A strongly invariant pinched core strip that does not contain any arc of curve.

Lluís Alsedà
in collaboration with F. Mañosas and L. Morales
Departament de Matemàtiques
Universitat Autònoma de Barcelona
http://www.mat.uab.cat/~alseda

Universitat Autonorna de Barcelona

Outline

(1) Motivation

- Sharkovskiï's Theorem for quasi-periodically forced interval maps
- Pseudo-curves
(2) The inductive construction of a pseudo-curve
(3) A skew product on Ω
(4) Conclusions

Motivation

In the paper

圊 [FJJK] R. Fabbri, T. Jäger, R. Johnson and G. Keller, A Sharkovskii-type theorem for minimally forced interval maps, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Shauder Center, 26 (2005), 163-188.
the Sharkovskiĭ theorem was extended to a class of systems that are essentially quasi-periodically forced interval maps.

This is a first step towards the understanding of the quasi-periodically forced Combinatorial dynamics.

Sharkovskiï's Theorem for quasi-periodically forced interval maps

In what follows we consider the cylinder $\mathbb{S}^{1} \times I$ and the following family of skew products on it:

$$
\binom{\theta_{n+1}}{x_{n+1}}=T\binom{\theta_{n}}{x_{n}}=\binom{R\left(\theta_{n}\right)}{f\left(\theta_{n}, x_{n}\right)}
$$

where $R\left(\theta_{n}\right)=\theta_{n}+\omega(\bmod 1)$ with $\omega \in \mathbb{R} \backslash \mathbb{Q}$ and $f: \mathbb{S}^{1} \times I \longrightarrow I$ is continuous in both variables.

Observation

In fact, in [JFFK] they consider a slightly more general situation. Indeed, instead of taking the cylinder they consider the product of a compact metric space Θ with I. Then, $R: \Theta \longrightarrow \Theta$ is a minimal homeomorphism with the property that R^{ℓ} is minimal for every ℓ. We work in the cylinder case for simplicity and clarity.

The Sharkovskiĭ Ordering ${ }_{\text {st }} \geq$

It is the ordering
$3_{\mathrm{sh}}>5_{\mathrm{sh}}>7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>$
$2 \cdot 3_{\mathrm{sh}}>2 \cdot 5_{\mathrm{sh}}>2 \cdot 7_{\mathrm{sh}}>\cdot{ }_{\mathrm{sh}}>$
$4 \cdot 3_{\mathrm{sh}}>4 \cdot 5_{\mathrm{sh}}>4 \cdot 7_{\mathrm{sh}}>\cdot{ }_{\mathrm{sh}}>$
$2^{n} \cdot 3_{\mathrm{sh}}>2^{n} \cdot 5_{\mathrm{sh}}>2^{n} \cdot 7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>$
$2^{\infty}{ }_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>2^{n}{ }_{\mathrm{Sh}}>\cdots_{\mathrm{sh}}>16_{\mathrm{sh}}>8 \mathrm{Sh}>4_{\mathrm{sh}}>2_{\mathrm{sh}}>1$.
defined on the set $\mathbb{N}_{\text {Sh }}=\mathbb{N} \cup\left\{2^{\infty}\right\}$ (we have to include the symbol 2^{∞} to assure the existence of supremum for certain sets).

In the ordering ${ }_{\mathrm{sh}} \geq$ the least element is 1 and the largest is 3 . The supremum of the set $\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$ is 2^{∞}.

Theorem (Fabbri, Jäger, Johnson and Keller)

Suppose that $T: \mathbb{S}^{1} \times I \longrightarrow \mathbb{S}^{1} \times I$ of the above form admits a q-periodic strip and let $p \in \mathbb{N}$ be such that $p \leq_{\text {sh }} q$. Then T admits a p-periodic core strip.

Theorem (Fabbri, Jäger, Johnson and Keller)

Suppose that $T: \mathbb{S}^{1} \times I \longrightarrow \mathbb{S}^{1} \times I$ of the above form admits a q-periodic strip and let $p \in \mathbb{N}$ be such that $p \leq_{\text {sh }} q$. Then T admits a p-periodic core strip.

Remark

In the trivial case when f does not depend on θ then the periodic strips are sets of circles in the cylinder which are obtained as a product of periodic orbits P (or periodic orbits of intervals) of f by the circle \mathbb{S}^{1} : $\mathbb{S}^{1} \times P$.

Examples of periodic (core) strips

In both cases, $\omega=\frac{\sqrt{5}-1}{2}$ and the map $f(\theta, x)$ is specified below the figure in each case.

$$
3.28 x(1-x)+\frac{4}{100} \cos (2 \pi \theta)
$$

A two periodic orbit of periodic curves.

$$
3.85 x(1-x)\left(1+\frac{111}{10^{5}} \cos (2 \pi \theta)\right)
$$

A numerical three periodic orbit of periodic solid strips (needs analytical proof of its existence).
They correspond to the three periodic orbit of transitive intervals exhibited by the map $\mu x(1-x)$ with $\mu=3.85 \ldots$

The notation in the theorem

We will not define the [FJJK] notion of core. Rather we will directly define the notion of a strip and the two possible kinds of core strips.

Definition (Strip)

A strip is a closed subset A of the cylinder such that

$$
\left\{\theta \in \mathbb{S}^{1}: A \cap(\{\theta\} \times I) \text { is an interval }\right\}
$$

is a residual set on \mathbb{S}^{1}.

Remember

that $G \subseteq \mathbb{S}^{1}$ is residual if it contains the intersection of a countable family of open dense subsets of \mathbb{S}^{1}.

The notation in the theorem

We will not define the [FJJK] notion of core. Rather we will directly define the notion of a strip and the two possible kinds of core strips.

Definition (Strip)

A strip is a closed subset A of the cylinder such that

$$
\left\{\theta \in \mathbb{S}^{1}: A \cap(\{\theta\} \times I) \text { is an interval }\right\}
$$

is a residual set on \mathbb{S}^{1}.

Remember

that $G \subseteq \mathbb{S}^{1}$ is residual if it contains the intersection of a countable family of open dense subsets of \mathbb{S}^{1}.

As it has been said, there are two kinds of core strips: solid or pinched.

Core strips

Definition (solid strip)
A strip A is solid if for each $\theta \in \mathbb{S}^{1}, A \cap(\{\theta\} \times I)$ is an interval and

$$
\inf _{\theta \in \mathbb{S}^{1}}|A \cap(\{\theta\} \times I)|>0 .
$$

An example is the picture shown before:

Core strips

Definition (solid strip)

A strip A is solid if for each $\theta \in \mathbb{S}^{1}, A \cap(\{\theta\} \times I)$ is an interval and

$$
\inf _{\theta \in \mathbb{S}^{1}}|A \cap(\{\theta\} \times I)|>0 .
$$

An example is the picture shown before:

Definition (pinched strip)

A strip A is pinched if $A \cap(\{\theta\} \times I)$ is a point for a dense set of $\theta \in \mathbb{S}^{1}$.

An example is the picture shown before:

Pseudo-curves

The pinched core strips are the pseudo-curves according to the following definition.

Definition (Pseudo-curve)

A subset of the cylinder is a pseudo-curve if it is the closure of the graph of a continuous function from a residual set of \mathbb{S}^{1} into I.

Pseudo-curves

The pinched core strips are the pseudo-curves according to the following definition.

Definition (Pseudo-curve)

A subset of the cylinder is a pseudo-curve if it is the closure of the graph of a continuous function from a residual set of \mathbb{S}^{1} into I.

Observe that a pseudo-curve is a pinched strip by definition but not conversely.

Example: the harmonic comb (a pinched non-core strip)

Properties of pseudo-curves

Remark

A curve (that is, the graph of a continuous function from \mathbb{S}^{1} to I) is a pseudo-curve.

Properties of pseudo-curves
(1) If a pseudo-curve contains a curve then it is a curve.
(1) Any strongly T-invariant pseudo-curve is a minimal set.
(1) If a strongly T-invariant pseudo-curve contains an arc of a curve, then it is also a curve (since the base map is an irrational rotation).

A subset A of the cylinder is strongly T-invariant if $T(A)=A$. An arc of a curve is the graph of a continuous function from an arc of \mathbb{S}^{1} to l.

Motivation

In this context, a natural question is whether the [FJJK] theorem is valid restricted to curves. That is:

Question 1

is it true that if T has a q-periodic curve and $p \leq_{\text {sh }} q$ then all p-periodic strips of T are curves?

Motivation

In this context, a natural question is whether the [FJJK] theorem is valid restricted to curves. That is:

Question 1

is it true that if T has a q-periodic curve and $p \leq_{\text {sh }} q$ then all p-periodic strips of T are curves?

A counterexample to Question 1 would be given by the positive answer to:

Question 2

Can a pseudo-curve which is not a curve occur as the unique strongly invariant object forced by a 2 -periodic orbit of curves?

Motivation

In this context, a natural question is whether the [FJJK] theorem is valid restricted to curves. That is:

Question 1

is it true that if T has a q-periodic curve and $p \leq_{\text {sh }} q$ then all p-periodic strips of T are curves?

A counterexample to Question 1 would be given by the positive answer to:

Question 2

Can a pseudo-curve which is not a curve occur as the unique strongly invariant object forced by a 2 -periodic orbit of curves?

The aim of this talk is to construct the example required in Question 2.

Motivation II

More precisely, we will construct an example of a skew product T on the cylinder which will have a 2-periodic orbit of curves and a strongly T-invariant pseudo-curve that does not contain any arc of a curve. Moreover, our example is monotone (decreasing) on the fibres and the pinched set has Lebesgue measure one. However, it is not a continuous curve.

Motivation II

More precisely, we will construct an example of a skew product T on the cylinder which will have a 2-periodic orbit of curves and a strongly T-invariant pseudo-curve that does not contain any arc of a curve. Moreover, our example is monotone (decreasing) on the fibres and the pinched set has Lebesgue measure one. However, it is not a continuous curve.

The construction is done in two steps:
(- First we topologically construct a pseudo-curve as a limit of sets A_{i} defined inductively.
(1) Second we construct a quasi-periodically forced skew product T on the cylinder which has a 2-periodic orbit of curves (the upper and lower circles) and the pseudo-curve as a totally invariant object.

The inductive construction of a pseudo-curve

Our cylinder is $\Omega=\mathbb{S}^{1} \times[-2,2]$.

The pseudo-curve is constructed as a limit of sets A_{i} defined inductively.

A rough idea of the construction is given by the following first three elements of the sequence:

The inductive construction of a pseudo-curve

Our cylinder is $\Omega=\mathbb{S}^{1} \times[-2,2]$.

The pseudo-curve is constructed as a limit of sets A_{i} defined inductively.

A rough idea of the construction is given by the following first three elements of the sequence:

The inductive construction of a pseudo-curve

Our cylinder is $\Omega=\mathbb{S}^{1} \times[-2,2]$.

The pseudo-curve is constructed as a limit of sets A_{i} defined inductively.

A rough idea of the construction is given by the following first three elements of the sequence:

Notation to construct the sets A_{i}

Notation

For every $\ell \in \mathbb{Z}$ we denote

$$
\begin{aligned}
\ell^{*} & :=R^{\ell}(0)=\ell \omega(\bmod 1) \text { and } \\
\operatorname{Orb}_{R}(0) & :=\left\{\ell^{*}: \ell \in \mathbb{Z}\right\} .
\end{aligned}
$$

Now we start with $A_{-1}:=\mathbb{S}^{1} \times\{0\}$ and construct iteratively compact sets A_{0}, A_{1}, \ldots such that each A_{n} is the closure of the graph of a continuous function

$$
\mathbb{S}^{1} \backslash\left\{\ell^{*}:|\ell| \leq n\right\} \longrightarrow[-2,2] .
$$

The construction is done by "perturbing" the set A_{n-1} in a neighbourhood of the the points $\left(\left\{\ell^{*}\right\} \times[-2,2]\right) \cap A_{n-1}$ with $\ell \in\{n,-n\}$ so that $\left(\left\{\ell^{*}\right\} \times[-2,2]\right) \cap A_{n}$ will now be an interval for $\ell \in\{n,-n\}$.

The scalable "bricks" of our construction

For $\ell \in\{-n, n\}$, the box
$\mathcal{R}\left(\ell^{*}, n, \alpha, \delta, p_{\ell}, p_{\ell}^{+}, p_{\ell}^{-}\right)$
around the point
$p_{\ell}=\left(\ell^{*}, a\right)$ which is the unique point of $\left(\left\{\ell^{*}\right\} \times[-2,2]\right) \cap A_{n-1}$.

Note

The scalable "bricks" of our construction

For $\ell \in\{-n, n\}$, the box
$\mathcal{R}\left(\ell^{*}, n, \alpha, \delta, p_{\ell}, p_{\ell}^{+}, p_{\ell}^{-}\right)$ around the point $p_{\ell}=\left(\ell^{*}, a\right)$ which is the unique point of $\left(\left\{\ell^{*}\right\} \times[-2,2]\right) \cap A_{n-1}$.

Note

The scalable "bricks" of our construction

For $\ell \in\{-n, n\}$, the box
$\mathcal{R}\left(\ell^{*}, n, \alpha, \delta, p_{\ell}, p_{\ell}^{+}, p_{\ell}^{-}\right)$ around the point $p_{\ell}=\left(\ell^{*}, a\right)$ which is the unique point of $\left(\left\{\ell^{*}\right\} \times[-2,2]\right) \cap A_{n-1}$.

Note

The green line is the set A_{n-1}.

The scalable "bricks" of our construction

For $\ell \in\{-n, n\}$, the box
$\mathcal{R}\left(\ell^{*}, n, \alpha, \delta, p_{\ell}, p_{\ell}^{+}, p_{\ell}^{-}\right)$ around the point $p_{\ell}=\left(\ell^{*}, a\right)$ which is the unique point of $\left(\left\{\ell^{*}\right\} \times[-2,2]\right) \cap A_{n-1}$.

Note

The green line is the set A_{n-1}.

The scalable "bricks" of our construction

The above boxes satisfy the following important condition (among many other which are highly technical):

Let $I, z \in \mathbb{Z}$ be such that $|I| \geq|z|$. Then either $\mathcal{R}\left(I^{*}\right) \cap \mathcal{R}\left(z^{*}\right)=\emptyset$ or $|I|>|z|$ and $\mathcal{R}\left(I^{*}\right)$ is contained in one of the two connected components of the interior of $\mathcal{R}\left(z^{*}\right) \backslash\left(A_{|z|} \cap\left(\left\{z^{*}\right\} \times[-2,2]\right)\right)$.

The scalable "bricks" of our construction

The above boxes satisfy the following important condition (among many other which are highly technical):

Let $I, z \in \mathbb{Z}$ be such that $|I| \geq|z|$. Then either $\mathcal{R}\left(I^{*}\right) \cap \mathcal{R}\left(z^{*}\right)=\emptyset$ or $|I|>|z|$ and $\mathcal{R}\left(I^{*}\right)$ is contained in one of the two connected components of the interior of $\mathcal{R}\left(z^{*}\right) \backslash\left(A_{|z|} \cap\left(\left\{z^{*}\right\} \times[-2,2]\right)\right)$.

The scalable "bricks" of our construction

The above boxes satisfy the following important condition (among many other which are highly technical):

Let $I, z \in \mathbb{Z}$ be such that $|I| \geq|z|$. Then either $\mathcal{R}\left(I^{*}\right) \cap \mathcal{R}\left(z^{*}\right)=\emptyset$ or $|I|>|z|$ and $\mathcal{R}\left(I^{*}\right)$ is contained in one of the two connected components of the interior of $\mathcal{R}\left(z^{*}\right) \backslash\left(A_{|z|} \cap\left(\left\{z^{*}\right\} \times[-2,2]\right)\right)$.

The scalable "bricks" of our construction

The above boxes satisfy the following important condition (among many other which are highly technical):

Let $I, z \in \mathbb{Z}$ be such that $|I| \geq|z|$. Then either $\mathcal{R}\left(I^{*}\right) \cap \mathcal{R}\left(z^{*}\right)=\emptyset$ or $|I|>|z|$ and $\mathcal{R}\left(I^{*}\right)$ is contained in one of the two connected components of the interior of $\mathcal{R}\left(z^{*}\right) \backslash\left(A_{|z|} \cap\left(\left\{z^{*}\right\} \times[-2,2]\right)\right)$.

The scalable "bricks" of our construction

The above boxes satisfy the following important condition (among many other which are highly technical):

Let $I, z \in \mathbb{Z}$ be such that $|I| \geq|z|$. Then either $\mathcal{R}\left(I^{*}\right) \cap \mathcal{R}\left(z^{*}\right)=\emptyset$ or $|I|>|z|$ and $\mathcal{R}\left(I^{*}\right)$ is contained in one of the two connected components of the interior of $\mathcal{R}\left(z^{*}\right) \backslash\left(A_{|z|} \cap\left(\left\{z^{*}\right\} \times[-2,2]\right)\right)$.

Reinterpreting the sets A_{i}

Now observe that each set A_{n} is the closure of the graph of a continuous function

$$
\varphi_{n}: \mathbb{S}^{1} \backslash \operatorname{Orb}_{R}(0) \longrightarrow[-2,2] ;
$$

and $\mathbb{S}^{1} \backslash \operatorname{Orb}_{R}(0)$ is residual in \mathbb{S}^{1}.
On the other hand, the space of continuous functions from a residual set of \mathbb{S}^{1} into $[-2,2]$ can be endowed with the supremum pseudo-metric. Then it is a complete metric space.

Remark

The supremum pseudo-metric in the space of pseudo-curves is equivalent to the Hausdorff distance between the corresponding pseudo-curves.

It is not difficult to prove that the sequence φ_{n} is a Cauchy sequence in this space.
With this in mind we can define:

Passing to the limit to obtain the pseudo-curve

Definition

We denote by A the closure of the graph of the function

$$
\varphi:=\lim _{n \rightarrow \infty} \varphi_{n}
$$

Thus, A is a pseudo-curve (and hence compact) which can be shown to have the following properties:

- $A \cap\left(\left\{\ell^{*}\right\} \times[-2,2]\right)=A_{\ell} \cap\left(\left\{\ell^{*}\right\} \times[-2,2]\right)$ is a non-degenerate interval for each $\ell^{*} \in \operatorname{Orb}_{R}(0)$.
- $A \cap(\{\theta\} \times[-2,2])=\{\varphi(\theta)\}$ is a point for each $\theta \notin \operatorname{Orb}_{R}(0)$.

Clearly, since A is a pseudo-curve, it is not a curve.

The dynamics on the cylinder: making A invariant

Our next goal is to define a continuous map

$$
T: \Omega \longrightarrow \Omega \quad T(\theta, x)=(R(\theta), f(\theta, x))
$$

such that $T(A)=A$ and, for each $\theta \in \mathbb{S}^{1}, T(\theta, 2)=(R(\theta),-2)$ and $T(\theta,-2)=(R(\theta), 2)$.

Thus, A is a T-strongly invariant pseudo-curve (hence it does not contain any arc of a curve) which coexists with a 2-periodic orbit of curves.

A sequence of maps

This map is obtained as limit of a Cauchy sequence of continuous skew products

$$
T_{n}: \Omega \longrightarrow \Omega \quad T_{n}(\theta, x)=\left(R(\theta), f_{n}(\theta, x)\right)
$$

such that

- $T_{n}(\theta, 2)=(R(\theta),-2)$ and $T_{n}(\theta,-2)=(R(\theta), 2)$ (that is $f_{n}(\theta,-2)=2$ and $\left.f_{n}(\theta, 2)=-2\right)$ for each $\theta \in \mathbb{S}^{1}$.
- For each θ the function $f_{n}(\theta, \cdot)$ is defined piecewise linear and monotonically decreasing in such a way that T_{n} is globally continuous.

The sequence is constructed inductively in the following way:

The functions F_{n}

We define L_{i} as the set of all $\ell \in \mathbb{Z}$ such that ℓ^{*} is contained in exactly i boxes \mathcal{R}.

Then we set $B_{i}=\cup_{z \in L_{i}} \pi\left(\mathcal{R}\left(z^{*}\right)\right)$ where $\pi: \Omega \longrightarrow \mathbb{S}^{1}$ denotes the projection with respect to the first component. It follows that each B_{i} is a dense set of \mathbb{S}^{1} and that $B_{i} \supsetneqq B_{i+1}$.

We also set $A^{\theta}:=A \cap\{\theta\} \times I$.
The basic idea of the construction of the maps T_{n} is that, for every $m \in \mathbb{N}$ and $k \geq m, T_{k}$ sends each vertical segment $A^{\ell^{*}}$ to $A^{(\ell+1)^{*}}$ in reversing order for every $\ell \in L_{m}$.

This will imply that $F\left(A^{\ell^{*}}\right)=A^{(\ell+1)^{*}}$ for every $\ell \in \mathbb{N}$ and, by the density of $\cup_{\ell \in \mathbb{N}} A^{\ell^{*}}$ in $A, F(A)=A$.

The function $f_{1}(\theta, \cdot)$

- For every $\theta \notin B_{1}$ we define $f_{1}(\theta, \cdot)$ as piecewise linear in two pieces such that $f_{1}(\theta, \varphi(\theta))=\varphi(R(\theta))$ (notice that if $\theta \notin B_{1}$ then $\theta \notin \operatorname{Orb}_{R}(0)$ and so $\left.R(\theta) \notin \operatorname{Orb}_{R}(0)\right)$.

When $\theta \in B_{1}$ there exists $\ell \in L_{1}$ such that $\theta \in \pi\left(\mathcal{R}\left(\ell^{*}\right)\right)$.

- If $\theta \in\left[\ell^{*}-\delta(\ell), \ell^{*}+\delta(\ell)\right] \subset \pi\left(\mathcal{R}\left(\ell^{*}\right)\right)$ then the map $f_{1}(\theta, \cdot)$ is piecewise linear with three pieces so that $\mathcal{R}\left(\ell^{*}\right) \cap\{\theta\} \times[2,2]$ is mapped (reversing orientation) to $\mathcal{R}\left((\ell+1)^{*}\right) \cap\{R(\theta)\} \times[2,2]$. - The fibres corresponding to $\theta \in \pi\left(\mathcal{R}\left(\ell^{*}\right)\right) \backslash\left[\ell^{*}-\delta(\ell), \ell^{*}+\delta(\ell)\right]$ leave room for connecting homotopically the maps $f_{1}(\theta, \cdot)$ already defined.

The functions $f_{n}(\theta, \cdot)$

We define $f_{n}(\theta, \cdot)$ from $f_{n-1}(\theta, \cdot)$ as follows:

- If $\theta \notin B_{n}$ we set $f_{n}(\theta, x)=f_{n-1}(\theta, x)$ for every $x \in I$.

If $\theta \in B_{n}$ then there exist $\ell \in L_{n}$ and $m \in L_{n-1}$ such that $\mathcal{R}\left(\ell^{*}\right) \subset \mathcal{R}\left(m^{*}\right)$ and $\theta \in \pi\left(\mathcal{R}\left(\ell^{*}\right)\right)$.

For $\theta \in\left[\ell^{*}-\delta(\ell), \ell^{*}+\delta(\ell)\right] \subset \pi\left(\mathcal{R}\left(\ell^{*}\right)\right)$ we set:

- $f_{n}(\theta, x)=f_{n-1}(\theta, x)$ for every $x \notin \mathcal{R}\left(m^{*}\right) \cap\{\theta\} \times[2,2]$.
- The map $f_{n}(\theta, \cdot)$ maps $\mathcal{R}\left(\ell^{*}\right) \cap\{\theta\} \times[2,2]$ reversing orientation to $\mathcal{R}\left((\ell+1)^{*}\right) \cap\{R(\theta)\} \times[2,2]$.
- $f_{n}(\theta, \cdot)$ is continuous and piecewise affine in the two intervals $\left(\mathcal{R}\left(m^{*}\right) \backslash \mathcal{R}\left(\ell^{*}\right)\right) \cap\{\theta\} \times[2,2]$.
- In the fibres corresponding to $\theta \in \pi\left(\mathcal{R}\left(\ell^{*}\right)\right) \backslash\left[\ell^{*}-\delta(\ell), \ell^{*}+\delta(\ell)\right]$ we define the maps $f_{n}(\theta, \cdot)$ to be a homotopy (with respect to θ) between the maps already defined.

The skew product T

In this way we obtain

Theorem

The function $T:=\lim _{n \rightarrow \infty} T_{n}$ is a continuous skew product of the form

$$
T(\theta, x)=(R(\theta), f(\theta, x))
$$

with $T(\theta, 2)=(R(\theta),-2)$ and $T(\theta,-2)=(R(\theta), 2)$ for each $\theta \in \mathbb{S}^{1}$. Moreover, $T(A)=A$ and this is the only invariant object of T. In particular T has no invariant curves.

Conclusions

We have constructed a skew product map having a strongly invariant pseudo-curve which is not a curve and the pseudo curve is forced by a 2-periodic orbit of curves.

This answers the two questions that we have raised and clarifies the [FJJK] theorem in the sense that these kind of complicate objects must be taken into account.

