.2) is, of course, satisfied by the hypothesis of Theorem 1.

2.1. Differential equations with one non-vanishing solution. The following
result based on [3, Corollary 7] introduces a factorization of solutions of (1.1), which
does not have an apparent counterpart in general.

Theorem 2. Let A be an analytic function in D, and suppose that (1.1) admits
a non-vanishing solution g.

(i) If |A(z)|2(1− |z|2)3 dm(z) is a Carleson measure, then all non-trivial solu-
tions f of (1.1) can be factorized as f = gW , where log g ∈ BMOA, and
either logW ′ ∈ BMOA (if f is linearly independent to g) or W is a non-zero
complex constant (if f is linearly dependent to g).

(ii) If A ∈ H∞2 , then all non-trivial solutions f of (1.1) can be factorized as
f = gW , where log g ∈ B, and either logW ′ ∈ B (if f is linearly independent
to g) or W is a non-zero complex constant (if f is linearly dependent to g).

Recall that BMOA consists those f ∈ H2 for which |f ′(z)|2(1 − |z|2) dm(z) is
a Carleson measure, and BMOA has the seminorm

‖f‖BMOA =

(
sup
a∈D

∫
D
|f ′(z)|2(1− |ϕa(z)|2) dm(z) <∞

)1/2

.

The Bloch space B contains those analytic functions f in D for which f ′ ∈ H∞1 .
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Corollary 3. Let A be an analytic function in D, and suppose that (1.1) admits
a non-vanishing solution. If |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure, then
all solutions of (1.1) belong to Hp for some 0 < p < ∞, and the zero-sequence of
each non-trivial solution f of (1.1) is uniformly separated.

The statement corresponding to Corollary 3 in the case of A ∈ H∞2 is true
without the assumption of existence of a non-vanishing solution: if A ∈ H∞2 , then
all solutions of (1.1) belong to H∞p for some p = p(‖A‖H∞2 ) > 0 [16, Example 1],
and the zero-sequence of each non-trivial solution f of (1.1) is separated in the
hyperbolic metric by a positive constant depending on ‖A‖H∞2 [18, Theorem 3].

The following result gives a complete description of the zero-free solutions in our
setting.

Theorem 4. Let A be an analytic function in D.

(i) If |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure, then all non-vanishing
solutions f of (1.1) satisfy log f ∈ BMOA. Conversely, if (1.1) admits a
zero-free solution f satisfying log f ∈ BMOA, then |A(z)|2(1− |z|2)3 dm(z)
is a Carleson measure.

(ii) If A ∈ H∞2 , then all non-vanishing solutions f of (1.1) satisfy log f ∈ B.
Conversely, if (1.1) admits a zero-free solution f satisfying log f ∈ B, then
A ∈ H∞2 .

In the case of Theorem 4(i) all non-vanishing solutions f of (1.1) are in fact
outer functions in Hardy spaces, see [7, Corollary 3, p. 34]. Note that this property
restricts not only the growth of non-vanishing solutions but also the rate at which
they may decay to zero. Correspondingly, if f is a zero-free solution of (1.1) with
A ∈ H∞2 , then Theorem 4(ii) implies that there exists a constant p = p(‖A‖H∞2 )
with 0 < p <∞ such that (1−|z|)p . |f(z)| . (1−|z|)−p for all z ∈ D. We employ
the notation a � b, which is equivalent to the conditions a . b and b . a, where
the former means that there exists a constant C > 0 such that a ≤ Cb, and the
latter is defined analogously.

For example, the argument above asserts that the singular inner function

f(z) = exp
(
− (1 + z)/(1− z)

)
, z ∈ D,

cannot be a solution of (1.1) with A ∈ H∞2 . This is also easily verified by a direct
computation, since in this case A(z) = −4z(1 − z)−4 by (1.1). In particular, the
boundedness of one solution of (1.1) is not sufficient to guarantee that A ∈ H∞2 .

One of the main tools concerning the results in Section 2.1 is [3, Corollary 7],
which also induces a growth estimate for the non-vanishing solutions of (1.1).

Proposition 5. Let A be analytic in D. If f is a non-vanishing solution of (1.1),
then

1

2π

∫ 2π

0

∣∣∣∣log
f(reiθ)

f(0)

∣∣∣∣2 dθ . r2

∣∣∣∣f ′(0)

f(0)

∣∣∣∣2 + r2

∫
D(0,r)

|A(z)|2(1− |z|2)3 dm(z)

for all 0 < r < 1.

By Proposition 5 and [7, Corollary 3, p. 34] all non-vanishing solutions of (1.1)
are outer functions in the Nevanlinna class provided that A is analytic in D and∫

D
|A(z)|2(1− |z|2)3 dm(z) <∞. (2.3)
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It would be desirable to show that (2.3) (we may also assume that A ∈ H∞2 ) is
sufficient to place all solutions of (1.1) in N . This would improve the results in the
literature (under the additional condition A ∈ H∞2 ), since∫

D
|A(z)|2(1− |z|2)3 dm(z) ≤ ‖A‖H∞2

∫
D
|A(z)|(1− |z|2) dm(z)

≤ ‖A‖3/2
H∞2

∫
D
|A(z)|1/2 dm(z).

(2.4)

The last integral in (2.4) appears in the growth estimate [16, Theorem 5], which
is obtained by Herold’s comparison theorem, while the intermediate integral shows
up in Theorem A, which is proved by integrating (1.1) and applying the Gronwall
lemma.

We close our discussion on non-vanishing solutions by the following result, which
shows that there are differential equations (1.1) in D having no zero-free solutions.
The proof of Theorem 6 was constructed jointly with Professor O. Roth.

Theorem 6. There exists a locally univalent meromorphic function in D, which
maps D onto the extended complex plane.

2.2. Normal solutions of differential equations. By Corollary 3, the existence
of one non-vanishing solution of (1.1) allows us to survey many specific properties
of all solutions of (1.1). We now drop the additional assumption on the existence
of a non-vanishing solution, and proceed to study solutions which may have zeros,
but whose behavior around their zeros is in a certain sense regular. This leads us
to the concept of normality. Recall that the meromorphic function f in D is called
normal (in the sense of Lehto and Virtanen) if and only if

σ(f) = sup
z∈D

(1− |z|2)
|f ′(z)|

1 + |f(z)|2
<∞; (2.5)

for more information on normal functions, see for example [13].

Proposition 7. Let f be a non-trivial solution of (1.1) with A ∈ H∞2 , and let
{zn}∞n=1 be the zero-sequence of f . Then, the following conditions are equivalent:

(i) f is normal;
(ii) supn∈N (1− |zn|2)|f ′(zn)| <∞;

(iii) f is uniformly bounded in
⋃∞
n=1 D

(
zn, c(1 − |zn|)

)
for some c = c(‖A‖H∞2 )

with 0 < c < 1.

Note that the constant c = c(‖A‖H∞2 ) in Proposition 7(iii) does not depend on
the solution f . By Proposition 7 every solution of (1.1) with A ∈ H∞2 , which has
only finitely many zeros, is normal. In particular, if A ∈ H∞2,0, then all solutions of
(1.1) are normal [18, Theorem 1] — yet all non-trivial solutions may lie outside N
[11, pp. 57-58].

Corollary 9 below states that all normal solutions of (1.1) belong to certain Hardy
space, under the assumption that A is analytic in D and |A(z)|2(1 − |z|2)3 dm(z)
is a Carleson measure. The proof of Corollary 9 is based on the following result,
whose proof bears similarity to that of [3, pp. 105-107].

Theorem 8. If w is a locally univalent meromorphic function in D such that
|Sw(z)|2(1 − |z|2)3 dm(z) is a Carleson measure and w′ is normal, then for all
sufficiently small 0 < p < ∞ there exists a constant C = C(p, ‖Sw‖F 2 , σ(w′)) with
1 < C <∞ such that ‖1/w′‖Hp ≤ C.
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If we assume in Theorem 8 that w has only finitely many poles (which all are
simple, since w is locally univalent), then the assumption on the normality of w′

is not needed. In fact, this follows from the other assumptions, since in this case
f = 1/

√
w′ is a solution of f ′′+ (1/2)Swf = 0 having only finitely many zeros, and

hence f is normal by Proposition 7. As a consequence we deduce that w′ is normal.

Corollary 9. If A is analytic in D and |A(z)|2(1 − |z|2)3 dm(z) is a Carleson
measure, then all normal solutions f of (1.1) belong to Hp for any sufficiently
small 0 < p <∞.

3. Proof of Theorem 1

The following result concerns the growth of solutions of linear differential equa-
tions. Recall that log+ x = max{log x, 0} and m(r, g) is the Nevanlinna proximity
function of g, as in (2.1).

Theorem A ([10, Theorem 4.5]). If B is analytic in D and∫
D
|B(ζ)|(1− |ζ|2) dm(ζ) <∞,

then every solution g of g′′ +Bg = 0 is of bounded characteristic, and

m(r, g) ≤ log+
(
|g(0)|+ |g′(0)|

)
+K

∫
D(0,r)

|B(ζ)|(1− |ζ|2) dm(ζ), 0 ≤ r < 1,

where 0 < K <∞ is an absolute constant.

We proceed to prove Theorem 1. Let κ ∈ D. If f is a solution of (1.1), then

gκ(ζ) = γ f
(
ϕκ(ζ)

)(
ϕ′κ(ζ)

)−1/2
, γ ∈ C,

is a solution of

g′′κ +Bκgκ = 0, Bκ(ζ) = A
(
ϕκ(ζ)

)
ϕ′κ(ζ)2 +

1

2
Sϕκ(ζ), ζ ∈ D, (3.1)

see for example [12, p. 394] or [16, Lemma 1]. Here ϕκ(ζ) = (κ− ζ)/(1− κζ), and
hence the Schwarzian derivative Sϕκ vanishes identically. The change of variable
z = ϕκ(ζ) implies

sup
κ∈D

∫
D
|Bκ(ζ)|(1− |ζ|2) dm(ζ) = sup

κ∈D

∫
D
|A(z)|

(
1− |ϕκ(z)|2

)
dm(z) = ‖A‖F 1 ,

and by means of Theorem A we obtain

m(r, gκ) ≤ log+
(
|gκ(0)|+ |g′κ(0)|

)
+K ‖A‖F 1 , 0 ≤ r < 1, κ ∈ D, (3.2)

for some absolute constant 0 < K <∞.
Let {zn}∞n=1 be the zero-sequence of f . For each k ∈ N, we have gzk(0) = 0, and

this zero of gzk at the origin is simple as all the zeros of all non-trivial solutions of
(3.1) are. Since g′zk(0) 6= 0, we may normalize the solution gzk to satisfy

g′zk(0) = γ f ′(zk)(|zk|2 − 1)1/2 = 1

by choosing the constant γ = γ(f, k) appropriately. We proceed to prove that the
Blaschke sum regarding the zeros of the normalized solution gzk of (3.1) is uniformly
bounded for all k ∈ N. Without loss of generality, we may suppose that the zeros
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{ζn,k}∞n=1 of gzk satisfy |ζ1,k| = 0 < |ζ2,k| ≤ |ζ3,k| ≤ · · · . By applying Jensen’s
formula to z 7→ z−1gzk(z) results in

1

2π

∫ 2π

0

log
∣∣gzk(reiθ)∣∣ dθ =

∑
n∈N

0<|ζn,k|<r

log
r

|ζn,k|
+ log r, 0 < r < 1.

Letting r → 1−, and taking account on (3.2), we get

sup
k∈N

∞∑
n=2

(
1− |ζn,k|

)
≤ K ‖A‖F 1 . (3.3)

Since the zeros of gzk are precisely the images of the zeros of f under the map-
ping ϕzk , (3.3) implies that the zero-sequence {zn}∞n=1 of f satisfies

sup
k∈N

∑
n6=k

(
1−

∣∣∣∣ zn − zk1− znzk

∣∣∣∣) = sup
k∈N

∞∑
n=2

(
1− |ζn,k|

)
≤ K ‖A‖F 1 . (3.4)

Since A ∈ H∞2 , {zn}∞n=1 is separated [18, Theorem 3]. Let 0 < δ < 1 be a constant
such that %p(zn, zk) ≥ δ for all natural numbers n 6= k, where %p stands for the
pseudo-hyperbolic distance. Now (3.4), and the inequality − log x ≤ x−1(1−x) for
0 < x < 1, imply

sup
k∈N

∑
n6=k

− log

∣∣∣∣ zn − zk1− znzk

∣∣∣∣ ≤ 1

δ
sup
k∈N

∑
n 6=k

(
1−

∣∣∣∣ zn − zk1− znzk

∣∣∣∣) ≤ K ‖A‖F 1

δ
.

We conclude that {zn}∞n=1 is uniformly separated.

4. Proof of Theorem 2

(i) Let {f1, f2} be a solution base of (1.1) such that g = f2 is non-vanishing, and
the Wronskian determinant W (f1, f2) = −1. Then w = f1/f2 is analytic, locally
univalent, and it satisfies Sw = 2A and w′ = f−2

2 . Define hζ(z) = logw′(ϕζ(z)),

where ϕζ(z) = (ζ − z)/(1− ζz) and ζ ∈ D. According to [3, Corollary 7],∥∥hζ − hζ(0)
∥∥2

H2 . |h′ζ(0)|2 +

∫
D

∣∣h′′ζ (z)− h′ζ(z)2/2
∣∣2 (1− |z|2)3 dm(z).

By a direct computation,

h′ζ(z) =
w′′
(
ϕζ(z)

)
ϕ′ζ(z)

w′
(
ϕζ(z)

) , h′′ζ (z)−
h′ζ(z)2

2
= Sw

(
ϕζ(z)

)(
ϕ′ζ(z)

)2
+
w′′
(
ϕζ(z)

)
ϕ′′ζ (z)

w′
(
ϕζ(z)

) ,

which implies

sup
ζ∈D

∥∥hζ − hζ(0)
∥∥2

H2 .
∥∥w′′/w′∥∥2

H∞1
(4.1)

+ sup
ζ∈D

∫
D

∣∣Sw(ϕζ(z)
)∣∣2 ∣∣ϕ′ζ(z)

∣∣4(1− |z|2)3 dm(z) (4.2)

+ sup
ζ∈D

∫
D

∣∣∣∣∣w′′
(
ϕζ(z)

)
w′
(
ϕζ(z)

) ∣∣∣∣∣
2 ∣∣ϕ′′ζ (z)

∣∣2 (1− |z|2)3 dm(z). (4.3)
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The right-hand side of (4.1) is finite, since Sw ∈ H∞2 [19, Theorem 2], while (4.2)
reduces to ‖Sw‖2

F 2 . Furthermore, (4.3) is finite, since it is bounded by∥∥w′′/w′∥∥2

H∞1
sup
ζ∈D

∫
D

∣∣∣∣ϕ′′ζ (z)

ϕ′ζ(z)

∣∣∣∣2(1− |z|2) dm(z) <∞.

We conclude that logw′ belongs to BMOA.
Now, any solution f 6≡ 0 of (1.1), which is linearly independent to f2, can be

written as f = αf1 +βf2 = (αw+β)f2, where α 6= 0. Then, functions W = αw+β
and g = f2 satisfy the assertion, since logW ′ = logα + logw′ ∈ BMOA and
log g = −2−1 logw′ ∈ BMOA by the argument above. Moreover, all solutions f of
(1.1), which are linearly dependent to f2, satisfy log f = log β + log f2 ∈ BMOA.
The assertion (i) is proved.

(ii) Let {f1, f2} be a solution base of (1.1) such that g = f2 is non-vanishing, and
the Wronskian determinant W (f1, f2) = −1. Then w = f1/f2 is analytic, locally
univalent, and it satisfies Sw = 2A and w′ = f−2

2 . By the assumption Sw ∈ H∞2 ,
which implies logw′ ∈ B [19, Theorem 2]. The assertion of (ii) follows as above.

5. Proof of Corollary 3

The following auxiliary result, which is well-known by experts, is proved for the
convenience of the reader.

Lemma 10. If W is a locally univalent analytic function in D such that logW ′ ∈
BMOA, then all finite a-points of W (i.e. solutions of W (z) = a ∈ C) are uniformly
separated.

Proof. It suffices to prove the assertion for the zeros, for otherwise we may consider
the zeros of W (z)−a for a ∈ C. Let {zn}∞n=1 be the zero-sequence of W , and define

hzn(z) = − W (ϕzn(z))

W ′(zn)(1− |zn|2)
, z ∈ D, n ∈ N.

Then hzn(0) = 0 and h′zn(0) = 1. Now log h′zn is well-defined and analytic, as W is
locally univalent. Now,

‖ log h′zn‖
2
BMOA = sup

a∈D

∫
D

∣∣∣∣W ′′(ϕzn(z))

W ′(ϕzn(z))
ϕ′zn(z) +

ϕ′′zn(z)

ϕ′zn(z)

∣∣∣∣2 (1− |ϕa(z)|2) dm(z)

. sup
a∈D

∫
D

∣∣∣∣W ′′(ζ)

W ′(ζ)

∣∣∣∣2 (1− ∣∣ϕa(ϕzn(ζ))
∣∣2) dm(ζ)

+ sup
a∈D

∫
D

∣∣∣∣ϕ′′zn(z)

ϕ′zn(z)

∣∣∣∣2 (1− |ϕa(z)|2) dm(z)

. ‖ logW ′‖2
BMOA + 1, n ∈ N.

According to [5, Theorem 1] we have supn∈N ‖h′zn‖Hp . 1 for sufficiently small
p = p(‖ logW ′‖BMOA) with 0 < p < ∞, and hence supn∈N ‖hzn‖Hp . 1 by [7,
Theorem 5.12]. We deduce, by means of log x ≤ p−1xp for 0 < x <∞, that

sup
n∈N

1

2π

∫ 2π

0

log |hzn(reiθ)| dθ . sup
n∈N
‖hzn‖

p
Hp . 1.

By applying Jensen formula to z 7→ z−1hzn(z), and arguing as in the proof of
Theorem 1, we obtain the assertion. �



MEAN GROWTH AND GEOMETRIC ZERO DISTRIBUTION OF SOLUTIONS 9

We proceed to prove Corollary 3. Suppose that (1.1) admits a non-vanishing
solution g, and let |A(z)|2(1−|z|2)3 dm(z) be a Carleson measure. By Theorem 2(i)
every non-trivial solution f of (1.1) can be represented as f = gW , where log g ∈
BMOA, and either W is locally univalent such that logW ′ ∈ BMOA or W ∈ C\{0}.

If logW ′ ∈ BMOA, then W ′ = exp(logW ′) belongs to some Hardy space by [5,
Theorem 1]. This implies that also W is in some Hardy space [7, Theorem 5.12].
Analogously, log g ∈ BMOA implies that g = exp(log g) belongs to some Hardy
space. In conclusion, under the assumptions of Corollary 3 every solution of (1.1)
can be represented as a product of two Hardy functions and hence every solution
of (1.1) belongs to certain (fixed) Hardy space.

Every non-trivial solution of (1.1), which is linearly dependent to g, is zero-
free, while the zero-sequence of every non-trivial solution of (1.1), which is linearly
independent to g, is uniformly separated by Lemma 10.

6. Proof of Theorem 4

(i) The first part of the assertion follows directly from the proof of Theorem 2(i),
since g = f2 can be chosen to be any non-vanishing solution of (1.1).

Conversely, suppose that (1.1) possesses a zero-free solution f such that log f ∈
BMOA. Let {f, g} be a solution base of (1.1) such that W (f, g) = 1, and let
w = g/f . Now w′ is locally univalent analytic function such that logw′ = −2 log f ∈
BMOA. Moreover, the Schwarzian derivative Sw = 2A is analytic in D. Since

|Sw(z)|2 .
∣∣∣∣(w′′w′

)′
(z)

∣∣∣∣2 +

∣∣∣∣w′′(z)

w′(z)

∣∣∣∣4 , z ∈ D,

and logw′ ∈ BMOA ⊂ B, standard estimates show that |Sw(z)|2(1 − |z|2)3 dm(z)
is a Carleson measure. The assertion of (i) follows.

(ii) Let f be a zero-free solution of (1.1) with A ∈ H∞2 , and let {f, g} be a
solution base such that W (f, g) = 1. Define w = g/f . Then w is a locally univalent
analytic function satisfying Sw = 2A ∈ H∞2 . By [19, Theorem 2] the pre-Schwarzian
derivative w′′/w′ = (logw′)′ ∈ H∞1 , and hence log f = −2−1 logw′ ∈ B.

Conversely, suppose that (1.1) possesses a zero-free solution f such that log f ∈ B.
Now, A = −f ′′/f = − (f ′/f)′ − (f ′/f)2 ∈ H∞2 , which concludes the proof of
Theorem 4.

7. Proof of Proposition 5

Let f be a non-vanishing solution of (1.1), and let {f, g} be a solution base of
(1.1) such that W (f, g) = 1. Define w = g/f , and notice that w′ is a locally
univalent analytic function such that w′ = 1/f 2. An application of [3, Corollary 7]
with ϕ(z) = log

(
w′(rz)r

)
yields

1

2π

∫ 2π

0

∣∣∣∣ log
w′(reiθ)

w′(0)

∣∣∣∣2 dθ . r2

∣∣∣∣w′′(0)

w′(0)

∣∣∣∣2 + r2

∫
D
|Sw(rz)|2(1− |z|2)3r2 dm(z)

for 0 < r < 1. This implies

4

2π

∫ 2π

0

∣∣∣∣ log
f(reiθ)

f(0)

∣∣∣∣2 dθ . 4r2

∣∣∣∣f ′(0)

f(0)

∣∣∣∣2 + r2

∫
D(0,r)

|Sw(ζ)|2
(

1− |ζ|
2

r2

)3

dm(ζ)

for 0 < r < 1, which proves the assertion.
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8. Proof of Theorem 6

Let Ĉ = C ∪ {∞} denote the extended complex plane. Define R : Ĉ → Ĉ by
R(z) = z + 1/(2z2). Then R is a rational function of degree three, and R is locally

univalent in Ω = Ĉ \ {ζ1, ζ2, ζ3, 0}, where ζ1,ζ2 and ζ3 are the three cube roots of
unity.

Note that R(z) = w has a solution z ∈ Ω for any w ∈ Ĉ. First, the function R
takes the value w =∞ at the point z =∞ ∈ Ω. Second, if w ∈ C, then z = 0 cannot
be a solution of R(z) = w. Hence R(z) = w is equivalent to 2z3 − 2wz2 + 1 = 0,
which has a solution z ∈ Ω for any w ∈ C.

Let M be the inversion M(z) = 1/z, and let M−1(Ω) be the pre-image set of Ω.
Now, define Π: D → M−1(Ω) to be a universal covering map. Since M−1(Ω) is
a plane set whose complement in C contains three points, we may assume that Π

is analytic [6, p. 125, Theorem 5.1]. The asserted function is R ◦M ◦ Π: D → Ĉ.
This composition is locally univalent, since each function itself is locally univalent.
The composition is surjective by the construction.

9. Auxiliary results for Proposition 7 and Theorem 8

If w is meromorphic in D and Sw ∈ H∞2 , then w ∈ U(η) for some sufficiently
small η = η(‖Sw‖H∞2 ) by Nehari’s theorem [15, Corollary 6.4]. Here w ∈ U(η)
means that w is meromorphic and uniformly locally univalent in D, or equivalently,
that there exists 0 < η ≤ 1 such that w is meromorphic and univalent in each
pseudo-hyperbolic disc ∆p(a, η) for a ∈ D.

Denote by Pw the (discrete) set of poles of the meromorphic function w in D. Let
w ∈ U(η) for some 0 < η ≤ 1, and let w′ be a normal function such that Pw 6= ∅. By
the Lipschitz-continuity of normal functions (as mappings from D equipped with
the hyperbolic metric to the Riemann sphere with the chordal metric), there exists
a constant s = s(σ(w′)) with 0 < s < 1 such that

|w′(z)| ≥ 1, z ∈ ∆p(a, s), a ∈ Pw; (9.1)

see for example [20, Theorem 1].
The following lemma lists some elementary properties of uniformly locally univa-

lent functions, which are needed later. It is a local version of the well-known result
according to which logw′ ∈ B for all analytic and univalent functions w in D.

Lemma 11. Let w ∈ U(η) for some 0 < η ≤ 1, and let 0 < s < 1 be fixed. Suppose
that a ∈ D is any point satisfying %p(a,Pw) ≥ s.

(i) Then ∣∣∣∣w′′(a)

w′(a)

∣∣∣∣ (1− |a|2) ≤ 6

min{η, s}
.

(ii) For each 0 < t < 1 there exists a constant C = C(η, s, t) with 1 < C < ∞
such that

C−1 ≤
∣∣∣∣w′(z1)

w′(z2)

∣∣∣∣ ≤ C, z1, z2 ∈ ∆p

(
a, t ·min{η, s}

)
. (9.2)

Proof. (i) Let ν = min{η, s}. Since ga(z) = w(ϕa(νz)) in univalent and analytic
in D, we deduce

sup
z∈D

∣∣∣∣(1− |z|2)
g′′a(z)

g′a(z)
− 2z

∣∣∣∣ ≤ 4 (9.3)
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by [15, Lemma 1.3]. Hence∣∣∣∣w′′(a)

w′(a)
(1− |a|2)ν − 2aν

∣∣∣∣ =

∣∣∣∣g′′a(0)

g′a(0)

∣∣∣∣ ≤ 4,

from which the assertion follows.
(ii) As above, let ν = min{η, s}. Since ga(z) = w

(
ϕa(νz)

)
is analytic and

univalent in D, log g′a is a well-defined analytic function whose Bloch-norm satisfies
‖log g′a‖B ≤ 6 by (9.3). For more information on Bloch functions we refer to [1].
Recall that Bloch functions are precisely those analytic functions in D which are
Lipschitz when the unit disc is endowed with the hyperbolic metric and the plane
with the Euclidean metric. Hence, if ζ1, ζ2 ∈ D(0, t) for some fixed 0 < t < 1, then
[8, Proposition 1, p. 43] implies∣∣∣∣log

∣∣∣∣g′a(ζ1)

g′a(ζ2)

∣∣∣∣∣∣∣∣ ≤ ‖log g′a‖B
2

log
1 + %p(ζ1, ζ2)

1− %p(ζ1, ζ2)
≤ 3 log

1 + 2t
1+t2

1− 2t
1+t2

. (9.4)

Let K = K(t) be the constant defined by the right-hand side of (9.4). Consequently,

e−K ≤
∣∣∣∣g′a(ζ1)

g′a(ζ2)

∣∣∣∣ ≤ eK , ζ1, ζ2 ∈ D(0, t),

from which (9.2) follows for C = eK(1 + ν)2/(1− ν)2. �

For n ∈ N, the arcs{
eiθ ∈ ∂D : (j − 1)2−n+2π ≤ θ ≤ j2−n+2π

}
, j = 1, . . . , 2n−1,

having pairwise disjoint interiors, constitute the nth generation of dyadic subin-
tervals of ∂D — the first generation being ∂D itself. Analogously, we may define
dyadic subintervals of any arc I ⊂ ∂D.

The set
Q = QI =

{
z ∈ D : 1− |I|/(2π) ≤ |z| < 1, arg z ∈ I

}
is called a Carleson square, where the interval I ⊂ ∂D is said to be the base of Q.
The length of Q is defined to be `(Q) = |I| (the arc-length of I), while the top part
(or the top half) of Q is

T (Q) =
{
z ∈ Q : 1− `(Q)/(2π) ≤ |z| ≤ 1− `(Q)/(4π)

}
.

Let zQ denote the center point of T (Q). Dyadic subsquares of a Carleson square Q
are those Carleson squares whose bases are dyadic subintervals of the base of Q.
Finally, a Carleson square S is said to the father of Q provided that Q is a dyadic
subsquare of S and `(Q) = `(S)/2.

The following lemma is reminiscent of Lemma 11(ii), and hence its proof is omit-
ted. The key point is that the top part of each Carleson square can be covered by
finitely many pseudo-hyperbolic discs of fixed radius.

Lemma 12. Let w ∈ U(η) for some 0 < η ≤ 1, and let w′ be normal. Suppose that
s = s(σ(w′)) is a constant such that (9.1) holds, and define λ = (9/10 + s)/(1 +
9s/10). Then, there exists a constant C0 = C0(η, σ(w′)) with 1 < C0 < ∞ such
that the following conclusions hold.

(i) If Q is a Carleson square such that %p
(
T (Q),Pw

)
≥ λ, and S is the father-

square of Q, then

C−1
0 ≤

∣∣∣∣w′(zQ)

w′(zS)

∣∣∣∣ ≤ C0.

The same conclusion holds if Q is the father-square of S.
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(ii) If Q is a Carleson square such that %p
(
T (Q),Pw

)
≥ λ, then

C−1
0 ≤

∣∣∣∣w′(z1)

w′(z2)

∣∣∣∣ ≤ C0, z1, z2 ∈ T (Q).

(iii) If Q is a Carleson square such that %p
(
T (Q),Pw

)
< λ, then

|w′(z)| ≥ C−1
0 , z ∈ T (Q).

The next result, which is based on an argument similar to that of [3, Theorem 4],
allows us to control the number of those Carleson squares where w′ is small. This
information is crucial for our purposes since we want to prove that 1/w′ belongs to
some Hardy space.

Lemma 13. Let w be a locally univalent meromorphic function in D such that
|Sw(z)|2(1 − |z|2)3 dm(z) is a Carleson measure and w′ is normal. Suppose that
C0 = C0(‖Sw‖F 2 , σ(w′)) with 1 < C0 < ∞ is the constant ensured by Lemma 12.
Then, there exists a constant ε0 = ε0(‖Sw‖F 2 , σ(w′)) with 0 < ε0 < min{1/4, C−1

0 }
having the following property:

If Q is a Carleson square satisfying |w′(zQ)| ≤ C
−1/ε0
0 , and {Qj}∞j=1 is the col-

lection of maximal (with respect of inclusion) dyadic subsquares of Q for which
either

(a) |w′(zQj)| ≤ ε0|w′(zQ)| or (b) |w′(zQj)| ≥ C−2
0 , (9.5)

then
∑∞

j=1 `(Qj) ≤ `(Q)/2.

Proof. Let R = Q \
⋃∞
j=1 Qj. By Lemma 12(iii), R is a simply connected subset

of D, which does not contain any poles of w (nor poles of w′ for that matter). Even
more is true, the pseudo-hyperbolic neighborhood of the radius λ = λ(σ(w′)) of R
does not contain any poles of w, see Lemma 12 for the precise definition of λ.

The function logw′ is analytic in R. By a standard limiting argument we may
assume that R is compactly contained in D. We know that R is a chord-arc
domain1 [2, p. 25] with some absolute chord-arc constant 1 ≤ C <∞. Let Φ(z) =
(z − zQ)/`(Q), and denote D = Φ(R). Now, D is a simply connected bounded
chord-arc domain, which contains the origin. Since d(zQ, ∂R) � Diam(R) � `(Q),
we have d(0, ∂D) � Diam(D) � 1, where d denotes the Euclidean distance while
Diam is the Euclidean diameter.

Define F (ζ) = logw′
(
Φ−1(ζ)

)
− logw′

(
Φ−1(0)

)
for ζ ∈ D, and note that F is

analytic in D. We have∫
D
|F ′′(ζ)|2 d(ζ, ∂D)3 dm(ζ) =

1

`(Q)

∫
R

∣∣( logw′
)′′

(z)
∣∣2 d(z, ∂R)3 dm(z), (9.6)

where z = Φ−1(ζ) and d(ζ, ∂D) = d(z, ∂R)/`(Q). By the identity (logw′)′′ =
Sw+2−1(w′′/w′)2, the estimate d(z, ∂R) ≤ 1−|z|2 for all z ∈ R, and the assumption

1 If γ ⊂ C is a locally rectifiable closed curve, and there exists a constant 1 ≤ C < ∞ such
that the shorter arc connecting any two points z1, z2 ∈ γ has arc-length at most C|z1 − z2|,
then γ is called chord-arc. In particular, a domain in C is called chord-arc if its boundary is
a chord-arc curve. Chord-arc curves are also known as Lavrentiev curves, and they are precisely
the bi-Lipschitz images of circles.
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that |Sw(z)|2 (1− |z|2)3 dm(z) is a Carleson measure, (9.6) implies∫
D
|F ′′(ζ)|2 d(ζ, ∂D)3 dm(ζ)

.
1

`(Q)

∫
R
|Sw(z)|2 (1− |z|2)3 dm(z) +

1

`(Q)

∫
R

∣∣∣∣w′′(z)

w′(z)

∣∣∣∣4 d(z, ∂R)3 dm(z)

. ‖Sw‖2
F 2 +

1

`(Q)

∫
R

∣∣∣∣w′′(z)

w′(z)

∣∣∣∣4 d(z, ∂R)3 dm(z) (9.7)

with absolute comparison constants.
Our argument is based on the following auxiliary result, whose proof is omitted.

The proof of Lemma 14 is a laborious but straightforward modification of the
argument in [3, pp. 105–107].

Lemma 14. Under the assumptions of Lemma 13: For each 0 < ε < ∞ there
exists a constant C1 = C1(ε, ‖Sw‖F 2 , σ(w′)) with 0 < C1 <∞ such that∫

R

∣∣∣∣w′′(z)

w′(z)

∣∣∣∣4 d(z, ∂R)3 dm(z) ≤ C1 `(Q) + ε2

∫
R

∣∣∣∣w′′(z)

w′(z)

∣∣∣∣2 d(z, ∂R) dm(z). (9.8)

We continue with the proof of Lemma 13. By combining (9.7) and (9.8), the
change of variable gives∫
D
|F ′′(ζ)|2 d(ζ, ∂D)3 dm(ζ) . ‖Sw‖2

F 2 + C1 + ε2

∫
D
|F ′(ζ)|2 d(ζ, ∂D) dm(ζ) (9.9)

with absolute comparison constants. We apply a well-known version of Green’s
formula [3, Lemma 3.6] for the domain D. Since F (0) = 0 and `(Q) ≤ (4/3)(1 −
|zQ|2), Lemma 11(i) and (9.9) imply∫
∂D
|F (ζ)|2 |dζ| . |F ′(0)|2 +

∫
D
|F ′′(ζ)|2 d(ζ, ∂D)3 dm(ζ)

.

∣∣∣∣w′′(zQ)

w′(zQ)

∣∣∣∣2 `(Q)2 + ‖Sw‖2
F 2 + C1 + ε2

∫
D
|F ′(ζ)|2 d(ζ, ∂D) dm(ζ)

.

(
1

min{η, s}

)2

+ ‖Sw‖2
F 2 + C1 + ε2

∫
∂D
|F (ζ)|2 |dζ|

with absolute comparison constants. If 0 < ε < ∞ is sufficiently small and fixed,
then the computation above shows that there exists C2 = C2(‖Sw‖F 2 , σ(w′)) with
0 < C2 <∞ such that∫

∂R

∣∣ logw′(z)− logw′(zQ)
∣∣2 |dz| = `(Q)

∫
∂D
|F (ζ)|2 |dζ| ≤ C2 `(Q). (9.10)

Let Tj denote the top of ∂Qj (i.e. the roof of Qj) for j ∈ N. Since the roofs
Tj ⊂ ∂R are pairwise disjoint, we deduce from (9.10) that

∞∑
j=1

∫
Tj

∣∣ logw′(z)− logw′(zQ)
∣∣2 |dz| ≤ C2 `(Q). (9.11)

There are two types of subsquares Qj, which result from (9.5).

(I) In the case of type (a) squares, Lemma 12(iii) shows that %p(T (Qj),Pw) ≥ λ.
Hence Lemma 12(ii) implies

|w′(z)| ≤ C0|w′(zQj)| ≤ C0 ε0|w′(zQ)|, z ∈ Tj,
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and further,∣∣ logw′(z)− logw′(zQ)
∣∣ ≥ log |w′(zQ)| − log |w′(z)|
≥ log (C0ε0)−1 > 0, z ∈ Tj.

(9.12)

(II) In the case of type (b) squaresQj, let Sj be their father-squares, respectively.
Now, by Lemma 12

|w′(z)| ≥ C−1
0 |w′(zSj)| ≥ C−2

0 |w′(zQj)| ≥ C−4
0 , z ∈ Tj.

Since |w′(zQ)| ≤ C
−1/ε0
0 , and ε0 < 1/4, we get∣∣ logw′(z)− logw′(zQ)

∣∣ ≥ log|w′(z)| − log|w′(zQ)|
= (ε−1

0 − 4) logC0 > 0, z ∈ Tj.
(9.13)

By combining (9.11), (9.12) and (9.13), and by choosing ε0 = ε0(‖Sw‖F 2 , σ(w′))
with 0 < ε0 < C−1

0 sufficiently small, we conclude
∑∞

j=1 `(Qj) ≤ 2−1 `(Q). The
assertion of Lemma 13 follows. �

10. Proof of Proposition 7

Let f be a solution of (1.1) with A ∈ H∞2 , and let {zn}∞n=1 be the zero-sequence
of f . Implication (i)⇒ (ii) is a direct consequence of (2.5), and hence it suffices to
prove (ii)⇒ (iii) and (iii)⇒ (i).

(ii) ⇒ (iii): Denote K = supn∈N (1 − |zn|2)|f ′(zn)| < ∞. Fix n ∈ N, and let
z ∈ D(zn, c(1− |zn|)) be any point satisfying

max
ζ∈D(zn,c(1−|zn|))

|f(ζ)| = |f(z)|.

Here D(zn, c(1− |zn|)) denotes a closed Euclidean disc centered at zn ∈ D, and c is
a sufficiently small constant (to be defined later). By means of (1.1) we deduce

|f(z)| =
∣∣∣∣∫ z

zn

(
f ′(zn) +

∫ ζ

zn

f ′′(s) ds

)
dζ

∣∣∣∣
≤ c(1− |zn|)|f ′(zn)|+ |f(z)|

∫ z

zn

∫ ζ

zn

‖A‖H∞2
(1− |s|)2

|ds||dζ|

≤ cK + |f(z)|
c2(1− |zn|)2‖A‖H∞2
(1− c)2(1− |zn|)2

.

If c = c(‖A‖H∞2 ) is sufficiently small to satisfy c2‖A‖H∞2 /(1− c)
2 < 1, then we get

|f(ζ)| ≤ cK

1− c2‖A‖H∞2 /(1− c)2
, ζ ∈

∞⋃
n=1

D
(
zn, c(1− |zn|)

)
.

(iii)⇒ (i): Suppose that f satisfies

|f(z)| ≤ C, z ∈
∞⋃
n=1

D
(
zn, c(1− |zn|)

)
, (10.1)

for some constants 0 < c < 1 and 0 < C < ∞. Let g be a linearly independent
solution to f such that the Wronskian determinant W (f, g) = 1. Define w = g/f ,
and notice that Sw = 2A and w′ = 1/f 2. Now Sw ∈ H∞2 implies w ∈ U(η) for
any sufficiently small η = η(‖Sw‖H∞2 ) by Nehari’s theorem [16, Corollary 6.4]. Let
t = t(‖Sw‖H∞2 , c) with 0 < t < 1 be a sufficiently small constant such that



MEAN GROWTH AND GEOMETRIC ZERO DISTRIBUTION OF SOLUTIONS 15

(a) ∆p(zn, ηt) ⊂ D(zn, c(1− |zn|)) for all n ∈ N;
(b) 2ηt/(1 + η2t2) < η.

Here ∆p(a, ηt) stands for the closed pseudo-hyperbolic disc of radius ηt, centered
at a ∈ D. We proceed to verify (2.5) in two parts.

First, suppose that a ∈ D is a point such that %p(a,Pw) ≥ ηt. By Lemma 11(i)
we deduce

(1− |a|2)
|f ′(a)|

1 + |f(a)|2
≤ 1

4
(1− |a|2)

|w′′(a)|
|w′(a)|

≤ 3

2ηt
.

Second, suppose that a ∈ D is a point such that %p(a,Pw) < ηt, or equivalently,
a ∈ ∆p(zn, ηt) for some n ∈ N. By the maximum modulus principle there exists
a point sn ∈ ∂∆p(zn, ηt) such that

max
z∈∆p(zn,ηt)

|f ′(z)| = |f ′(sn)|.

Note that ∆p(sn, ηt) does not contain any zeros of f (any such zero would lie too
close to zn by the condition (b) and the fact w ∈ U(η)). Lemma 11(i) yields

(1− |sn|2)|f ′(sn)| ≤ 3

ηt
|f(sn)|. (10.2)

Since a, sn ∈ ∆p(zn, ηt), there exists a constant K = K(‖Sw‖H∞2 , c) with 1 < K <
∞ such that 1/K ≤ (1−|a|2)/(1−|sn|2) ≤ K. By means of the maximum modulus
principle, (10.1) and (10.2) we deduce

(1− |a|2)
|f ′(a)|

1 + |f(a)|2
≤ 1− |a|2

1− |sn|2
(

(1− |sn|2)|f ′(sn)|
) 1

1 + |f(a)|2
≤ 3CK

ηt
.

We have proved σ(f) < ∞, and hence f is normal. This concludes the proof of
Proposition 7.

11. Proof of Theorem 8

We proceed to show that the non-tangential maximal function

(1/w′)?(eiθ) = sup
z∈Γα(eiθ)

1

|w′(z)|
, eiθ ∈ ∂D,

belongs to the weak Lebesgue space Lpw(∂D) for some 0 < p < ∞, which is to
say that there exists a constant C = C(α,w′) with 0 < C < ∞ such that the
distribution function satisfies∣∣{eiθ ∈ ∂D : (1/w′)?(eiθ) > λ

}∣∣ ≤ C

λp
, 0 < λ <∞.

This leads to the assertion, since Lpw(∂D) ⊂ Lq(∂D) for any 0 < q < p. Here
Γα(eiθ) = {z ∈ D : |z − eiθ| ≤ α(1− |z|)}, for fixed 1 < α <∞, is a non-tangential
approach region with vertex at eiθ ∈ ∂D with aperture of 2 arctan

√
α2 − 1, and the

absolute value of the set is its one dimensional Lebesgue measure.
Let C0 = C0(‖Sw‖F 2 , σ(w′)) with 1 < C0 < ∞ be the constant ensured by

Lemma 12, and ε0 = ε0(‖Sw‖F 2 , σ(w′)) with 0 < ε0 < min{1/4, C−1
0 } be the

constant resulting from Lemma 13. We consider the collection G0 of maximal (with
respect to inclusion) dyadic subsquares of D, of at least second generation, satisfying

|w′(zQ)| ≤ C
−1/ε0
0 , Q ∈ G0.
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Denote L = L(C0, ε0) = C
1+1/ε0
0 and M = M(C0, ε0) = C0/ε0, for short. The

maximality and Lemma 12 imply

|w′(z)| > L−1, z ∈ D \
⋃
Q∈G0

Q,

and |w′(zQ)| > L−1 for all Q ∈ G0.
Apply Lemma 13 to each Q ∈ G0 to get the collection SQ of dyadic subsquares

of Q, where the subsquares are maximal with the property

|w′(zS)| ≤ ε0 |w′(zQ)|, S ∈ SQ.

Note that the squares in the family SQ are either the ones appearing in (a) of
Lemma 13 or are contained in the ones appearing in (b). Let G1 =

⋃
Q∈G0 SQ. The

maximality and Lemma 12 yield

|w′(z)| > L−1M−1, z ∈ D \
⋃
Q∈G1

Q,

and |w′(zQ)| > L−1M−1 for all Q ∈ G1. By Lemma 13, we obtain∑
Q∈G1

`(Q) ≤ 1

2

∑
Q∈G0

`(Q).

Repeating this process inductively, we obtain collections Gn for n ∈ N such that

|w′(z)| > L−1M−n, z ∈ D \
⋃
Q∈Gn

Q, n ∈ N,

and ∑
Q∈Gn

`(Q) ≤ 1

2n

∑
Q∈G0

`(Q), n ∈ N.

Fix any λ for which LM ≤ λ <∞, and choose the natural number N such that
LMN ≤ λ < LMN+1. Now{

eiθ ∈ ∂D : (1/w′)?(eiθ) > λ
}

=
{
eiθ ∈ ∂D : inf

z∈Γα(eiθ)
|w′(z)| < 1/λ

}
⊂
{
eiθ ∈ ∂D : inf

z∈Γα(eiθ)
|w′(z)| < L−1M−N

}
.

By the inductive process above, there exists a constant K = K(α) with 1 < K <∞
such that∣∣{eiθ ∈ ∂D : (1/w′)

?
(eiθ) > λ

}∣∣ ≤ K

2N

∑
Q∈G0

`(Q) ≤ 4πKL(log2M)−1

λ(log2M)−1 .

Hence (1/w′)? ∈ Lpw(∂D) for p = 1/(log2C0/ε0), and consequently, 1/w′ ∈ Hq for
any 0 < q < p. This proves the assertion of Theorem 8.

12. Proof of Corollary 9

Let f be a normal non-trivial solution of (1.1), where |A(z)|2(1 − |z|2)3 dm(z)
is a Carleson measure. Let g be a solution of (1.1) such that W (f, g) = 1. Now
w = g/f satisfies Sw = 2A. Since w′ = 1/f 2 is normal (σ(w′) ≤ 2σ(f) < ∞),
Theorem 8 asserts that for any sufficiently small 0 < p <∞ there exists a constant
C = C(p, ‖A‖F 2 , σ(f)) with 1 < C <∞ such that ‖f‖2p

H2p = ‖1/w′‖pHp ≤ C.
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