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Motivation

A key point in the study of the dynamics of the continuous self
maps of the circle (of degree one) is the rotation theory. From the
rotation interval one can obtain, for instance,

The set of periods (which consists –essentially– on the set of
all denominators of all rationals –not necessarily written in
irreducible form– in the interior of the rotation interval).
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rotation interval one can obtain, for instance,

The set of periods (which consists –essentially– on the set of
all denominators of all rationals –not necessarily written in
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Motivation

A key point in the study of the dynamics of the continuous self
maps of the circle (of degree one) is the rotation theory. From the
rotation interval one can obtain, for instance,

The set of periods (which consists –essentially– on the set of
all denominators of all rationals –not necessarily written in
irreducible form– in the interior of the rotation interval).

Lower bounds of the topological entropy.

Lower bounds of the number of periodic points of each period.
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Aim

We want to use this strategy to study the dynamics of the
continuous self maps of graphs with a unique circuit.

To this end we need to develop a rotation theory for continuous
maps homotopic to the identity on graphs with a unique circuit;
and study its relation with the dynamics of these maps.

Note

As a reward we will obtain a theory which is valid for a certain
class of compact metric spaces with a circuit.
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Framework: Introducing lifted spaces

A rotation theory is usually developed in the universal covering
space by using the liftings of the maps under consideration.
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Framework: Introducing lifted spaces

A rotation theory is usually developed in the universal covering
space by using the liftings of the maps under consideration.

The universal covering of a graph containing a unique circuit is an
“infinite tree modulo 1”. It is obtained by unwinding the circuit.
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Framework: Introducing lifted spaces

A rotation theory is usually developed in the universal covering
space by using the liftings of the maps under consideration.

The universal covering of a graph containing a unique circuit is an
“infinite tree modulo 1”. It is obtained by unwinding the circuit.

We will better show this idea with a couple of examples.
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Example 1

(0)h
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G

G G G

τ(  )y τ2 y(  )
π(  )y ...

(1) (2) (3)

G

h h h

S

0 1 2

y

Figure: The graph G , on the left, is unwound with respect to the bold loop S , on the

right. This unwinding is made up of infinitely many subspaces bGn that are all
homeomorphic by a translation τ . Moreover, there is a continuous projection
π : bG −→ G such that π

˛̨
Int(bGn)

is a homeomorphism onto G \ {x0} for each n, and

π(τ(y)) = π(y) for all y ∈ bG . The set π−1(S) is homeomorphic to the real line.
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Example 1 continued

(0)h

0x

G

G G G

τ(  )y τ2 y(  )
π(  )y ...

(1) (2) (3)

G

h h h

S

0 1 2

y

Figure: If we suppose that the loop S has length 1 and that x0 is the origin, then it
is natural to consider a homeomorphism h : R −→ π−1(S) such that π−1(x0) = h(Z).
In this setting, τ(h(x)) = h(x + 1) for all x ∈ R.
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Example 2

X

X X

... ...

X

10

h(0) h(1) h(2)

Figure: The unwinding of a connected compact topological space with a unique

circuit. In this example bX can be retracted to h(R) because the closure of any

connected component of bX \ h(R) meets h(R) at a single point.
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Remarks

Example 1: Since G has more than one loop, Ĝ is not the
universal covering of G and it cannot be retracted to
π−1(S) = h(R). Therefore, Ĝ in this example will not be
considered as a lifted space.

Ll. Alsedà, S. Ruette Rotation sets for graphs 9/52
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Remarks

Example 1: Since G has more than one loop, Ĝ is not the
universal covering of G and it cannot be retracted to
π−1(S) = h(R). Therefore, Ĝ in this example will not be
considered as a lifted space.

Example 2: The unwinding of a graph with a single loop
always can be retracted to π−1(S) = h(R).
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Lifted spaces: A simple definition
To have in mind: Example 2.

X

X X

... ...

X

10

h(0) h(1) h(2)
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Lifted spaces: A simple definition

A lifted space T is a connected closed subset of C containing R

such that

(i) For every z ∈ C, z ∈ T is equivalent to z + Z ∈ T ,

(ii) the closure of each connected component of T \ R is a
compact set that intersects R at a single point, and

(iii) the number of connected components C of T \ R such that
C ∩ [0, 1] 6= ∅ is finite.

The class of all lifted spaces will be denoted by T.

Ll. Alsedà, S. Ruette Rotation sets for graphs 11/52
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Lifted spaces: branching points and retraction

Given T ∈ T there is a natural retraction r : T −→ R:

r(x) =

{
x when x ∈ R,

z when x /∈ R,

where z is the unique point in C ∩ R and C is the connected
component of T \ R containing x .

Note

r is constant on C .

Ll. Alsedà, S. Ruette Rotation sets for graphs 12/52
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Lifted spaces: branching points and retraction

Given T ∈ T there is a natural retraction r : T −→ R:

r(x) =

{
x when x ∈ R,

z when x /∈ R,

where z is the unique point in C ∩ R and C is the connected
component of T \ R containing x .

Note

r is constant on C .

Definition

A point x ∈ R such that r−1(x) 6= {x} will be called a branching
point of T . B(T ) ⊂ R denotes the set of all branching points of T .

Ll. Alsedà, S. Ruette Rotation sets for graphs 12/52
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Maps on lifted spaces

On a lifted space T we will only consider liftings of continuous
maps of degree one.

These are continuous maps F : T −→ T such that
F (x + 1) = F (x) + 1 for every x ∈ T ⊂ C.

The class of these maps will be denoted by C1(T ).

Ll. Alsedà, S. Ruette Rotation sets for graphs 13/52
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Recalling the notion of a lifting.

When T ∈ T is obtained by unwinding a loop S contained in a
topological space X there exists a continuous map π : T −→ X ,
called the standard projection from T to X , such that
π([0, 1]) = S and π(x + 1) = π(x) for all x ∈ T .

Then, given f : X −→ X continuous, there exists a (non-unique)
continuous map F : T −→ T such that f ◦ π = π ◦ F .

Each of these maps will be called a lifting of f .

Observe that f ◦ π = π ◦ F implies that F (1) − F (0) ∈ Z. This
number is called the degree of f and denoted by deg(f ).

Ll. Alsedà, S. Ruette Rotation sets for graphs 14/52
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Remark (Properties of liftings)

F is a lifting of f if and only if F (x + 1) = F (x) + deg(f ) for
every x ∈ R.

F ′ is a lifting of f if and only if F = F ′ + k for some k ∈ Z.

Lemma (Behaviour of maps from C1(T ) under iteration)

For n ∈ N, k ∈ Z and x ∈ T:

(a) F n ∈ C1(T ),

(b) F n(x + k) = F n(x) + k,

(c) (F + k)n(x) = F n(x) + kn.

Ll. Alsedà, S. Ruette Rotation sets for graphs 15/52
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Observation: Why degree one?

Rotation theory only makes sense for maps homotopic to the
identity (degree one). The dynamics of the other maps have to be
studied with other techniques (Nielsen Numbers, reduction to the
tree case, . . . ).

Ll. Alsedà, S. Ruette Rotation sets for graphs 16/52



Motivation Def’s Key Example Aims RotR(F ) Combed maps Example Gen. Def’s Water functs. Periods Conclusions

Rotation numbers

We define

ρ
F
(x) := lim inf

n→+∞

r ◦ F n(x) − r(x)

n

ρ
F
(x) := lim sup

n→+∞

r ◦ F n(x) − r(x)

n
.

When ρ
F
(x) = ρ

F
(x) then this number is denoted by ρ

F
(x) and

called the rotation number of x . The numbers ρ
F
(x) and ρ

F
(x) are

called the lower rotation number of x and upper rotation number
of x , respectively.

Ll. Alsedà, S. Ruette Rotation sets for graphs 17/52
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Historical remarks

This definition extends straightforwardly the usual definition
of the circle to this setting by using the retraction and the
fact that we have a unitary translation on R.

Initially, the rotation number was defined by Poincaré for
homeomorphisms of the circle. Is is a number and is
independent on the point.

Later on, Poincaré’s definition was extended to the
non-invertible case by Newhouse, Palis and Takens by using
lim sup instead of lim. It is not independent on the point. Ito
showed that the set of all rotation numbers it is a closed
interval of the real line.

[Po] H. Poincaré, Sur les courbes définies par les équations différentielles, Oeuvres completes, vol. 1,
137–158, Gauthier-Villars, Paris, 1952.

[It3] R. Ito, Note on rotation set, Proc. Amer. Math. Soc. 89 (1983), 730–732.

[NPT] S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst.

Hautes Études Sci. Publ. Math. 57 (1983), 5–71.
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Basic properties of rotation numbers

The definition of rotation number given before has properties
analogous to the corresponding definition for circle maps.

Lemma (Properties of rotation numbers with respect to the chosen
lifting)

Let T ∈ T, F ∈ C1(T ), x ∈ T, k ∈ Z and n ∈ N.

(a) ρ
F
(x + k) = ρ

F
(x).

(b) ρ
(F+k)

(x) = ρ
F
(x) + k.

(c) ρ
Fn (x) = nρ

F
(x).

The same statements hold with ρ and ρ instead of ρ.

Next we want to study the relation between rotation numbers and
periodic points.

Ll. Alsedà, S. Ruette Rotation sets for graphs 19/52
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Lifted periods for maps F ∈ C1(T ).

A point x ∈ T is periodic (mod 1) if there exists n ∈ N such that
F n(x) ∈ x + Z. The period of x is the least integer n with this
property.

That is, F n(x) ∈ x + Z and F i (x) /∈ x + Z for all 1 ≤ i ≤ n − 1.

Observation

x is periodic (mod 1) for F if and only if π(x) is periodic for f .
Moreover, the F -period (mod 1) of x and the f -period of π(x)
coincide.

Ll. Alsedà, S. Ruette Rotation sets for graphs 20/52
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Lifted Orbits for maps F ∈ C1(T ).

The set

Orb1(x , F ) = {F n(x) + m : n ≥ 0 and m ∈ Z},

is called the orbit (mod 1) of x .

Observation

Orb1(x , F ) = π−1({f n(π(x)) : n ≥ 0}) = π−1(Orb(π(x), f )).

When x is periodic (mod 1) then Orb1(x , F ) is also called
periodic (mod 1). In this case it is not difficult to see that
Card(Orb1(x , F ) ∩ Tn) coincides with the period of x for all n ∈ Z.

Definition

Let T ∈ T and F ∈ C1(T ). An orbit (mod 1) P ⊂ R of F will be
called twist if F

∣∣
P

is strictly increasing.

Ll. Alsedà, S. Ruette Rotation sets for graphs 21/52
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Rotation numbers and periodic points

(i) Two points in the same orbit (mod 1) have the same
rotation number.

(ii) If F q(x) = x + p with q ∈ N and p ∈ Z, then ρ
F
(x) = p/q.

Therefore all periodic (mod 1) points have rational rotation
numbers.

(iii) Let x be a periodic (mod 1) point of period q and p ∈ Z

such that F q(x) = x + p. If Orb1(x , F ) is a twist orbit, then
(p, q) = 1.

Ll. Alsedà, S. Ruette Rotation sets for graphs 22/52
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The Rotation Set

It is an important object that synthesises all the information about
rotation numbers is the rotation set (i.e., the set of all rotation
numbers).

Definition

For T ∈ T and F ∈ C1(T ) we define:

Rot+(F ) = {ρ
F
(x) : x ∈ T},

Rot−(F ) = {ρ
F
(x) : x ∈ T},

Rot(F ) = {ρ
F
(x) : x ∈ T and ρ

F
(x) exists}; and finally

RotR(F ) = {ρ
F
(x) : x ∈ R and ρ

F
(x) exists}.

Ll. Alsedà, S. Ruette Rotation sets for graphs 23/52
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The Rotation Set: Comments

For continuous degree one circle maps, all these sets are
known to coincide. They are a closed interval of the real line
([Ito]) whose endpoints depend continuously on the map (with
respect to the topology of the uniform convergence in the
class of continuous liftings of degree one).

Ll. Alsedà, S. Ruette Rotation sets for graphs 24/52
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The Rotation Set: Comments

For continuous degree one circle maps, all these sets are
known to coincide. They are a closed interval of the real line
([Ito]) whose endpoints depend continuously on the map (with
respect to the topology of the uniform convergence in the
class of continuous liftings of degree one).

For lifted spaces the rotation set Rot(F ) may not be
connected and endpoints do not depend continuously on the
map. In general we do not know if it is closed.
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Key example

0 1
... ...

−1e e +1e

. . . ...F(a) F(b)

A B

a b

Figure: F |R = Id, F (A) = [a − 1, e] and F |A is affine, F (B) = [e, b + 1] and F |B is
affine.

Properties of the rotation set

Rot(F ) = {−1, 0, 1} is not connected.

RotR(F ) = {0} 6= Rot(F ).

Ll. Alsedà, S. Ruette Rotation sets for graphs 25/52
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Key example explanation

Obviously, RotR(F ) = {0}, ρ
F
(a) = −1 and ρ

F
(b) = 1.

Ll. Alsedà, S. Ruette Rotation sets for graphs 26/52
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Key example explanation

Obviously, RotR(F ) = {0}, ρ
F
(a) = −1 and ρ

F
(b) = 1.

Since F
∣∣
A

is expanding, for each x ∈ A, x 6= a, there exists
n ≥ 0 such that F n(x) ∈ R. So ρ

F
(x) = 0.

Ll. Alsedà, S. Ruette Rotation sets for graphs 26/52
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Key example explanation

Obviously, RotR(F ) = {0}, ρ
F
(a) = −1 and ρ

F
(b) = 1.

Since F
∣∣
A

is expanding, for each x ∈ A, x 6= a, there exists
n ≥ 0 such that F n(x) ∈ R. So ρ

F
(x) = 0.

The same hold for x ∈ B, x 6= b.
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Key example explanation

Obviously, RotR(F ) = {0}, ρ
F
(a) = −1 and ρ

F
(b) = 1.

Since F
∣∣
A

is expanding, for each x ∈ A, x 6= a, there exists
n ≥ 0 such that F n(x) ∈ R. So ρ

F
(x) = 0.

The same hold for x ∈ B, x 6= b.

Hence Rot(F ) = {−1, 0, 1}.

Ll. Alsedà, S. Ruette Rotation sets for graphs 26/52



Motivation Def’s Key Example Aims RotR(F ) Combed maps Example Gen. Def’s Water functs. Periods Conclusions

Key example explanation

Obviously, RotR(F ) = {0}, ρ
F
(a) = −1 and ρ

F
(b) = 1.

Since F
∣∣
A

is expanding, for each x ∈ A, x 6= a, there exists
n ≥ 0 such that F n(x) ∈ R. So ρ

F
(x) = 0.

The same hold for x ∈ B, x 6= b.

Hence Rot(F ) = {−1, 0, 1}.

Moreover Rot(F ) 6= RotR(F ) although the set

⋃

n≥0

F−n(R) = T \ ({a, b} + Z)

is dense in T .

Ll. Alsedà, S. Ruette Rotation sets for graphs 26/52
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Negative remark

There exist maps F such that Rot(F ) has

n connected components for any n arbitrarily large (even when
there is a single branch).

connected components outside RotR(F ) which are non
degenerate intervals (e.g., F |R = Id and
F (A) ⊃ (A + 1) ∪ (A + 2) — a “horseshoe”).

Generally, when the dynamics of parts of the branches has no
relation with the dynamics of R, disconnectedness of the rotation
set is likely to occur.

Ll. Alsedà, S. Ruette Rotation sets for graphs 27/52
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How to overcome this problem?

The previous example suggests that the study of the dynamics of
such maps has to be decomposed into two parts:

T̂ :=
⋃

n≥0 F−n(R); studied with RotR(F ).

and T \ T̂ studied with retractions and “tree like” techniques.

Conclusion

To develop a rotation theory we must concentrate on RotR(F ) and
its relationship with the general Rot(F ). The dynamics “living” in
the other part can be studied with “non rotational” techniques.

Ll. Alsedà, S. Ruette Rotation sets for graphs 28/52
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Main tasks

In the above setting two main tasks arise:

(I) Study the properties of the rotation set and its relation with
the set of periods (mod 1). As we will see, it turns out that
this theory gives a lot of information on the dynamics but, at
the same time, this information is not satisfactory. The
situation is clearly worse than the circle case.

(II) Try to find a subclass of C1(T ) for which the rotation theory
works well as in the circle case. These are called combed
maps.

Ll. Alsedà, S. Ruette Rotation sets for graphs 29/52
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Basic results on RotR(F )

Given F ∈ C1(T ) and n ∈ N we consider

r ◦ F n
∣∣
R

: R −→ R.

The map r ◦ F n is a lifting of a circle map of degree 1. Thus the
results on rotation sets for circle maps apply.

Theorem

Assume that Orb1(x , F n) ⊂ R. Then,
ρ

r◦Fn (x) = ρ
Fn (x) = nρ

F
(x).

Ll. Alsedà, S. Ruette Rotation sets for graphs 30/52
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Basic results on RotR(F )

Given F ∈ C1(T ) and n ∈ N we consider

r ◦ F n
∣∣
R

: R −→ R.

The map r ◦ F n is a lifting of a circle map of degree 1. Thus the
results on rotation sets for circle maps apply.

Theorem

Assume that Orb1(x , F n) ⊂ R. Then,
ρ

r◦Fn (x) = ρ
Fn (x) = nρ

F
(x).

Conversely, for each α ∈ Rot(r ◦ F n) there exists x ∈ R such
that α = ρ

r◦Fn (x) = ρ
Fn (x) = nρ

F
(x),

Orb1(x , F n) = Orb1(x , r ◦ F n) ⊂ R and Orb1(x , F n) is twist.
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Motivation Def’s Key Example Aims RotR(F ) Combed maps Example Gen. Def’s Water functs. Periods Conclusions

Basic results on RotR(F )

Given F ∈ C1(T ) and n ∈ N we consider

r ◦ F n
∣∣
R

: R −→ R.

The map r ◦ F n is a lifting of a circle map of degree 1. Thus the
results on rotation sets for circle maps apply.

Theorem

Assume that Orb1(x , F n) ⊂ R. Then,
ρ

r◦Fn (x) = ρ
Fn (x) = nρ

F
(x).

Conversely, for each α ∈ Rot(r ◦ F n) there exists x ∈ R such
that α = ρ

r◦Fn (x) = ρ
Fn (x) = nρ

F
(x),

Orb1(x , F n) = Orb1(x , r ◦ F n) ⊂ R and Orb1(x , F n) is twist.
Moreover, if α ∈ Q then x can be chosen to be periodic
(mod 1) of F . In particular, for each n ∈ N,

1
n

Rot(r ◦ F n) ⊂ RotR(F )

. Ll. Alsedà, S. Ruette Rotation sets for graphs 30/52
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Corollary

Let F ∈ C1(T ) and let n ∈ N. Then,

Rot(r ◦ F ) ⊂ 1
n

Rot(r ◦ F n).

Consequently, the set

⋃

n≥1

1
n

Rot(r ◦ F n)

is a nonempty interval contained in RotR(F ).

Remark

In general, the interval
⋃

n≥1
1
n

Rot(r ◦ F n) need not be closed.

Ll. Alsedà, S. Ruette Rotation sets for graphs 31/52



Motivation Def’s Key Example Aims RotR(F ) Combed maps Example Gen. Def’s Water functs. Periods Conclusions

Characterisation of RotR(F )
Theorem

RotR(F ) is a non empty compact interval and

RotR(F ) = Rot+
R
(F ) = Rot−

R
(F ) =

⋃

n≥1

1

n
Rot(r ◦ F n).
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Characterisation of RotR(F )
Theorem

RotR(F ) is a non empty compact interval and

RotR(F ) = Rot+
R
(F ) = Rot−

R
(F ) =

⋃

n≥1

1

n
Rot(r ◦ F n).

If α ∈ RotR(F ), then there exists a point x ∈ R such that
ρ

F
(x) = α and F n(x) ∈ R for infinitely many n.
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Characterisation of RotR(F )
Theorem

RotR(F ) is a non empty compact interval and

RotR(F ) = Rot+
R
(F ) = Rot−

R
(F ) =

⋃

n≥1

1

n
Rot(r ◦ F n).

If α ∈ RotR(F ), then there exists a point x ∈ R such that
ρ

F
(x) = α and F n(x) ∈ R for infinitely many n.

If p/q ∈ Int(RotR(F )), then there exists a periodic point
x ∈ R with ρ

F
(x) = p/q.

Remark

RotR(F ) is a subset of Rot(F ). Clearly, if
⋃

n∈Z

F n(R) = T , then

RotR(F ) = Rot(F ) = Rot+(F ) = Rot−(F ).
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Relation between the rotation set and the set of periods

Per(α,F ) denotes the set of all n ∈ N for which ∃x ∈ T such that
x is periodic (mod 1) of period n and ρ

F
(x) = α.

Theorem

If α /∈ Rot(F ) ∩ Q then Per(α,F ) = ∅.
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Relation between the rotation set and the set of periods

Per(α,F ) denotes the set of all n ∈ N for which ∃x ∈ T such that
x is periodic (mod 1) of period n and ρ

F
(x) = α.

Theorem

If α /∈ Rot(F ) ∩ Q then Per(α,F ) = ∅.

Assume that p/q ∈ Int(RotR(F )). Then Per(p/q, F ) contains
nq for all great enough integers n.
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Relation between the rotation set and the set of periods

Per(α,F ) denotes the set of all n ∈ N for which ∃x ∈ T such that
x is periodic (mod 1) of period n and ρ

F
(x) = α.

Theorem

If α /∈ Rot(F ) ∩ Q then Per(α,F ) = ∅.

Assume that p/q ∈ Int(RotR(F )). Then Per(p/q, F ) contains
nq for all great enough integers n.

If RotR(F ) is not reduced to a single point, then the set of
periods of periodic (mod 1) points of f contains all but
finitely many integers.

Remark

The theorem does not say that Per(p/q, F ) is equal to
{n ∈ N : n ≥ N} for some integer N. There are counterexamples
of this statement.
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Additional results for lifted spaces of graphs

Assumption: {x ∈ T : 0 ≤ r(x) ≤ 1} is now a finite graph.

Theorem

If
⋃

n≥0

F n(R) = T (including the case when F is transitive), then

RotR(F ) = Rot(F ) = Rot+(F ) = Rot−(F ).

Theorem

If minRotR(F ) = p/q (resp. max RotR(F ) = p/q), then there
exists a periodic point x ∈ T such that ρ

F
(x) = p/q.

Remark

If min RotR(F ) = p/q there may not exist a periodic point x ∈ R

with ρ(x) = p/q.
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A bad example

1

e+2

e e+1

a c
b

D D2 3DA4

A3

A2

A1
B C

F(a)

F(A  )1

F(A  ) F(A  ) F(A  )3 42e−2 e−1 e F(e)

F(B)

F(b)
F(c)

F(D  )2

F(D  )3

. .

. . .

. F(D )1F(C)

......F

Figure: F is a linear Markov, topologically mixing map
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A bad example

Rot(F ) = [0, 1], but
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A bad example

Rot(F ) = [0, 1], but⋃
n≥1

1
n

Rot(r ◦ F n) = (0, 1] is not closed.
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A bad example

Rot(F ) = [0, 1], but⋃
n≥1

1
n

Rot(r ◦ F n) = (0, 1] is not closed.

There exist infinitely many p/q ∈ (0, 1) with p, q coprime
such that Per(p/q, F ) 6= qN.
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A bad example

Rot(F ) = [0, 1], but⋃
n≥1

1
n

Rot(r ◦ F n) = (0, 1] is not closed.

There exist infinitely many p/q ∈ (0, 1) with p, q coprime
such that Per(p/q, F ) 6= qN.

The set of periods is:

Per(p/q, F )

p = 1 q ≡ 0 mod 3 {nq : n ≥ 3}
q ≡ 1 mod 3 qN

q ≡ 2 mod 3 {nq : n ≥ 2}

p = 2 q ≡ 0 mod 3 {nq : n ≥ 2}
q ≡ 1, 2 mod 3 qN

p ≥ 3 qN

Table: Values of Per(p/q,F ) for p/q ∈ (0, 1) and p, q coprime.
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Combed maps

In the previous part we have developed a rotation theory for lifted
spaces and has studied the differences with the nice rotation theory
for continuous degree one circle maps (and also for old heavy
maps).
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Combed maps

In the previous part we have developed a rotation theory for lifted
spaces and has studied the differences with the nice rotation theory
for continuous degree one circle maps (and also for old heavy
maps).

In this part we will take the somewhat converse approach. we will
look for a “natural” class of maps on lifted spaces (the combed
maps) which has a rotation theory analogous to the continuous
degree one circle maps. Of course, this class of maps will be rather
restrictive.
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Combed maps

In the previous part we have developed a rotation theory for lifted
spaces and has studied the differences with the nice rotation theory
for continuous degree one circle maps (and also for old heavy
maps).

In this part we will take the somewhat converse approach. we will
look for a “natural” class of maps on lifted spaces (the combed
maps) which has a rotation theory analogous to the continuous
degree one circle maps. Of course, this class of maps will be rather
restrictive.

For the class of combed maps we will also go further in developing
the rotation theory in the spirit of the continuous case. In
particular we will be able to define and use in this more general
setting the upper and lower maps and also the one-parameter
family of water functions.
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An example of a combed map to fix ideas

e

T

A

F(T)

F(A)

Figure: The image of the branch A gets “hidden” inside F (R). An observer looking
at F (T ) from above or below does not distinguish this map from a “pure circle map”.
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Combed maps – The definition

Recall that r denotes the retraction from T to R ⊂ T .

Definition

F is left-combed at x ∈ R if
r ◦ F ({y ∈ R : y ≤ x} ⊃ r ◦ F (r−1(x)).

F is right-combed at x ∈ R if
r ◦ F ({y ∈ R : y ≥ x} ⊃ r ◦ F (r−1(x)).

If F is both left-combed and right-combed at x then it will be
called simply combed at x .
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Combed maps – The definition

Recall that r denotes the retraction from T to R ⊂ T .

Definition

F is left-combed at x ∈ R if
r ◦ F ({y ∈ R : y ≤ x} ⊃ r ◦ F (r−1(x)).

F is right-combed at x ∈ R if
r ◦ F ({y ∈ R : y ≥ x} ⊃ r ◦ F (r−1(x)).

If F is both left-combed and right-combed at x then it will be
called simply combed at x .

Remark

If x is not a branching point of T , then r−1(x) = {x}. Therefore,
F is combed at x .
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Upper, lower and water maps

To study the rotation set and set of periods for combed maps, as
in the circle case we need to introduce thethe upper and lower
maps and the water functions.

See the next figure to illustrate them:
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Upper, lower and water maps

upper map

water function

lower map

F
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Upper, lower maps: formal definition

For each x , y ∈ T , the relation r(x) ≤ r(y) defines a linear
pre-ordering on T (denoted by x 4 y).

Definition

A map F such that F (x) 4 F (y) whenever x 4 y will be called
non-decreasing.
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Upper, lower maps: formal definition

For each x , y ∈ T , the relation r(x) ≤ r(y) defines a linear
pre-ordering on T (denoted by x 4 y).

Definition

A map F such that F (x) 4 F (y) whenever x 4 y will be called
non-decreasing.

Remarks

The map r : T −→ R is non-decreasing.

If F is non-decreasing and r(x) = r(y), then
r(F (x)) = r(F (y)).
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Upper, lower maps: formal definition

Now we are ready to define the

upper map Fu : R −→ R by

Fu(x) := sup{r(F (y)) : y 4 x}

:= max{r(F (y)) : x − 1 4 y 4 x}; and

lower map Fl : R −→ R by

Fl(x) := inf{r(F (y)) : y < x}

:= min{r(F (y)) : x + 1 < y < x}.
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Properties of upper and lower maps

The maps Fl and Fu are non-decreasing liftings of (non
necessarily continuous) degree one circle maps.
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Properties of upper and lower maps

The maps Fl and Fu are non-decreasing liftings of (non
necessarily continuous) degree one circle maps.

Fl(x) 4 F (y) 4 Fu(x) for each x ∈ R and y ∈ r−1(x).
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Properties of upper and lower maps

The maps Fl and Fu are non-decreasing liftings of (non
necessarily continuous) degree one circle maps.

Fl(x) 4 F (y) 4 Fu(x) for each x ∈ R and y ∈ r−1(x).

If F is non-decreasing, then Fu = Fl = r ◦ F = r ◦ F
∣∣
R
.
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Properties of upper and lower maps

The maps Fl and Fu are non-decreasing liftings of (non
necessarily continuous) degree one circle maps.

Fl(x) 4 F (y) 4 Fu(x) for each x ∈ R and y ∈ r−1(x).

If F is non-decreasing, then Fu = Fl = r ◦ F = r ◦ F
∣∣
R
.

The map Fu is continuous from the right whereas Fl is
continuous from the left.
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Properties of upper and lower maps

The maps Fl and Fu are non-decreasing liftings of (non
necessarily continuous) degree one circle maps.

Fl(x) 4 F (y) 4 Fu(x) for each x ∈ R and y ∈ r−1(x).

If F is non-decreasing, then Fu = Fl = r ◦ F = r ◦ F
∣∣
R
.

The map Fu is continuous from the right whereas Fl is
continuous from the left.

The map Fu (respectively Fl) is continuous at x ∈ R if and
only if it is left-combed (respectively right-combed) at x . In
particular, Fu and Fl are continuous at any point which is not
a branching point.
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Properties of upper and lower maps II

The maps F 7→ r ◦ F , F 7→ Fl and F 7→ Fu are Lipschitz
continuous with constant 1 (with the topology of the uniform
convergence in C1(T )).

Proposition

The map Fu is continuous if and only if F is left-combed at all
x ∈ R whereas Fl is continuous if and only if F is right-combed at
all x ∈ R.
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Rotation numbers and upper and lower maps

The fact that the maps Fl and Fu are non-decreasing implies
([Rodes and Thompson]) that ρ

Fl
(x) and ρ

Fu
(x) exist for each

x ∈ R and are independent of the choice of the point x .

These two numbers will be denoted by ρ(Fl) and ρ(Fu)
respectively.
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Rotation numbers and upper and lower maps

The fact that the maps Fl and Fu are non-decreasing implies
([Rodes and Thompson]) that ρ

Fl
(x) and ρ

Fu
(x) exist for each

x ∈ R and are independent of the choice of the point x .

These two numbers will be denoted by ρ(Fl) and ρ(Fu)
respectively.

Corollary

ρ(Fl) ≤ ρ(Fu), and

Rot+(F ) ⊂ [ρ(Fl), ρ(Fu)], Rot−(F ) ⊂ [ρ(Fl), ρ(Fu)] and
Rot(F ) ⊂ [ρ(Fl), ρ(Fu)].
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Rotation numbers and upper and lower maps

The fact that the maps Fl and Fu are non-decreasing implies
([Rodes and Thompson]) that ρ

Fl
(x) and ρ

Fu
(x) exist for each

x ∈ R and are independent of the choice of the point x .

These two numbers will be denoted by ρ(Fl) and ρ(Fu)
respectively.

Corollary

ρ(Fl) ≤ ρ(Fu), and

Rot+(F ) ⊂ [ρ(Fl), ρ(Fu)], Rot−(F ) ⊂ [ρ(Fl), ρ(Fu)] and
Rot(F ) ⊂ [ρ(Fl), ρ(Fu)].

In view to his corollary a natural question arises: do the equalities
in the above inclusions hold? To study this (and other issues) we
need the:
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Water functions

Definition

Let us define a one-parameter family of maps from R to itself:

Fµ =
(
min(r ◦ F

∣∣
R
, Fl + µ)

)
u
,

where 0 ≤ µ ≤ µ1 = supx∈R r(F (x)) − Fl(x).

See the figure on water functions.
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Water functions

Proposition (Properties of water functions)

If F is combed at each x ∈ R, then the maps Fµ are non-decreasing
continuous liftings of degree one circle maps that satisfy:

(a) F0 = Fl and Fµ1 = Fu.

(b) If 0 ≤ λ ≤ µ ≤ µ1, then Fλ ≤ Fµ.

(c) Const(r ◦ F ) ⊂ Const(Fµ) for each µ.

(d) Each Fµ coincides with r ◦ F outside Const(Fµ).

(e) The function µ 7→ Fµ is Lipschitz continuous with constant 1.

where Const(F ) denotes the set of points x ∈ T such that F is
constant in a neighbourhood of x .
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The rotation set of combed maps

The next result extends o combed maps the corresponding one for
continuous degree one circle maps.

Theorem

For each map F ∈ C1(T ) which is combed at each x ∈ R the
following statements hold

(a) Rot(r ◦ F ) = RotR(F ) = Rot(F ) = Rot+(F ) = Rot−(F ) =
[ρ(Fl), ρ(Fu)].

(b) For every α ∈ Rot(F ), there exists a twist orbit (mod 1) of F
contained in R, disjoint from Const(F

∣∣
R
) and having rotation

number α.

(c) For every α ∈ Q∩Rot(F ), the orbit (mod 1) given by (b) can
be taken periodic (mod 1).

(d) The endpoints of the rotation interval, ρ(Fl) and ρ(Fu)
depend continuously on F .
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The set of periods of combed maps

Given two real numbers a ≤ b we denote by M(a, b) the set
{n ∈ N : a < k/n < b for some integer k}. Clearly M(a, b) = ∅
whenever a = b and, if a 6= b, M(a, b) ⊃ {n ∈ N : n > 1

b−a
}.

Also, Per(a, F ) denotes the set of periods (mod 1) of F with
rotation number a.

Theorem

If F ∈ C1(T ) is combed and Rot(F ) = [a, b], then the following
statements hold:

1 If p, q are coprime and p/q ∈ (a, b), then Per(p/q, F ) = qN.

2 Per(F ) = Per(a, F ) ∪ M(a, b) ∪ Per(b, F ).
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Remark

This result is the analogue to this setting of the same result for
continuous degree one circle maps. However, contrary to the case
of circle maps, the characterisation of the sets Per(a, F ) and
Per(b, F ) (where a and b are the endpoints of Rot(F )) is not
possible without completely knowing the lifted space T .
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Conclusions

The combed maps are the analogues of the continuous degree
one circle maps in the setting of lifted spaces, according to
their dynamical properties.
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Conclusions

The combed maps are the analogues of the continuous degree
one circle maps in the setting of lifted spaces, according to
their dynamical properties.

An open problem is whether there exists a more general class
displaying the same features. This could be a more general
class of continuous maps of degree one in lifted spaces or a
class of discontinuous ones analogous to the old heavy degree
one circle maps.
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