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Aims and summary

We study dynamical persistence properties of self-maps of (finite,
connected) graphs, and explore dynamical consequences of the fact
that a map has an orbit of a given type (pattern).

aims

For graph maps, generalise results known for interval maps
(Sharkovskĭı) and surface homeomorphisms. In particular, within a
given homotopy (-equivalence) class of a graph map relative to one
of its periodic orbits:

define a notion of pattern of the orbit.

find canonical representatives, which minimise topological
entropy and periodic orbit structure within the given class.

This talk is essentially based on the paper

[AGGLMM] Ll. Alsedà, F. Gautero, J. Guaschi, J. Los, F. Mañosas, P. Mumbrú, Patterns and minimal

dynamics for graph maps, Proc. London Math. Soc. 91 (2005), 414–442.
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An introductory example: the interval case

The Sharkovskĭı Ordering Sh≥:

3 Sh> 5 Sh> 7 Sh> · · · Sh> 2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> · · · Sh>
4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> · · · Sh> · · · Sh>
2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> · · · Sh> 2∞ Sh> · · · Sh>
2n

Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

is defined on the set
NSh = N ∪ {2∞}

(we have to include the symbol 2∞ to assure the existence of
supremum for certain sets).

In the ordering Sh> the least element is 1 and the largest is 3. The
supremum of the set {1, 2, 4, . . . , 2n, . . . } is 2∞.
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The Sharkovskĭı Ordering formal definition

If k = k ′ · 2p where p is non negative and k ′ is odd:

1 k Sh> 2∞ if k ′ > 1,
2 2∞ Sh> k if k ′ = 1,

and if n = n′ · 2q where q is non negative and n′ is odd, then
n Sh> k if and only if one of the following next statements holds:

3 k ′ > 1, n′ > 1 and p > q,
4 k ′ > n′ > 1 and p = q,
5 k ′ = 1 and n′ > 1,
6 k ′ = 1, n′ = 1 and p < q.
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Initial segments for the Sharkovskĭı Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples of
sets of the form S(s) are:
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Initial segments for the Sharkovskĭı Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples of
sets of the form S(s) are:

S(2∞) = {1, 2, 4, . . . , 2n, . . . },
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Initial segments for the Sharkovskĭı Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples of
sets of the form S(s) are:

S(2∞) = {1, 2, 4, . . . , 2n, . . . },
S(3) = N,
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Initial segments for the Sharkovskĭı Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples of
sets of the form S(s) are:

S(2∞) = {1, 2, 4, . . . , 2n, . . . },
S(3) = N,
S(6) is the set of all positive even numbers union {1}, and
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Initial segments for the Sharkovskĭı Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples of
sets of the form S(s) are:

S(2∞) = {1, 2, 4, . . . , 2n, . . . },
S(3) = N,
S(6) is the set of all positive even numbers union {1}, and
S(16) = {1, 2, 4, 8, 16}.
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Initial segments for the Sharkovskĭı Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples of
sets of the form S(s) are:

S(2∞) = {1, 2, 4, . . . , 2n, . . . },
S(3) = N,
S(6) is the set of all positive even numbers union {1}, and
S(16) = {1, 2, 4, 8, 16}.

Note

S(s) is finite if and only if s ∈ S(2∞).
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Sharkovskĭı’s Theorem

Theorem

For each continuous map g from a closed interval of the real line
into itself, there exists s ∈ NSh such that Per(g) = S(s).
Conversely, for each s ∈ NSh there exists a continuous map g from
a closed interval of the real line into itself such that Per(g) = S(s).

Per(g) denotes the set of (least) periods of all periodic points of g .
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Idea of the proof of Sharkovskĭı’s Theorem

The orbit P

x1 x2 x3 x4

The map g
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The minimal (connect–the–dots) map

The pattern of P

(1, 3, 4, 2)

The minimal map fP

One has: Per(g) ⊃ Per(fP).
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An introduction to the general notion of pattern

A summary of three known cases

periodic orbit of pattern A canonical representatives

interval map permutation π induced by map on orbit ‘Connect-the-dots’ maps fπ

surface homeo. braid type (isotopy class rel. orbit) Nielsen-Thurston representatives

tree map ‘relative positions’ of the points of orbit canonical models of trees
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Basic properties of patterns

(A) fπ minimises topological entropy within the class of interval
maps admitting a periodic orbit whose pattern is π.

(B) fπ admits a Markov partition which gives a good “coding” to
describe the dynamics of the map fπ. The topological entropy
of fπ may be calculated from this partition.

(C) fπ is essentially unique.

(D) the pattern of A forces a pattern ρ if and only if fπ has a
periodic orbit whose pattern is ρ. We recall that a pattern A
forces a pattern B if and only if each map exhibiting the
pattern A also exhibits the pattern B. In this sense, the
dynamics of fπ are minimal within the class of maps admitting
a periodic orbit whose pattern is πA.
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The space cannot be fixed (the connect–the–dots map
may not exist)!!

x2

x3

x1

v x5

x4

x6
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The correct space for the above model

1

6

3

2

5

4
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The definition of a pattern

Let P (resp. Q) be a periodic orbit of a graph map f : G −→ G
(resp. g : G ′ −→ G ′). The triples (G , P, f ), (G ′, Q, g) are said to
have the same pattern if there exists a homotopy equivalence
r : G −→ G ′ such that:

1 r
∣

∣

P
sends P bijectively onto Q.

2 the diagram:

(G , P)
r

−−−−→ (G ′, Q)

f





y





y

g

(G , P)
r

−−−−→ (G ′, Q)

commutes up to homotopy relative to P.

The resulting equivalence class, or pattern, of (G , P, f ) is denoted
by [G , P, f ].
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Remarks to the definition of pattern

This notion of pattern generalises the known ones in the case
of interval maps and surface homeomorphisms (by taking r to
be a homeomorphism).

Our definition allows us to compare periodic orbits of maps of
spaces having the same homotopy type, and not just
self-maps of a space.

We have an algebraic characterisation of pattern (conjugacy
class of groupoid endomorphisms of fundamental groupoids —
in Aut(·)).

For trees, to have the same pattern is equivalent to to have
the same period.

In S
1 all fixed points have the same pattern. However, already

in two-foil, two fixed points may have different pattern.
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The problem

To proceed as the known cases now we should be able to obtain
canonical models (the equivalent of the “connect-the-dots” maps)
relative to a pattern.

This is an open problem.
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Graph maps

If G is a (finite, connected) graph then π1(G ) ∼= Fn, the free group
of rank n.

A graph map f : G −→ G induces an endomorphism
Φ: Fn −→ Fn, well defined up to inner automorphisms and
conjugacy (choice of basepoint x , path from x to f (x),
identification of π1(G ) with Fn).

f is called a representative for Φ.

If further f sends vertexes to vertexes and edge-paths to
edge-paths, it is called a topological representative for Φ.

Definition (Bestvina-Handel)

A topological representative f : G −→ G for Φ is called efficient
(or train-track) if it has no invariant forests, and if ∀k ∈ N, the
restriction of f k to the interior of each edge is locally injective.
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Remarks

Φ admits efficient representatives if it is an irreducible free
group automorphism (Bestvina-Handel, Los), or an irreducible
free group endomorphism (Dicks-Ventura).

An efficient representative minimises topological entropy
within its homotopy equivalence class (Bestvina-Handel).
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Remarks

Φ admits efficient representatives if it is an irreducible free
group automorphism (Bestvina-Handel, Los), or an irreducible
free group endomorphism (Dicks-Ventura).

An efficient representative minimises topological entropy
within its homotopy equivalence class (Bestvina-Handel).

Questions

Do efficient representatives minimise dynamics?
If yes with which “measuring device”?
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Remarks

Φ admits efficient representatives if it is an irreducible free
group automorphism (Bestvina-Handel, Los), or an irreducible
free group endomorphism (Dicks-Ventura).

An efficient representative minimises topological entropy
within its homotopy equivalence class (Bestvina-Handel).

Questions

Do efficient representatives minimise dynamics?
If yes with which “measuring device”?

Answers

Do efficient representatives minimise dynamics?: yes
If yes with which “measuring device”?: patterns
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Nielsen fixed point theory

Nielsen fixed point theory and the notion of index play an
important role.

Let f : G −→ G be a graph map.

Definition

x , y ∈ Fix(f ) belong to the same Nielsen or fixed point class
for f if there exists an arc α from x to y such that f (α) ≃ α.

If C is a Nielsen class of f then ind(C , f ) ∈ Z will denote its
index.

If ind(C , f ) 6= 0 then C will be called an
essential Nielsen class of f .

A periodic orbit P will be called essential if ind(C , f |P|) 6= 0,
where C is a Nielsen class of f |P| containing any point of P.

[Jiang] B. Jiang, Lectures on Nielsen fixed point theory, American Mathematical Society, Providence, R.I.,
1983. MR 84f:55002
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Proposition

If x , y are periodic points of f of the same period k which belong
to the same Nielsen class for f k then the associated periodic orbits
have the same pattern. The converse is false in general (Example:
Two fixed points of the circle with different rotation number).

Non essential periodic orbits can be destroyed (think on fixed
points).

We need to describe what happens with the pattern after such a
destruction.
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Index and efficient expanding maps

Definition

If f is an efficient graph map it will be called expanding if f
expands each edge by some factor larger than one.

If f is an efficient, expanding map then each fixed point of f n with
n ∈ N is an isolated fixed point. Hence each fixed point class of f n

is finite, and the index of the class is just the sum of the indices for
each fixed point in the class.

The notion of index in our context of graph maps has the following
geometric formula due to [Jiang].
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Let x be fixed under f n, and let Ux be an open neighbourhood of
x in G whose closure is homeomorphic to a tree (a
valence(x)-star). Let E be the set of edges e of Ux that contain an
interval I with endpoint x and such that f n(I ) = e (that is,
self-covered in an expanding way). Then ind(x , f n) satisfies:

−1 ≤ ind(x , f n) = Card(E ) − 1 ≤ valence(x) − 1.

A consequence of he above formula is:

Lemma

Let f be an efficient, expanding graph map, and let F be a fixed
point class of f n. If F has just one point which is not a vertex then
ind(F , f n) = ±1. If the cardinal of F is greater than one then
ind(x , f n) = 1 for all x ∈ F \ V (G ), ind(x , f n) ≥ 0 for all
x ∈ F ∩ V (G ), and

ind(F , f n) ≥ Card(F ) − Card(F ∩ V (G )).

Ll. Alsedà (UAB) Patterns and minimal dynamics for graph maps 22/33



Aims and summary Example Patterns Definition Maps and represent. Reductions Main results An example

Reductions

Recall the definition of a pattern

Let P (resp. Q) be a periodic orbit of a graph map f : G −→ G (resp. g : G ′ −→ G ′).
The triples (G , P, f ), (G ′

, Q, g) are said to have the have the same pattern if there
exists a homotopy equivalence r : G −→ G ′ such that:

1 r
˛

˛

P
sends P bijectively onto Q.

2 the diagram:

(G , P)
r

−−−−−→ (G ′
, Q)

f

?

?

y

?

?

y

g

(G , P)
r

−−−−−→ (G ′
, Q)

commutes up to homotopy relative to P.

In this definition we now replace 1 by the condition:

1’ r
∣

∣

P
: P −→ Q is onto but non injective,

Then we say that [G ′, Q, g ] is a reduction of [G , P, f ], and that
[G , P, f ] is reducible.
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A nother view of reductions

The following propositions characterise the notion of reducibility.

Proposition

Let [G , P, f ] be a pattern with |P| = n. Then [G , P, f ] is reducible
if and only if there exists m < n with n = qm, for some
q ∈ Z

+ \ {1}, such that for any x ∈ P there exists a path γ from x
to f m(x) satisfying:

[γ(f m ◦ γ) . . . (f (q−1)m ◦ γ)] = ex ,

where ex denotes the homotopy class of the trivial loop based at x.

Proposition

If [G ′, Q, g ] is a reduction of [G , P, f ] and x ∈ P then
{

f j ·|Q|(x) | j ∈ Z+

}

is contained in a Nielsen class of f |P|.
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Main Theorem: Preservation of patterns

Theorem

Let f : G −→ G and g : G ′ −→ G ′ be representatives of an
endomorphism of a free group of finite rank. Then:

1 there exists an index-preserving bijection κ that, for each
n ∈ N, sends essential fixed point classes of f n to essential
fixed point classes of gn.

2 let P be an essential periodic orbit of f , let C be the fixed
point class for f |P| of a point of P, and let Q be the g-orbit
of a point of κ(C ). Then either [G ′, Q, g ] = [G , P, f ], or
[G ′, Q, g ] is a reduction of [G , P, f ].
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Minimal dynamics of efficient representatives

Theorem

Let f : G −→ G be an efficient, expanding representative of an
irreducible endomorphism Φ of a free group of rank n. Then there
exists a cofinite subset B of the set of periodic orbits of f with the
property that, for each representative g : G ′ −→ G ′ of Φ, there
exists a pattern-preserving injective function from B to the set of
periodic orbits of g . Moreover, the number of periodic points of f
whose orbit does not belong to B is at most
3 Card(V (G )) − 4χ(G ) ≤ 10(n − 1).
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Remarks

Each point whose orbit P belongs to B is alone in its Nielsen
class for all iterates of f |P|.

If P /∈ B then either it is an inessential periodic orbit of
vertexes, or else its pattern is reducible, and g exhibits the
pattern [G , P, f ] or one of its reductions (we have examples of
both phenomena).
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Two efficient representatives have the same pattern

A direct consequence of the above theorem is that two efficient,
expanding representatives of an irreducible endomorphism of a free
group of rank n have (with at most 20(n− 1) exceptions) the same
number of periodic orbits of any pattern.
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An example

Let G be the graph:

v0

a3 a2

a4

a1

a5

a6

> >

<

>

<

<

Let f : G −→ G be defined
by:

f (a1) = a2,
f (a2) = a6a3,
f (a3) = a5a1,
f (a4) = a1a2a6a3a1,
f (a5) = a4a3a1,
f (a6) = a1.
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Since f is a positive endomorphism, for all n > 0, there are no
cancellations in the algebraic expression of f n, and thus f n

restricted to any edge is locally injective. Since there are no
invariant forests, f is efficient.

Consider the following generators of π(G , {v0}):

α1 = a1a2a6a3a1a5,

α2 = a1a2a4a
−1
6 a−1

2 a−1
1 ,

α3 = a1a2a6a3,

and choose a1 to be a path from v0 to its image.
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With this choice, the induced endomorphism
f ∗ : π(G , v0) −→ π(G , v0) is given by:

f ∗([α1]) = [α1][α2][α3],
f ∗([α2]) = [α3],
f ∗([α3]) = [α1].

Clearly f ∗ is an irreducible automorphism of F3. Thus f is an
efficient representative of an irreducible automorphism of F3.

On the other hand, there exists a periodic orbit P of f of period 2
whose points, denoted respectively by p and q, lie in a3 and a5.
Let ω be the oriented injective subpath of a3 from p to v0, and let
π be the oriented injective subpath of ā5 from v0 to q. Direct
computations show that f (ωπ) = π̄a1ā1ω̄, and thus [G , P, f ] is
reducible. The orbit {p, q} is essential because ind(F , f 2) = 2,
where the fixed point class of p is denoted by F .
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Another efficient representative of f ∗ may be obtained by
considering the map g : G ′ −→ G ′, where G ′ is the rose with three
petals α, β and γ, given by:

g(α) = αβγ,
g(β) = γ,
g(γ) = α,

which is also efficient.

Notice that this representative has an inessential periodic orbit of
vertexes (in fact, a fixed point), while the preceding representative
f : G −→ G has no fixed points.

So we have an example of vanishing inessential fixed points in
efficient models.
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Since the orbit {p, q} of f is essential, by the Main Theorem there
exists a fixed point class C of g2 that is associated with the class
F . Since g has no periodic orbits of period 2, C must be the class
of the fixed point.

We thus obtain an example of a reducible pattern in an efficient
model that is reduced by a homotopy equivalence.
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