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Abstract
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1 Introduction

Let D be the open unit disc of the complex plane. Let H∞(D) be the algebra of bounded
analytic functions in D and let ‖b‖∞ = sup{|b(z)| : z ∈ D} for b ∈ H∞(D). An inner function is
a bounded analytic function in D whose radial limits have modulus one at almost every point
of the unit circle ∂D. An inner function b is called one-component if there exists a number
0 < C < 1 such that the sublevel set {z ∈ D : |b(z)| < C} is connected. One-component inner
functions were introduced by B. Cohn in [C] in connection with Carleson measures for model
spaces and have been already widely studied. Indeed, as subsequently proved by A. Volberg
and S.Treil in [VT] and by A. Aleksandrov in [A2], it is possible to provide an useful geometric
characterization of Carleson measures for model spaces corresponding to one-component inner
functions. Other descriptions of one-component inner functions have been given in [A3], [NR]
and [Be], algebraic properties of this family have been studied in [CM1], [R] and [CM2], and
further properties of the corresponding model spaces have been given in [A1], [Ba], [Be] and
[BBK].

This paper is devoted to the study of one-component bounded functions. We start with the
definition of this family. Given b ∈ H∞(D) with ‖b‖∞ = 1, its spectrum is defined as

spec(b) :=

{
ξ ∈ ∂D : lim inf

z→ξ
|b(z)| < 1

}
.

Definition 1. Let b ∈ H∞(D) with ‖b‖∞ = 1. Then, b is called one-component if there exists a
constant 0 < C < 1 such that the following two conditions hold

(a) spec(b) ⊆ {z ∈ D : |b(z)| ≤ C} ,

(b) The set {z ∈ D : |b(z)| < C} is connected.

∗The second author is supported in part by the Generalitat de Catalunya (grant 2017 SGR 395), the Spanish
Ministerio de Ciencia e Innovación (project MTM2017-85666-P) and the Spanish Research Agency (Maŕıa de
Maeztu Program CEX2020-001084-M )
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One-component bounded functions were introduced by A. Baranov, E. Fricain and J. Mashreghi
in [BFM], where the authors studied Carleson measure for de Branges-Rovnyak spaces. They
provided an useful characterization for such measures for de Branges-Rovnyak spaces correspond-
ing to one-component bounded functions. Note that one-component inner functions are one-
component bounded functions because if b is inner, spec(b) = {ξ ∈ ∂D : lim infz→ξ |b(z)| = 0}
(see [Ga]). Therefore, when b is inner, Condition a) of Definition 1 is always satisfied.

In this paper, we provide several characterizations of one-component bounded functions, which
are analogous to the already known results holding for one-component inner functions. We will
extend to this bigger family the description of [NR] in terms of the positions of the zeros, of [A2]
in terms of the growth of the reproducing kernels of the associated de Branges-Rovnyak spaces
and, finally, of [Be] in terms of the expression of the associated Clark measures. It is worth
mentioning that our proofs use some ideas from these previous papers but some new arguments
are also required to deal with more general situation.

Given b ∈ H∞(D), as already done in [Bi], we consider the measure σb with support in D
associated to |b(z)|. Indeed, if b = B{zn}SµOb is the classical factorization of b in a Blaschke
product B{zn} with zeros {zn}, a singular inner function Sµ and an outer factor Ob, we define

dσb(z) :=
∑
n

(1− |zn|) δzn(z) + dµ(z) + log |b(z)|−1dm(z), z ∈ D,

where dm is the Lebesgue measure on ∂D. We recall also that if z ∈ D\{0}, the associated Car-
leson square Q(z) is defined as Q(z) := {w ∈ D : |z| < |w| < 1, |w/|w| − z/|z|| < (1− |z|)/2} .
Given a Carleson square Q(z), z ∈ D \ {0}, we denote its sidelenght by `(Q(z)) = 1 − |z| and
its top part by T (Q(z)) := {w ∈ Q(z) : |z| < |w| < (1 + |z|)/2} . Our first description of one-
component bounded functions uses the measure σb and it is analogous to the main result in
[NR].

Theorem 1.1. Let b ∈ H∞(D) with ||b||∞ = 1. Then, b is one-component if and only if there
exists 0 < C1 < 1 such that

(1) σb (Q(z)) = 0 whenever |b(z)| ≥ C1 .

It will be shown that the spectrum of a one-component bounded function must be a proper
closed subset of the unit circle. As an application of Theorem 1.1, we obtain the following
converse result.

Theorem 1.2. Let E ( T be a closed set. Then there exists a one-component bounded function
b such that spec(b) = E.

We point out that, when m(E) = 0, it is always possible to find a one-component inner function
whose spectrum is equal to E ([NR]).

Our second characterization of one-component bounded functions uses the reproducing kernels of
the associated de Branges-Rovnyak spaces. In this paper we will not work with the de Branges-
Rovnyak spaces and we will not introduce them. The interested reader may deepen this subject
looking at [FM2]. The only fact one needs to keep in mind, is that the de Branges-Rovnyak
spaces are reproducing kernel Hilbert spaces of holomorphic functions in the unit disk D. Let
b ∈ H∞(D) with ||b||∞ = 1. The reproducing kernel of H(b) at a ∈ D, is

kba(z) :=
1− b(a)b(z)

1− az
, z ∈ D,
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that is,
〈
f, kba

〉
H(b)

= f(a), for every f ∈ H(b). If the function b is inner, the associated de

Branges-Rovnyak space is the classical model space. We next describe one-component bounded
functions in terms of the size of kba(z).

Theorem 1.3.

a) Let b be a one-component bounded function. Then there exists a constant C = C(b) > 0
such that for every a ∈ D we have

(2) sup
z∈D

∣∣∣∣1− b(a)b(z)

1− az

∣∣∣∣ ≤ C 1− |b(a)|2

1− |a|2
.

b) Let b ∈ H∞(D) with ‖b‖∞ = 1. Assume there exists a constant 0 < C < 1 such that

(3) spec(b) ⊆ {z ∈ D : |b(z)| ≤ C} .

If

(4) sup
z∈D

∣∣∣∣1− b(a)b(z)

1− az

∣∣∣∣ = o

(
1

1− |a|2

)
, as |b(a)| → 1,

then b is one-component.

In Theorem 1.3 we have considered the reproducing kernels kba(z) at a point a ∈ D. In the
following results, we deal also with a ∈ ∂D. It is easy to see that any one-component bounded
function b extends analytically across ∂D\ spec(b), see [FM].

Theorem 1.4.

a) Let b be a one-component bounded function. Then there exists a constant C = C(b) > 0
such that

(5)
|b(z)− b(ξ)|
|z − ξ|

≤ C
∣∣b′(ξ)∣∣ , z ∈ D, ξ ∈ ∂D \ spec(b) .

b) Let b ∈ H∞(D) with ‖b‖∞ = 1. Assume there exists 0 < C < 1 such that spec(b) ⊂
{z ∈ D : |b(z)| ≤ C}. If estimate (5) holds, the function b is one-component.

Theorem 1.4 is applied to obtain the following result.

Theorem 1.5.

a) Let b be a one-component bounded function. Then the function

(6) H(ξ) :=

{
1/b′(ξ) if ξ /∈ spec(b)

0 if ξ ∈ spec(b)

is Lipschitz.

b) Let b ∈ H∞(D) with ‖b‖∞ = 1. Assume there exists 0 < C < 1 such that spec(b) ⊂
{z ∈ D : |b(z)| ≤ C}. If the function H defined in (6) is Lipschitz, then b is one-component.

Theorem 1.5 is also equivalent to the following corollary.

Corollary 1.6. Let b ∈ H∞(D) with ‖b‖∞ = 1. Then b is one-component if and only if the
following three conditions hold:

a) There exists a constant 0 < C < 1 such that spec(b) ⊂ {z ∈ D : |b(z)| ≤ C} .

3



b) There exists a constant C1 > 0 such that |b′′(ξ)| ≤ C1|b′(ξ)|2, for every ξ ∈ ∂D\ spec(b)

c) |b′(ξ)| → ∞, as 0 <dist(ξ,spec(b))→ 0.

These last three results are similar to their analogue versions for one-component inner functions,
presented in [A1] and [A3]. However, we point out that our proofs are different. Indeed, unlike
[A3], we do not make use of the explicit expression of the norms of the reproducing kernels in
de Branges-Rovnyak spaces.

We describe also one-component bounded functions in terms of their Clark measures. Clark
measures of one-component inner functions were described in [Be] by R.V. Bessonov. In the
following, we give the corresponding result for one-component bounded functions. Before stating
the result, we recall the definition and main properties of Clark measures. For a more complete
description we refer to [PS], [S] and [CMR].

Let b ∈ H∞(D) with ‖b‖∞ = 1 and |α| = 1. Since (α + b)/(α − b) is an analytic function
in D having positive real part, there exists a unique positive measure µα in the unit circle such
that

(7)
α+ b(z)

α− b(z)
=

∫
∂D

ξ + z

ξ − z
dµα(ξ) + 2i

= (ᾱb(0))

|α− b(0)|2
, z ∈ D.

The measure µα is called the Clark measure of the function b at the value α.
We note that if b(0) = 0 the measure µα is a probability measure. It follows from (7) that

the real part of (α + b(z))/(α − b(z)) is the Poisson integral of the measure µα. The measure
µα is singular if and only if the function b is inner. In this case, the measure µα is carried by
{ξ ∈ ∂D : b(ξ) = α}.

For every positive, Borel measure µ on the unit circle ∂D we denote by a(µ) the set of all
its isolated atoms. The set P (µ) := spt(µ) \ a(µ) consists of all the accumulation points in the
support of µ, denoted by spt(µ). We will say that an atom ξ ∈ a(µ) has two neighbours if
there is an open arc (ξ−, ξ+) on the unit circle ∂D with endpoints ξ± ∈ a(µ) such that (ξ−, ξ+)∩
spt(µ) = {ξ}.

Theorem 1.7. Let µ be a positive, Borel measure on ∂D. The following two condition are
equivalent:

a) µ is the Clark measure of a one-component bounded function.

b) µ = µa + µs and there exists a constant C = C(µ) > 0 such that

i. The measure µa is absolutely continuous and µa(ξ) = g(ξ)dm(ξ), with 1/C ≤ g(ξ) ≤
C for µa-almost all ξ ∈ ∂D.

ii. The measure µs is purely atomic and every atom has two neighbours. Moreover,
there are infinitely many atoms in any connected component I of ∂D \ P (µ), which
accumulate to both boundary points of I. Finally, for any ξ ∈ a(µ) we have

C−1|ξ − ξ±| ≤ µ{ξ} ≤ C|ξ − ξ±| .

iii. We have

H∗(µ)(ξ) := lim sup
ε→0

∣∣∣∣ ∫
{t∈∂D:|t−ξ|>ε}

dµ(t)

1− t̄ξ

∣∣∣∣ ≤ C
for any ξ ∈ spt(µa) ∪ a(µ).

It is worth mentioning that the conditions C−1 ≤ g(ξ) ≤ C for µa-almost every point ξ ∈ ∂D and
C−1|ξ− ξ±| ≤ µ(ξ) ≤ C|ξ− ξ±|, ξ ∈ a(µ), can be rephrased in the following way: There exists a
constant C1 > 0 such that C−1

1 |I| ≤ µ(I) ≤ C1|I| for every arc I ⊂ ∂D containing at least two
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different points of spt(µ). It is also interesting to mention that in the statement of Theorem 1.7,
condition b.iii) can be replaced by the apparently stronger condition that H∗(µ)(ξ) ≤ C at any
point ξ ∈ spt(µ).

This paper is divided in five short sections. Next section contains some auxiliary results.
Section 3 is devoted to the proofs of Theorems 1.1, 1.2 and some consequences. Theorems 1.3,
1.4 and 1.5 are proved in Section 4. Last Section contains the proof of Theorem 1.7.
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2 Preliminary results

In this section, we collect some auxiliary results that will be used in the rest of the paper.

We first give some comments about Definition 1. As already mentioned, the main difference
between one-component bounded functions and one-component inner functions is Condition a)
in Definition 1. Our first auxiliary result says that Condition a) allows us to choose freely the
level C of the connected sublevel set.

Lemma 2.1. Let b ∈ H∞(D) with ‖b‖∞ = 1. Assume there exists a constant 0 < C < 1 such
that ΩC := {z ∈ D : |b(z)| < C} is connected and spec(b) ⊂ ΩC . Then ΩC1 := {z ∈ D : |b(z)| <
C1} is connected for every C1 > C.

Proof. We argue by contradiction and we assume that there exists C < C1 < 1 such that ΩC1

is not connected. Note that ΩC ⊂ ΩC1 . Let Ω1 be a connected component of ΩC1 such that
Ω1 ∩ΩC = ∅. Note that Ω1 is simply connected. Let φ : D→ Ω1 be a conformal map. Then the
function U = b ◦ φ/C1 is inner. Since infz∈D |U(z)| > δ > 0, the function U has to be constant,
which is impossible. This contradiction finishes the proof.

There are some differences between the spectrum of an inner function and the spectrum of a
bounded analytic function. Let us consider a bounded function b, which, according to its inner-
outer factorization, can be written as b = BSµOb. Therefore, as stated in [BFM], spec(b) is the
smallest closed subset of ∂D containing the limit points of the zeros of the Blaschke product B
and the supports of the measures µ and log |b|−1dm. It is well known and easy to prove that b
has an analytic extension and it is unimodular through any arc of the open set ∂D \ spec(b), see
[FM]. Note that there are b ∈ H∞(D) whose spectrum is not closed.

Lemma 2.2. Let b ∈ H∞(D) with ‖b‖∞ = 1. Assume there exists a constant 0 < C < 1 such
that spec(b) ⊂ {z ∈ D : |b(z)| ≤ C}. Then, spec(b) is closed.

Proof. Let us consider a sequence {ξn} ⊂ spec(b) such that ξn → ξ. For every n the exists
a sequence {tn,k} ⊂ D such that tn,k → ξn as k → ∞ and |b(tn,k)| ≤ C. If we apply a
diagonal argument to the sequences {tn,k}, we find a sequence {tm} ⊂ D such that tm → ξ and
|b(tm)| ≤ C, which implies also that ξ ∈spec(b).

So, the spectrum of a one-component bounded funcion is a closed subset of the unit circle.
Given a closed connected set E ⊂ D let w(a,Γ,D \ E) be the harmonic measure at the point
a ∈ D \ E of the set Γ ⊂ ∂(D \ E) in the domain D \ E, that is, the value at the point a of the
harmonic function in the domain D \E whose boundary values are 1 at Γ and 0 elsewhere. We
will use the following consequence of the classical Hall’s Lemma. We recall that ρ(z, w) is the
pseudo-hyperbolic distance between z and w.

Lemma 2.3. Let Γ be a curve contained in the unit disc joining the origin with a point in a
Carleson square Q(z) with |z| > 1/2. Assume that ρ(z,Γ) ≥ 1/2 and D \ Γ is connected. Then
there exits a constant C(Γ) > 0 such that w(z,Γ,D \ Γ) ≥ C(Γ).

Proof. Let τ be the automorphism of the unit disc with τ−1 = τ and τ(z) = 0. The conformal
invariance of harmonic measure gives w(z,Γ,D \ Γ) = w(0, τ(Γ),D \ τ(Γ)). Note that τ(Γ) is a
curve satisfying inf{|w| : w ∈ τ(Γ)} ≥ 1/2 and having diameter bounded below by an absolute
constant. Thus, either the radial projection of τ(Γ) onto the unit circle or its circular projection
onto the unit interval, is a connected set whose diameter is bounded below by an absolute
constant. Then the radial or circular version of Hall’s Lemma (see page 124 of [GM]) finish the
proof.

Lemma 2.3 will be used to prove the following auxiliary result .
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Lemma 2.4. Let b be a one-component bounded function. Then there exists a constant 0 <
C < 1 such that lim supr→1 |b(rξ)| ≤ C < 1, for every ξ ∈ spec(b).

Proof. Let ξ ∈ spec(b). Since b is one-component, there exists a constant 0 < C1 < 1 and a
curve Γ ⊂ D connecting the origin with ξ such that |b(w)| < C1 for any w ∈ Γ. The Maximum
Principle gives that

log |b(z)| ≤ (logC1)w(z,Γ,D \ Γ), z ∈ D \ Γ.

Hence Lemma 2.3 gives that |b(rξ)| ≤ C
C(Γ)
1 if ρ(rξ,Γ) ≥ 1/2. Note that if ρ(rξ,Γ) < 1/2,

Schwarz’s Lemma gives |b(rξ)| ≤ (C1 + 1/2)/(1 + C1/2). This finishes the proof.

Since one-component bounded functions b satisfy ‖b‖∞ = 1, Lemma 2.4 gives that the spectrum
of a one-component bounded functions is a proper subset of the unit circle.

Before concluding this preliminary section and moving to the proofs of the main results,
we recall some properties of the derivatives of bounded analytic functions at points in the
complement of their spectrum. For a more complete discussion on this subject, we refer to
[FM].

Lemma 2.5. Let b ∈ H∞(D) with ||b||∞ = 1. Then, |b′(rξ)| ≤ 4|b′(ξ)| for every ξ ∈ ∂D\ spec(b)
and 1 > r > 1/2.

Proof. Without loss of generality we can assume ξ = 1. Let b = B{zn}SµOb be the inner-outer
factorization of b. It is sufficient to prove the lemma separately for the three factors. Firstly

|B′(r)| ≤
∑
n

1− |zn|2

|1− znr|2
≤ 1

r2

∑
n

1− |zn|2

|1/r − zn|2
≤ 4

∑
n

1− |zn|2

|1− zn|2
= 4|B′(1)| .

For the singular inner factor we use the estimate |ξ − r|2 ≥ |ξ − 1|2/2, ξ ∈ ∂D, 1/2 < r < 1.
Then

|S′µ(r)| ≤
∫
∂D

2

|ξ − r|2
dµ(ξ) ≤

∫
∂D

4

|ξ − 1|2
dµ(ξ) = 2|S′µ(1)|.

The same argument also gives

|O′b(r)| ≤
∣∣∣∣ ∫

∂D

2ξ

(ξ − r)2
log |b−1(ξ)|dm(ξ)

∣∣∣∣ ≤ ∫
∂D

4

|ξ − 1|2
log |b−1(ξ)|dm(ξ) = 2|O′b(1)| .

This finishes the proof.

Lemma 2.6. Let b ∈ H∞(D) with ||b||∞ = 1. Let ξ0 ∈ ∂D such that b(z) extends analytically
at a neighbourhood U of ξ0, having values of modulus one on ∂D ∩ U . Then

ξb′(ξ)

b(ξ)
> 0

for every ξ ∈ U ∩ ∂D.

Proof. Let b = B{zn}SµOb be the inner-outer factorization of b. With a straight computation
we obtain that

ξb′(ξ)

b(ξ)
=
∑
n

1− |zn|2

|ξ − zn|2
+

∫
∂D

2

|ξ − t|2
dµ(t) +

∫
∂D

2

|ξ − t|2
log |b′(t)|−1dm(t) , ξ ∈ ∂D ∩ U ,

from which the lemma follows.
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3 Inner-Outer Factorization

In this section we will prove Theorem 1.1 and Theorem 1.2, providing also some easy corollaries.
A Carleson square Q is called dyadic if its closure intersected with the unit circle is a dyadic arc
of the unit circle. Note that each dyadic Carleson square contains two dyadic Carleson squares
of half sidelength.

Proof of Theorem 1.1. We define ΩK := {z ∈ D : |b(z)| ≤ K}, K > 0. We first prove that
condition (1) is necessary. Pick a constant 0 < C1 < 1 such that |b(0)| < C1 < 1, ΩC1 is
connected and

(8)

{
ξ ∈ ∂D : lim inf

z→ξ
|b(z)| < 1

}
⊆ ΩC1 .

We argue by contradiction. Assume that there exists a sequence of points {zn} ⊂ D such that
limn→∞ |b(zn)| = 1 and σb(Q(zn)) > 0 for every n. Note that ΩC1 ∩Q(zn) = ∅ if n is sufficiently
large, since, otherwise, there would exists a connected path Γ joining the origin and a point
in Q(zn) with |b(w)| ≤ C1 for any point w ∈ Γ. Schwarz’s Lemma gives that ρ(zn,Γ) → 1 as
n→∞. The Maximum Principle gives that

log |b(z)| ≤ (logC1)w(z,Γ,D \ Γ), z ∈ D \ Γ.

Now Lemma 2.3 gives that |b(zn)| < C
C(Γ)
1 < 1 if n is sufficiently large, which contradicts the

assumption. Therefore, if n is sufficiently large the set ΩC1 ∩ Q(zn) has to be empty and, in
particular, b(z) 6= 0 for every z ∈ Q(zn). On the other hand, because of (8), we deduce also that
limz→ξ |b(z)| = 1, for every ξ ∈ Q(zn) ∩ ∂D, which implies that σb(Q(zn)) = 0.

We now prove that condition (1) is sufficient. Let C1 < C2 < 1 be a constant which will be
fixed later. Let A = {Qj} be the collection of maximal dyadic Carleson squares such that

(9) sup
z∈T (Qj)

|b(z)| ≥ C2 .

By maximality, |b(w)| ≤ C2 for any w ∈ D \ ∪jQj . We note that if (1 − C2)(1 − C1)−1 is
sufficiently small, Schwarz’s Lemma shows that Condition (9) implies that |b(z)| ≥ C1 for any
z ∈ T (2Qj). We fix 0 < C2 < 1 with this property. Therefore, the assumption (1) implies that
σb(2Qj) = 0. In particular, b extends analytically through 2Qj ∩ ∂D and |b(ξ)| = 1 for every
ξ ∈ 2Qj ∩ ∂D. Hence, we deduce that{

ξ ∈ ∂D : lim inf
z→ξ

|b(z)| < 1

}
⊆ D \ ∪Qj ∩ ∂D .

We fix C3 > C2. We note that ΩC3 ⊇ D \ ∪Qj . Hence{
ξ ∈ ∂D : lim inf

z→ξ
|b(z)| < 1

}
⊆ ΩC3 .

It only remains to show that ΩC3 is connected. Let Ω1 be the connected component of ΩC3 con-
taining D\∪Qj . If, by contradiction, we assume that there exists another connected component
Ω2 6= Ω1 of ΩC3 , then Ω2 ⊂ ∪Qj . Note that Ω2 is simply connected and ∂Ω2 ∩ ∂D can have
at most two points. If φ : D → Ω2 is a conformal map, then (C3)−1(b ◦ φ) would be an inner
function. Since it cannot be constant, we deduce that infΩ2 |b(z)| = 0. However, this would
contradict the following claim.

Claim 3.1. There exists a constant C > 0 such that for any j = 1, 2, . . . and any w ∈ Qj = Q(zj)
we have

C−1 log |b(zj)|−1

1− |zj |
≤ log |b(w)|−1

1− |w|
≤ C log |b(zj)|−1

1− |zj |
.
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Proof. We note that

log |b(w)|−1 ∼=
∫
D
Pw(z)dσb(z) ,

when w ∈ Q(zj). Since σb(2Q(zj)) = 0, we deduce

log |b(w)|−1

1− |w|
∼=
∫
D\2Q(zj)

1

|1− z̄w|2
dσb(z) ∼=

∫
D\2Q(zj)

1

|1− z̄zj |2
dσb(z) ∼=

log |b(zj)|−1

1− |zj |
.

This claim finishes the proof.

Using the Theorem 1.1, it is easy to verify that the product of two one-component bounded
functions is still one-component.

Corollary 3.1. Let b1, b2 be two one-component bounded functions. Then b1b2 is a one-component
bounded function.

Proof. We need to verify the sufficient condition (1) of Theorem 1.1. We know that there exists
a constant 0 < C < 1 such that

σbi(Q(z)) = 0, if |bi(z)| ≥ C, i = 1, 2.

Pick a constant C < C1 < 1. Assume |b1(z)b2(z)| > C1. Then |bi(z)| > C1, i = 1, 2 and hence

σb1b2(Q(z)) = σb1(Q(z)) + σb2(Q(z)) = 0 .

This finishes the proof.

We note that the same result for one-component inner functions has been already proved in
[CM1] with a different argument. Theorem 1.1 can be also used to prove that any proper closed
subset E ⊂ ∂D is the spectrum of one-component bounded function.

Proof of Theorem 1.2. Write ∂D \ E = ∪Ik, where Ik are open arcs. For any Ik consider its
endpoints eitk(1), eitk(2) and the isosceles triangle Tk defined as

Tk =
{
reit : tk(1) < t < tk(2), 0 ≤ 1− r < min{|t− tk(1)|, |t− tk(2)|}

}
.

We locate {zk,j}j on ∂Tk ∩ D such that the pseudo-hyperbolic distance ρ(zk,j+1, zk,j) = δ is
independent of k and j and δ < 1/2. The sequence {zk,j}j,k is a Blaschke sequence since∑

k

∑
j

1− |zk,j | .
∑
k

|Ik| <∞ .

Let B be the Blaschke product with zeros {zk,j : k, j}. Consider the bounded analytic function
b defined as

b(z) := exp

(∫
E

ξ + z

ξ − z
log(1/2)dm(ξ)

)
B(z), z ∈ D.

Since ∂D \ E has positive measure we have ‖b‖∞ = 1. Because of the construction, it is clear
that spec(b) = E. The only thing left to prove is that the function b is one-component. We
first note that if z ∈ ∪k∂Tk ∩ D, Schwarz’s lemma gives |B(z)| ≤ 1/2. Hence |b(z)| < 1/2 for
any z ∈ ∪k∂Tk ∩ D ∪ E. The Maximum Principle gives that |b(z)| ≤ 1/2 for any z ∈ D \ ∪kTk.
Fix C > 1/2. If |b(z))| ≥ C then z ∈ ∪kTk and consequently σb(Q(z)) = 0. We can now apply
Theorem 1.1 and we deduce that b is one-component.

9



We close this section with another consequence of Theorem 1.1.

Corollary 3.2. Let b ∈ H∞(D) with ‖b‖∞ = 1. Assume there exists a constant 0 < C < 1
such that spec(b) ⊂ {z ∈ D : |b(z)| ≤ C}. Then there exists a Blaschke product B such that the
function bB is one-component and spec(b) =spec(bB).

Proof. Lemma 2.2 gives that spec(b) is closed. We write ∂D \ spec(b) = ∪kIk where each Ik is a
closed arc of ∂D satisfying |Ik| = dist(Ik,ΩC). We choose rk ∈ (0, 1) such that, if |z| ≥ rk and
eiarg(z) ∈ Ik, then |b(z)| ≥ (1+C)/2. Let Γ be the region given by Γ = ∪∞k=1{rξ : r ≥ rk and ξ ∈
Ik}. We fix 0 < ε < C and we pick points {zj} ⊂ ∂Γ∩D so that the pseudo-hyperbolic distance
ρ(zj , zj+1) = ε. We consider the Blaschke product B whose zeros are {zj}. Due to Schwarz’s
lemma, |B(z)| ≤ C when z ∈ ∂Γ ∩ D and, consequently, |bB| < C on (∂Γ ∩ D) ∪ spec(b).
The Maximum Principle gives |b(z)B(z)| ≤ C for any z ∈ D \ Γ. We fix C < C1 < 1. If
|b(z)B(z)| ≥ C1 then z ∈ Γ and consequently σbB(Q(z)) = 0. We apply now Theorem 1.1 and
we obtain that bB is one-component.

Before concluding this section, we highlight that if b1, b2 are one-component bounded functions,
even if b1/b2 ∈ H∞, it may happen that b1/b2 is not one-component. For sake of completeness,
we recall that the regularity of the quotient of two one-component inner functions has been
studied in [CM2].

4 Reproducing kernels for one-component bounded function

In this section we will prove Theorems 1.3, 1.4 and 1.5.

Proof of Theorem 1.3. We start by proving a). Let 0 < C1 < 1 be the constant given by
Theorem 1.1 and let C1 < C2 = C2(C1) < 1 be a constant to be fixed later. We consider the
family of maximal dyadic Carleson squares {Q(zj)} such that

sup
z∈T (Q(zj))

|b(z)| ≥ C2.

We note that |b(z)| ≤ C2 when z ∈ D\∪jQ(zj). Taking C2 > C1 sufficiently close to 1, Schwarz’s

lemma gives that sup
z∈T (Q̃(zj))

|b(z)| ≥ C1, where Q̃(zj) is the dyadic Carleson square containing

Q(zj) with double sidelenght. We fix 0 < C2 < 1 with this property. Applying Theorem 1.1,

we obtain that σb(Q̃(zj)) = 0. Therefore, the function b extends analytically on Q̃(zj)∩ ∂D and

|b(ξ)| = 1 for every ξ ∈ Q̃(zj) ∩ ∂D. Claim 3.1 gives

(10)
log |b(w)|−1

1− |w|
∼=

log |b(zj)|−1

1− |zj |
∼=

1

|`(Q(zj))|
,

for every w ∈ Q(zj), uniformly on j.
With no loss of generality, we assume that |b(a)| is close to 1. Hence a ∈ ∪jQ(zj). We

fix j so that a ∈ Q(zj). Moreover, we can also assume that the pseudo-hyperbolic distance
ρ(a,D \∪jQ(zj)) is close to 1, since, otherwise, by Schwarz’s lemma |b(a)| would not be close to
1. We want to show that there exists a constant C > 0 such that∣∣∣∣1− b(z)b(a)

1− za

∣∣∣∣ ≤ C 1− |b(a)|2

1− |a|2
, z ∈ D.

If z /∈ 2Q(zj), then ∣∣∣∣1− b(z)b(a)

1− az̄

∣∣∣∣ ≤ 2

|`(Q(zj))|
∼=

log |b(a)|−1

1− |a|
∼=

1− |b(a)|2

1− |a|2
.
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If z ∈ 2Qj , since

1− b(z)b(a)

1− az̄
=

1− |b(a)|2

1− az̄
− b(a)

b(z)− b(a)

1− za
and

1− |b(a)|2

|1− za|
.

1− |b(a)|2

1− |a|2
,

it is sufficient to prove that ∣∣∣∣b(z)− b(a)

1− za

∣∣∣∣ . 1− |b(a)|2

1− |a|2
.

For w ∈ D \ {0}, we denote w∗ = w/|w|. We note that

|b(z)− b(a)|
|1− za|

≤ |b(z)− b(z
∗)|

|1− za|
+
|b(z∗)− b(a∗)|
|1− za|

+
|b(a∗)− b(a)|
|1− za|

,

and we estimate the three terms separately. Firstly, we note that (10) gives that

(11) |b′(ξ)| . 1

`(Q(zj))
, ξ ∈ ∂D ∩Q(zj)

and consequently

|b(z∗)− b(a∗)|
|1− za|

≤ 1

|1− za|

∫ a∗

z∗
|b′(t)|dt . C

|`(Q(zj))|
|z − a|
|1− za|

.
1− |b(a)|2

1− |a|2
,

where in the last inequality we have used (10). Moreover, by using Lemma 2.5, (11) and (10),
we obtain that

|b(a)− b(a∗)|
|1− za|

.
1− |a|
|`(Q(zj))|

1

|1− za|
∼=

1− |b(a)|2

1− |a|2

which proves the statement a).
We prove statement b) by contradiction. We assume there exist points an ∈ D with |b(an)| →

1, but σb(Q(an)) > 0. Let 0 < C < 1 be a constant to be fixed later and let ΩC = {z ∈
D : |b(z)| < C}. The assumption (4) gives that Q(an) ∩ ΩC = ∅ for n large enough. Since
spec(b) ⊆ ΩC , we deduce also that spec(b) ∩ Q(an) = ∅. Hence σb(Q(an)) = 0 which is a
contradiction.

Remark. We note that condition (3) of Theorem 1.3 is necessary. Indeed, b(z) = (1 + z)/2 does
not satisfy (3), and consequently it is not one-component, while (4) holds.

We move now to the proof of Theorem 1.4.

Proof of Theorem 1.4. We start by proving a). We apply Theorem 1.3 and obtain a constant
C > 0 such that ∣∣∣∣1− b(a)b(z)

1− az

∣∣∣∣ ≤ C 1− |b(a)|2

1− |a|2
,

for every a, z ∈ D. For any ξ ∈ ∂D\spec(b), we pick a sequence {an} ⊂ D, which tends to ξ, and
we obtain

|b(z)− b(ξ)|
|z − ξ|

≤ C
∣∣b′(ξ)∣∣, z ∈ D .

We move now to the proof of statement b). For sake of clarity, we split the argument in four
claims. Since by Lemma 2.2 the set spec(b) is closed, we write ∂D\ spec(b) = ∪jIj , where Ij are
open arcs. Let 0 < C1 < 1 be a constant to be fixed later. For every ξ ∈ Ij , we choose r(ξ) such
that 1− r(ξ) = C1/|b′(ξ)|.
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Claim 4.1. There exists a constant C2 > 0 such that

1

|b′(ξ)|
≤ C2dist(ξ, spec(b)) , ξ ∈ ∂D \ spec(b).

Proof. For every η ∈ spec(b), we take {zn} ⊂ ΩC approaching η. Since 1−C ≤ |b(zn)− b(ξ)| .
|b′(ξ)||zn − ξ|, we deduce that

1

|b′(ξ)|
. |η − ξ| .

Claim 4.2. There exist constants C3, C4 > 0 such that for every ξ ∈ ∂D\spec(b) and for every
|z − ξ| ≤ C3/|b′(ξ)|, we have

(12) |b(z)− b(ξ)− b′(ξ)(z − ξ)| ≤ C4|z − ξ|2|b′(ξ)|2 .

Proof. Fix ξ ∈ ∂D\spec(b). Consider the disc D(ξ) = {z ∈ C : |z − ξ| ≤ C3/|b′(ξ)|}. Due to
the previous claim, the two functions in (12) are analytic in D(ξ). Note that by assumption,
estimate (12) holds when z ∈ ∂D(ξ) and by the Maximum Principle the estimate (12) holds for
any z ∈ D(ξ).

Claim 4.3. There exists a constant 0 < C5 < 1 such that |b(r(ξ)ξ)| ≤ C5 for every ξ ∈
∂D\spec(b).

Proof. Since |b(ξ)| = 1, we rewrite (12) as

(13)

∣∣∣∣b(z)b(ξ)
− 1− b′(ξ)

b(ξ)
ξ

(
z

ξ
− 1

) ∣∣∣∣ ≤ C4|z − ξ|2|b′(ξ)|2 .

We consider z = r(ξ)ξ. Then∣∣∣∣b(r(ξ)ξ)b(ξ)
− 1− b′(ξ)

b(ξ)
ξ (r(ξ)− 1)

∣∣∣∣ ≤ C4(1− r(ξ))2|b′(ξ)|2 ,

which implies that b(r(ξ)ξ)/b(ξ) − 1 belongs to the disk B with centre at the negative point
b′(ξ)ξ (r(ξ)− 1))/b(ξ) with radius comparable to (1− r(ξ))2|b′(ξ)|2. Since C1 < 1, B is entirely
contained in the left half plane. Therefore, the point b(r(ξ)ξ)/b(ξ) is contained in 1 + B ⊂ D,
which is separated from ∂D. We deduce that there exists a constant 0 < C5 < 1 such that
|b(r(ξ)ξ)| ≤ C5 for every ξ ∈ ∂D\ spec(b).

The Claim 4.3 proves that
|b| ≤ C5 on ∪j {r(ξ)ξ : ξ ∈ Ij} .

Consider the domain Ω := {rξ : 0 < r < 1 if ξ ∈ spec(b) , 0 < r < r(ξ) if ξ ∈ ∪jIj}. By the
Maximum Principle

|b| ≤ max{C,C5} < 1 on Ω.

Claim 4.4. There exists a constant C6 > 0 such that |b(z)| > C6 for every z ∈ D \ Ω.

Proof. By assumption, we know that

|b(z)− b(ξ)| ≤ C|b′(ξ)||z − ξ| . z ∈ D, ξ ∈ ∂D \ spec(b).

Taking 0 < C1 < 1 sufficiently small, we deduce that

|b(z)| ≥ 1− CC1 > 0 , z ∈ D \ Ω.
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We are now ready to prove that the function b is one-component. We fix a constant 1 > C7 > Ci,
i = 1, . . . , 6 and consider the sublevel set W := {z ∈ D : |b(z)| < C7}. Therefore Ω ⊂ W. We
assume there exists a non empty connected component Ω∗ of W such that Ω∗ ∩ Ω = ∅. Then
Ω∗ would be simply connected and contained in D \ Ω. Consider a conformal map φ : D→ Ω∗.
Since Ω∗ ∩ ∂D contains at most two points, the function b ◦ φ/C7 is inner. Claim 4.4 gives that
|b(z)| > C6 and hence the inner function b ◦ φ/C7 is bounded from below. Therefore it has to
be constant which is impossible. Consequently, W is connected, which concludes the proof.

We note that if b is one-component, Theorem 1.4 tells us that

(14) sup
z∈D

|1− b(ξ)b(z)|
|1− ξ̄z|

≤ C|b′(ξ)|, ξ ∈ ∂D \ spec(b).

We now deduce the following useful estimate.

Corollary 4.1. Let b ∈ H∞ with ||b||∞ = 1. Fix 0 < C < 1 and consider the sublevel set
ΩC := {z ∈ D : |b(z)| ≤ C}.

a) There exist a constant C1 > 0 such that dist(ξ,ΩC ∪ spec(b)) ≤ C1/|b′(ξ)|, for any ξ ∈ ∂D\
spec(b).

b) If b is one-component and spec(b) ⊂ ΩC , then there exits a constant C2 > 0 such that
dist(ξ,ΩC) ≥ C2/|b′(ξ)|, for any ξ ∈ ∂D\ spec(b).

Proof. The proof of statement a) is contained in [BFM]. On the other hand, statement b) is an
immediate consequence of (14).

We note that when b is one-component, |b′(ξ)| is (uniformly) comparable to dist(ξ,ΩC), ξ ∈
∂D \ spec(b). Here ΩC = {z ∈ D : |b(z)| ≤ C} is the connected sublevel set of b.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We start by proving statement a). Claim 4.2 in the proof of Theorem
1.4 provide constants C1, C2 > 0 such that

|b(z)− b(ξ)− b′(ξ)(z − ξ)| ≤ C1|z − ξ|2|b′(ξ)|2

when ξ ∈ ∂D\ spec(b) and |z − ξ| ≤ C2/|b′(ξ)|. Dividing by |z − ξ|2 and taking z tending to ξ,
we obtain

|b′′(ξ)| ≤ 2C1|b′(ξ)|2

for every ξ ∈ ∂D\ spec(b). We note that Corollary 4.1 tells us that for any η ∈ ∂ (spec(b)) we
have

lim
ξ→η,ξ∈∂D\spec(b)

|b′(ξ)| =∞ .

Therefore the function H(ξ) defined in (6) is Lipschitz.
For the proof of statement b), we use some ideas from the proof of Theorem 1.4. Due to

Lemma 2.2, spec(b) is a closed subset of ∂D. We denote ∂D\ spec(b) = ∪jIj and for every ξ ∈ Ij
consider 0 < r(ξ) < 1 defined by

1− r(ξ) =
1

16

1

|b′(ξ)|
.

Since the function H is Lipschitz, there exists a constant C > 0 such that∣∣∣∣ 1

b′(ξ)

∣∣∣∣ ≤ C|ξ − η| , ξ ∈ ∂D \ spec(b), η ∈ spec(b) .
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Therefore ∣∣∣∣ 1

b′(ξ)

∣∣∣∣ ≤ C dist(ξ, spec(b)) .

Moreover, for every t, ξ ∈ Ij we have∣∣∣∣ 1

b′(t)
− 1

b′(ξ)

∣∣∣∣ ≤ C|t− ξ|
which implies that

(15)
1

2

∣∣∣∣ 1

b′(ξ)

∣∣∣∣ ≤ ∣∣∣∣ 1

b′(t)

∣∣∣∣ ≤ 3

2

∣∣∣∣ 1

b′(ξ)

∣∣∣∣
when |t− ξ| < (2C|b′(ξ)|)−1. For z, ξ ∈ Ij ,

b(z)− b(ξ)− b′(ξ)(z − ξ) =

∫ z

ξ
b′′(t)(z − t)dt .

Since |b′′(t)| ≤ C|b′(t)|2 for t /∈ spec(b), we deduce that

∣∣b(z)− b(ξ)− b′(ξ)(z − ξ)∣∣ ≤ C ∫ z

ξ
|b′(t)|2|z − t|dt .

Using (15), we obtain a constant C1 > 0 such that

(16)
∣∣b(z)− b(ξ)− b′(ξ)(z − ξ)∣∣ ≤ C1|b′(ξ)|2|z − ξ|2 , z, ξ ∈ Ij

For sake of clarity, we split the rest of the proof in two claims.

Claim 4.5. There exists C2 < 1 such that |b(r(ξ)ξ)| ≤ C2, ξ ∈ Ij .

Proof. We argue by contradiction. Assume there exist ξn ∈ Ij such that |b(r(ξn)ξn)| → 1. Since
||b||∞ = 1 and

b(r(ξn)ξn) =

∫
∂D
Pr(ξn)ξn(t)b(t)dm(t) ,

for any δ > 0, we have

1

1− r(ξn)
m {t : |t− ξn| < 1− r(ξn) with |b(t)− b(r(ξn)ξn)| > δ} → 0 , as n→∞.

This contradicts (16) and finishes the proof of the Claim.

We consider

Ω :=
{
rξ : ξ ∈ ∂D, 0 < r < 1 if ξ ∈ spec(b), 1 ≥ 1− r > C2/|b′(ξ)| if ξ ∈ ∂D \ spec(b)

}
.

We note that |b(ξ)| ≤ C for almost every ξ ∈ spec(b). On the other hand, Claim 4.5 tells us
that |b(r(ξ)ξ)| ≤ C2 for every ξ ∈ ∪jIj . Then, the Maximum Principle gives

(17) sup
Ω
|b(z)| ≤ max (C,C2) < 1 .

Claim 4.6. We have |b(z)| ≥ 1/2 for any z ∈ D \ Ω.
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Proof. We fix z ∈ D \ Ω and we consider ξ = z/|z|. There exists 0 < r < 1 such that

|b(z)− b(ξ)| ≤ |b′(rξ)|(1− |z|) .

We apply Lemma 2.5 to deduce that

|b(z)− b(ξ)| ≤ 4|b′(ξ)|(1− |z|) .

Since z ∈ D \ Ω, we have 1− |z| < 1− r(ξ) = 1/16 |b′(ξ)| and we obtain that

|b(z)− b(ξ)| < 1/2 .

We deduce that |b(z)| ≥ 1/2, which proves the claim.

We can now conclude the proof of statement b). We fix 1 > C3 > max{C,C1, C2, 1/2} and
we prove that ΩC3 = {z ∈ D : |b(z)| < C3} is connected. We note that (17) implies that Ω is
contained in ΩC3 . Let Ω1 ⊂ D \ Ω be another connected component of ΩC3 . Then Ω1 is simply
connected and there exists j such that

Ω1 ⊂ {rξ : ξ ∈ Ij , 1 > r > r(ξ)} .

Let φ : D → Ω1 be a conformal mapping. Since ∂Ω1 ∩ ∂D contains at most two points, the
function U := (C3)−1b ◦ φ is inner. However, Claim 4.6 says that U is bounded from below and
this gives that Ω1 is empty, that is, ΩC3 is connected.

We finally prove Corollary 1.6.

Proof of Corollary 1.6. We have just to prove that (6) is equivalent to the conditions b) and c)
of Corollary 1.6. Indeed, if b) and c) hold, the function H defined in (6) has to be Lipschitz
because it has bounded derivative at almost every point of the unit circle.

On the other hand, if H is Lipschitz, then, due to Rademacher’s theorem and the regularity
of b′(ξ) when ξ /∈ spec(b), we obtain condition b). Analogously, condition c) follows directly
from the definition of H.

5 Clark measures of one-component bounded function

In this section, we prove Theorem 1.7, characterizing Clark measures of one-component bounded
functions. We need two preliminary results.

Lemma 5.1. Let b ∈ H∞(D) with ||b||∞ = 1. Let µ be the Clark measure of b at the value
α = 1. Then P (µ) = spec(b), where P (µ) :=spt(µ) \ a(µ).

Proof. We need to verify the two inclusions. If ξ /∈ spec(b), the function b extends analytically
across an arc containing ξ. Then either (1+b(z))/(1−b(z)) is analytic through an arc I(ξ) ⊂ ∂D
containing ξ or b(ξ) = 1. In the first case, µa(I(ξ)) = 0 and consequently, since µs is carried on
{t : b(t) = 1} ⊂ ∂D \ I(ξ), we deduce µ(I(ξ)) = 0, which implies that ξ /∈spt(µ). If, on the other
hand, b(ξ) = 1, then ξ ∈ a(µ). Consequently, in both the cases, ξ /∈ P (µ).

Let us now assume ξ /∈ P (µ). If ξ ∈ a(µ), then b(z) has an analytic extension at a neigh-
bourhood of ξ and b(ξ) = 1, which implies that ξ /∈ spec(b). If on the other hand, ξ /∈spt(µ),
then (1 + b(z))/(1− b(z)) extends analytically at a neighbourhood I(ξ) of ξ and its real part is
equal to zero at I(ξ). For this reason, |b(ξ)| = 1 at I(ξ), which means that I(ξ) ⊂ ∂D \ spec(b),
which implies that, in both the cases, ξ /∈ spec(b).
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Lemma 5.2. Let µ be a positive, finite Borel measure on the unit circle satisfying the assump-
tions b i) and b ii) in Theorem 1.7. Then there exists a constant C > 0 such that

(18)

∣∣∣∣ ∫
∂D

dµ(t)

1− t̄rξ
−
∫
{|t−ξ|>1−r}

dµ(t)

1− t̄ξ

∣∣∣∣ ≤ C, 0 < r < 1, ξ ∈ P (µ).

Proof. In order to obtain (18), it is sufficient to prove that that there exists a constant C1 > 0
such that

(19)

∣∣∣∣ ∫
{|t−ξ|>1−r}

(
1

1− t̄rξ
− 1

1− t̄ξ

)
dµ(t)

∣∣∣∣+

∣∣∣∣ ∫
{|t−ξ|<1−r}

dµ(t)

1− t̄rξ

∣∣∣∣ ≤ C1 .

For n ≥ 0 let I(n) be the arc centered at ξ of measure 2n+1(1− r). We note that there exists a
constant C2 > 0 such that∫

{|t−ξ|>1−r}

1− r
|1− t̄rξ||1− t̄ξ|

dµ(t) ≤
∞∑
n=0

∫
I(n+1)\I(n)

1− r
22n(1− r)2

dµ(t)(20)

=

∞∑
n=0

µ(I(n+ 1) \ I(n))

22n(1− r)
≤ C2 ,

because by b.i) and b.ii), µ(I) . |I| if I contains two different points of spt(µ). Similarly there
exists a constant C3 > 0 such that

(21)

∫
{|t−ξ|<1−r}

dµ(t)

|1− t̄rξ|
≤ 1

1− r
µ ({t : |t− ξ| < 1− r}) ≤ C3 .

Consequently, (20) and (21) imply (19), from which estimate (18) follows.

We are now ready to prove Theorem 1.7. Even if some parts of this proof follow the ideas of
the analogue version for inner functions in [Be], for the sake of completeness we have decided to
present them here again.

Proof of Theorem 1.7. We start by proving that a) implies b). We assume that there exists a
one-component bounded function b such that

1 + b(z)

1− b(z)
=

∫
∂D

ξ + z

ξ − z
dµ(ξ) + 2i

= (b(0))

|1− b(0)|2
, z ∈ D.

Since spec(b) is closed due to Lemma 2.2, Lemma 5.1 gives that P (µ) =spec(b). First we
note that spt(µa) ⊂ spec(b). Indeed, if I is an arc contained in ∂D\ spec(b), then b extends
analytically through I and |b| = 1 on I. Therefore the real part of (1 + b(rξ))/(1− b(rξ)) tends
to 0 as r tends to 1, for any ξ ∈ I. Hence µa(I) = 0.

Due to Lemma 2.4, there exists a constant 0 < C < 1 such that

spec(b) =

{
ξ ∈ ∂D : lim sup

r→1
|b(rξ)| ≤ C

}
.

Therefore there exists a constant C1 > 0, such that

1/C1 ≤ <
(

1 + b(rξ)

1− b(rξ)

)
=

∫
∂D

1− r2

|t− rξ|
dµ(t) ≤ C1 ,

when 1 > r > r0(ξ) and ξ ∈ spec(b). Hence

1/C1 ≤ g(ξ) ≤ C1
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for m-almost every ξ ∈ spec(b). Consequently, µ satisfies b.i).

Since lim supr→1 |b(rξ)| ≤ C < 1 for any ξ ∈ spec(b) = P (µ), we deduce

P (µ) ∩
{
ξ ∈ ∂D : lim sup

r→1
<b(rξ) = 1

}
= ∅.

Since the singular measure µs is carried by the set {ξ ∈ ∂D : limr→1 b(rξ) = 1}, we deduce that
µs(P (µ)) = 0, which implies that µs is purely atomic.

Let I = (α, β) be a connected component of ∂D \P (µ). Since spec(b) = P (µ), the function b
extends analytically through I. Hence, the set a(µ) := {ξ ∈ I : b(ξ) = 1} is discrete. Corollary
4.1 says that

|b′(ξ)|−1 ∼= dist (ξ, {z ∈ D : |b(z)| ≤ C})

when ξ ∈ ∂D\spec(b). Hence
lim

I3ξ→α
|b′(ξ)| =∞.

Since, due to Lemma 2.6, ξb′(ξ)b(ξ)−1 ≥ 0, when ξ ∈ I, we deduce that

lim
I3ξ→α

ξb′(ξ)

b(ξ)
= +∞ .

Therefore, there exist infinitely many different points ξk ∈ I, such that ξk → α and b(ξk) = 1.
A similar argument replacing α by β shows that the set a(µ) ∩ I is infinite and it accumulates
to both α and β. We deduce that every ξ ∈ a(µ) has two neighbours.

In order to prove that C−1|ξ − ξ±| ≤ µ{ξ} ≤ C|ξ − ξ±| when ξ ∈ a(µ) and ξ± are its
neighbours, we apply an argument due to A. Baranov and K. Dyakonov [BD]. Fix ξ ∈ a(µ). We
pick t ∈ (ξ, ξ+) such that b(t) = −1. Then, using Theorem 1.4, we get

|ξ+ − ξ| > |t− ξ| & |b′(ξ)|−1|b(t)− b(ξ)| = 2|b′(ξ)|−1 .

Hence µ{ξ} . |ξ − ξ+|. Let N be a positive integer to be fixed later. We split the arc (ξ, ξ+)
into N pairwise disjoints sub-arcs Jk = (αk, βk), with k = 1, . . . , N, such that

Arg(b(βk))−Arg(b(αk)) =
2π

N
, k = 1, . . . , N.

Let sk ∈ (αk, βk), such that |b′(sk)| = min {|b′(s)| : s ∈ [αk, βk]}. Then

(22)
2π

N
=

∫ βk

αk

sb′(s)

b(s)
dm(s) ≥ |b′(sk)||βk − αk| , k = 1, . . . , N.

when k = 1, . . . , N . Due to Corollary 4.1,

(23) |βk − αk| ≤ C1
2π

N
dist (sk, {z ∈ D : |b(z)| ≤ C}) , k = 1, . . . , N.

We now take t ∈ (αk, βk) and observe that

|b′(t)| =
∫
D

1

|1− t̄z|2
dσb(z) .

We note that |t − z| ≥ |sk − z| − |sk − t| ≥ |sk − z| − |βk − αk| . Consequently, if we choose
N > 4C1π, (23) gives us that

|t− z| ≥ 1

2
|sk − z| if |b(z)| ≤ C.
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Since spt(σb) ⊂ {z ∈ D : |b(z)| ≤ C}, we deduce

|b′(t)| ≤ 4|b′(sk)|

and, by using (22), we deduce that

|ξ+ − ξ| .
N∑
k=1

|βk − αk| ≤ C(N)
1

|b′(ξ)|
.

This finishes the proof of b.ii).

Finally we prove b.iii). An easy calculation (see [CMR]), shows that

(24)
1

1− b(z)
=

∫
∂D

dµ(t)

1− t̄z
− ||µ|| − 1

2
− i = (b(0))

|1− b(0)|2
, z ∈ D.

Using (24), (18) and the fact that lim supr→1 |b(rξ)| ≤ C < 1 for ξ ∈ spec(b), we obtain that
H∗(µ)(ξ) is bounded when ξ ∈ P (µ).

On the other hand, if ξ ∈ a(µ), we have

H∗(µ)(ξ) = lim
z→ξ

(
1

1− b(z)
− 1

b′(ξ)(1− ξ̄z)

)
+ C

= lim
z→ξ

1

(1− ξ̄z)

(
1− ξ̄z

1− b(z)
− 1

b′(z)

)
+ C

=− b′′(ξ)

b′(ξ)2
+ C ,

which is uniformly bounded due Corollary 1.6. This estimate finishes the proof of b.iii) and,
consequently, of b).

Let us now show that b) implies a). Given the measure µ satisfying the assumption in b), we
need to show that the function b defined as

(25)
1 + b(z)

1− b(z)
=

∫
∂D

t+ z

t− z
dµ(t) z ∈ D

is one-component. The main ingredient will be Corollary 1.6. We start by showing the first
condition in Corollary 1.6. Let ξ ∈ spec(b). If ξ lies in the spectrum of the inner factor of b then
ξ ∈ {z ∈ D : |b(z)| < ε}, for any ε > 0. If ξ ∈ spt(µa) we will show that there exists a constant
C < 1 such that

lim sup
r→1

|b(rξ)| ≤ C.

We note the (25) gives

(26)
1− |b(rξ)|2

|1− b(rξ)|2
=

∫
∂D

1− r2

|t− rξ|2
dµ(t) ≥ µ ({t : |t− ξ| < 1− r})

4(1− r)
≥ C1 ,

according to assumptions b.i) and b.ii). On the other hand, b.iii) and (18) give that there exists
a constant C2 > 0 such that

(27) lim sup
r→1

∣∣∣∣ ∫
∂D

dµ(t)

1− t̄rξ

∣∣∣∣ ≤ C2 .

Hence (24), (26) and (27) provide a constant 0 < C3 < 1 such that

lim sup
r→1

|b(rξ)| ≤ C3 .

From this it follows that the function b satisfies Condition a) of Corollary 1.6. Next we will
show that condition (b) in Corollary 1.6 holds. We need the following preliminary result.
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Lemma 5.3. Let µ be a Borel measure which satisfies condition b) of Theorem 1.7 and let
ξ0 ∈ a(µ). Let k > 0 be a constant sufficiently small compared with the constant C = C(µ)
appearing in condition b) of Theorem 1.7. We denote

(28) Dξ0(k) := {z ∈ C : |z − ξ0| < kµ(ξ0)} .

Then, the function b defined in (25) has an analytic extension at Dξ0(k) and

(29)

∣∣∣∣1− b(z)ξ0 − z

∣∣∣∣ ∼= 1

µ(ξ0)
, z ∈ Dξ0(k).

Proof of Lemma 5.3. We know that there exists a constant C1 such that

(30)
1

1− b(z)
=

∫
∂D\{ξ0}

dµ(t)

1− t̄z
+

µ(ξ0)

1− ξ̄0z
+ C1 , z ∈ D.

We note that∣∣∣∣ ∫
∂D\{ξ0}

dµ(t)

1− t̄z

∣∣∣∣ =

∣∣∣∣ ∫
∂D\{ξ0}

1− t̄ξ0

1− t̄z
dµ(t)

1− t̄ξ0

∣∣∣∣
≤
∣∣∣∣ ∫

∂D\{ξ0}

dµ(t)

1− t̄ξ0

∣∣∣∣+

∣∣∣∣ ∫
∂D\{ξ0}

t̄(z − ξ0)

(1− t̄z)(1− t̄ξ0)
dµ(t)

∣∣∣∣ .
Due to b.iii), the first integral is uniformly bounded. The second integral is estimated as follows,∣∣∣∣ ∫

∂D\{ξ0}

t̄(z − ξ0)

(1− t̄z)(1− t̄ξ0)
dµ(t)

∣∣∣∣ ≤ |z − ξ0|
∫
∂D\{ξ0}

dµ(t)

|1− t̄z||1− t̄ξ0|
.

Since |z − ξ0| ≤ kµ(ξ0) and |t− ξ0| ≥ |ξ± − ξ0| ∼= µ(ξ0), we deduce that |t− z| ≥ 1
2 |t− ξ0| if k is

sufficiently small. Hence

|z − ξ0|
∫
∂D\{ξ0}

dµ(t)

|1− t̄z||1− t̄ξ0|
≤ 2|z − ξ0|

∫
∂D\{ξ0}

dµ(t)

|1− t̄ξ0|2

Using the fact that µ(I) is comparable to |I| when the arc I contains two different points of
spt(µ), we obtain that ∫

∂D\{ξ0}

dµ(t)

|t− ξ0|2
∼=

1

|ξ+ − ξ0|
.

Consequently there exists a constant C2 > 0 such that∣∣∣∣ ∫
∂D\{ξ0}

t̄(z − ξ0)

(1− t̄z)(1− t̄ξ0)
dµ(t)

∣∣∣∣ ≤ C2 .

At this point, identity (30) implies that there exits a constant C3 > 0 such that∣∣∣∣ ξ0 − z
1− b(z)

− µ(ξ0)ξ̄0

∣∣∣∣ ≤ C3|ξ0 − z| .

By taking k sufficiently small so that C3|ξ0 − z| ≤ C3kµ(ξ0) ≤ 1/2 µ(ξ0), we deduce that∣∣∣∣ ξ0 − z
1− b(z)

− µ(ξ0)ξ̄0

∣∣∣∣ ≤ 1

2
µ(ξ0) ,

for every z ∈ Dξ0(k), which proves the Lemma.
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We can now check condition (b) of Corollary 1.6. The identity (25) gives

(31)
b′(z)

(1− b(z))2
=

∫
∂D

ξ̄

(1− ξ̄z)2
dµ(ξ), z ∈ D

and

(32)
b′′(z)

(1− b(z))2
+

b′(z)2

(1− b(z))3
= 2

∫
∂D

ξ̄2

(1− ξ̄z)3
dµ(ξ) , z ∈ D.

Let ξ0 ∈ a(µ). By Lemma 5.3,
|1− b(z)| & 1

when z ∈ ∂Dξ0(k). Hence, (31) gives that

|b′(z)| . µ(ξ0)

|1− ξ̄0z|2
+

∫
∂D\{ξ0}

dµ(ξ)

|1− ξ̄z|2

when z ∈ ∂Dξ0(k). Since µ(I) ∼= |I| if I is an arc containg two points of spt(µ), we deduce that
the last integral can be estimated by |ξ0 − ξ+|−1 ∼= 1/µ(ξ0). Therefore

|b′(z)| . 1

µ(ξ0)

when z ∈ ∂Dξ0(k). Now (32) implies that

|b′′(z)| . |b′(z)|2 +
2µ(ξ0)

|1− ξ̄0z|3
+ 2

∫
∂D\{ξ0}

dµ(ξ)

|1− ξ̄z|3
, z ∈ ∂Dξ0(k).

Acting as before, we obtain that

|b′′(z)| . 1

µ(ξ0)2

when z ∈ ∂Dξ0(k), and hence, by Maximum Principle

|b′′(z)| . |b′(ξ0)|2

for any z ∈ Dξ0(k). Now identity (31) gives

|b′(z)| = |1− b(z)|2
∣∣∣∣ ξ̄0

(1− zξ̄0)2
µ(ξ0) +

∫
∂D\{ξ0}

ξ̄

(1− ξ̄z)2
dµ(ξ)

∣∣∣∣ ,
for any z ∈ ∂D \ spec(b). Applying Lemma 5.3, we deduce

(33) |b′(z)| & µ(ξ0)

|1− ξ̄0z|2
|1− b(z)|2 ∼=

1

µ(ξ0)

when z ∈ Dξ0(k). Consequently

(34) |b′′(z)| ≤ |b′(z)|2

for any z ∈ Dξ0(k).
We need to obtain the same estimate also for the other points z ∈ ∂D\

(
spec(b) ∪a(µ) Dξ(k)

)
.

We start by showing that

(35) |b(z)− 1| > k

for every z ∈ ∂D \
(
spec(b) ∪a(µ) Dξ(k)

)
. Indeed, let z ∈ (ξ−, ξ+) where ξ± are neighbour

atoms of µ. We note that, due to Lemma 5.3, |b(w) − 1| ∼= k if w ∈ ∂Dξ±(k) ∩ ∂D. Since
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Arg(b) is increasing for t ∈ (ξ−, ξ+), estimate (35) follows. Therefore if z /∈ ∪a(µ)Dξ(k), we have
|z − ξ±| ≥ kµ(ξ±). On the other hand, |z − ξ±| ≤ |ξ+ − ξ−| ∼= µ(ξ±). Therefore

(36) kµ(ξ±) ≤ |z − ξ±| ≤ Cµ(ξ±) .

Applying the previous argument with ξ0 replaced by ξ±, we deduce that |b′′(z)| . |b′(z)|2. This
finishes the proof of property b) of Corollary 1.6. Finally we need to verify that |b′(z)| → ∞ as
0 <dist(z, spec(b))→ 0. We note that (33) and assumption b.ii) gives it for z ∈ ∪a(µ)Dξ(k). For
z /∈ ∪a(µ)Dξ(k), let, as before, z ∈ (ξ−, ξ+) where ξ± are neighbour atoms of µ. Then (35), (36)
and (33) give that |b′(z)| & |b′(ξ±)| which, since dist(z, spec(b))→ 0, finishes the proof.

Remark. We note that if b is an inner function, Theorem 1.7 reduces to the result of [Be] on
Clark measures of one-component inner functions. Indeed, in this case, the absolute continuous
part of the measure µ would be identically zero and the Hilbert transform H∗(µ) would be equal
to

H(µ)(ξ) :=

∫
∂D\{ξ}

dµ(t)

1− t̄ξ
,

for any ξ ∈ a(µ).
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