On the sets of periods of continuous tree maps

LI. Alsedà
(in collaboration with D. Juher and P. Mumbrú)

Departament de Matemàtiques
Universitat Autònoma de Barcelona
http://mat.uab.es/~alseda

ICDEA 2006
Kyoto, July 26, 2006

Aims and summary

We aim at characterising the set of periods of continuous self maps on trees.

More precisely, we show that the set of periods of any continuous self map from a tree into itself is the union of a finite number of initial segments of Baldwin's orderings $p \geq$, and a finite set \mathcal{F}. The possible values of p are described as well as explicit bounds of the set \mathcal{F} in terms of the combinatorial properties of the tree.

Conversely, given a set \mathcal{A} which is union of a finite set of initial segments of Baldwin's orderings $p \geq$ (with the numbers p determined in a precise way) and a finite set \mathcal{F}, there exists a continuous self map from a tree into itself whose set of periods is precisely \mathcal{A}.

Sketch of the talk

- An introductory example: the interval case
- Notation
- Sharkovskii's Theorem
- Idea of the proof of Sharkovskii's Theorem
- Sets of periods of star maps
- General Notation
- Baldwin's partial orderings
- Baldwin's Theorem
- The case of tree maps
- General strategy (in 4 steps)
- Idea of the proof

An introductory example: the interval case

Notation

The Sharkovskii Ordering ${ }_{\mathrm{sh}} \geq$:
$3_{\mathrm{sh}}>5_{\mathrm{sh}}>7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>2 \cdot 3_{\mathrm{sh}}>2 \cdot 5_{\mathrm{sh}}>2 \cdot 7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>$
$4 \cdot 3_{\mathrm{sh}}>4 \cdot 5 \mathrm{sh}>4 \cdot 7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>$
$2^{n} \cdot 3_{\mathrm{sh}}>2^{n} \cdot 5_{\mathrm{sh}}>2^{n} \cdot 7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>2^{\infty} \mathrm{sh}>\cdots_{\mathrm{sh}}>$
$2^{n}{ }_{\mathrm{sh}}>\omega_{\mathrm{sh}}>16_{\mathrm{sh}}>8 \mathrm{sh}_{\mathrm{sh}}>4_{\mathrm{sh}}>1$.
is defined on the set

$$
\mathbb{N}_{\mathrm{Sh}}=\mathbb{N} \cup\left\{2^{\infty}\right\}
$$

(we have to include the symbol 2^{∞} to assure the existence of supremum for certain sets).

In the ordering ${ }_{\mathrm{sn}}>$ the least element is 1 and the largest is 3 .
The supremum of the set $\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$ is 2^{∞}.

The Sharkovskii Ordering formal definition

If $k=k^{\prime} \cdot 2^{p}$ where p is non negative and k^{\prime} is odd:
(1) $k_{\text {sh }}>2^{\infty}$ if $k^{\prime}>1$,
(2) $2^{\infty}{ }_{\text {sh }}>k$ if $k^{\prime}=1$,
and if $n=n^{\prime} \cdot 2^{q}$ where q is non negative and n^{\prime} is odd, then $n_{\mathrm{sh}}>k$ if and only if one of the following next statements holds:
(3) $k^{\prime}>1, n^{\prime}>1$ and $p>q$,
(4) $k^{\prime}>n^{\prime}>1$ and $p=q$,
(5) $k^{\prime}=1$ and $n^{\prime}>1$,
(6) $k^{\prime}=1, n^{\prime}=1$ and $p<q$.

Initial segments for the Sharkovskii Ordering

For $s \in \mathbb{N}_{\mathrm{sh}}, S(s)$ denotes the set $\left\{k \in \mathbb{N}: s_{\mathrm{sh}} \geq k\right\}$. Examples of sets of the form $S(s)$ are:

Initial segments for the Sharkovskii Ordering

For $s \in \mathbb{N}_{\mathrm{sh}}, S(s)$ denotes the set $\left\{k \in \mathbb{N}: s_{\mathrm{sh}} \geq k\right\}$. Examples of sets of the form $S(s)$ are:

- $S\left(2^{\infty}\right)=\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$,

Initial segments for the Sharkovskii Ordering

For $s \in \mathbb{N}_{\mathrm{sh}}, S(s)$ denotes the set $\left\{k \in \mathbb{N}: s_{\mathrm{sh}} \geq k\right\}$. Examples of sets of the form $S(s)$ are:

- $S\left(2^{\infty}\right)=\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$,
- $S(3)=\mathbb{N}$,

Initial segments for the Sharkovskii Ordering

For $s \in \mathbb{N}_{\mathrm{sh}}, S(s)$ denotes the set $\left\{k \in \mathbb{N}: s_{\mathrm{sh}} \geq k\right\}$. Examples of sets of the form $S(s)$ are:

- $S\left(2^{\infty}\right)=\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$,
- $S(3)=\mathbb{N}$,
- $S(6)$ is the set of all positive even numbers union $\{1\}$, and

Initial segments for the Sharkovskii Ordering

For $s \in \mathbb{N}_{\mathrm{sh}}, S(s)$ denotes the set $\left\{k \in \mathbb{N}: s_{\mathrm{sh}} \geq k\right\}$. Examples of sets of the form $S(s)$ are:

- $S\left(2^{\infty}\right)=\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$,
- $S(3)=\mathbb{N}$,
- $S(6)$ is the set of all positive even numbers union $\{1\}$, and
- $S(16)=\{1,2,4,8,16\}$.

Initial segments for the Sharkovskii Ordering

For $s \in \mathbb{N}_{\mathrm{sh}}, S(s)$ denotes the set $\left\{k \in \mathbb{N}: s_{\mathrm{sh}} \geq k\right\}$. Examples of sets of the form $S(s)$ are:

- $S\left(2^{\infty}\right)=\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$,
- $S(3)=\mathbb{N}$,
- $S(6)$ is the set of all positive even numbers union $\{1\}$, and
- $S(16)=\{1,2,4,8,16\}$.

Note: $S(s)$ is finite if and only if $s \in S\left(2^{\infty}\right)$.

Sharkovskii's Theorem

Theorem (Sharkovskii)

For each continuous map g from a closed interval of the real line into itself, there exists $s \in \mathbb{N}_{\text {sh }}$ such that $\operatorname{Per}(g)=S(s)$. Conversely, for each $s \in \mathbb{N}_{\mathrm{sh}}$ there exists a continuous map g from a closed interval of the real line into itself such that $\operatorname{Per}(g)=S(s)$.
$\operatorname{Per}(g)$ denotes the set of (least) periods of all periodic points of g.

Idea of the proof of Sharkovskii's Theorem

The map g

The orbit P

The pattern of P
$(1,3,4,2)$

One has:
$\operatorname{Per}(g) \supset \operatorname{Per}\left(f_{P}\right)$.

The set of periods of the minimal model

Let us suppose, for example, that P is an orbit of Stefan type of period n. That is, of the following type:
$p_{n}<p_{n-2}<\cdots<p_{5}<p_{3}<p_{1}<p_{2}<p_{4}<\cdots<p_{n-3}<p_{n-1}$,
0
$p_{n-1}<p_{n-3}<\cdots<p_{4}<p_{2}<p_{1}<p_{3}<p_{5}<\cdots<p_{n-2}<p_{n}$.

Then:

Lemma

The vertices of the f_{P}-(combinatorial) Markov graph of f associated to P can be labelled so that their arrows are
(a) $I_{1} \longrightarrow I_{2} \longrightarrow \cdots \longrightarrow I_{s-1} \longrightarrow I_{1}$,
(b) $I_{1} \longrightarrow I_{1}$,
(c) $I_{s-1} \longrightarrow I_{1}, I_{s-1} \longrightarrow I_{3}, I_{s-1} \longrightarrow I_{5}, \ldots, I_{s-1} \longrightarrow I_{s-2}$.

That is:

Conclusion

It is easy to see that the previous Markov Graph gives loops of length equals to any positive integer contained in $S(n)$.
Consequently, $S(n) \subset \operatorname{Per}\left(f_{P}\right)$, since:

Lemma

Let $f \in \mathcal{C}^{0}(I, I)$, let $P \subset I$ be a finite set and let $\alpha=I_{0} \longrightarrow I_{1} \longrightarrow$
$\cdots \longrightarrow I_{n-1} \longrightarrow I_{0}$ a loop in the f-Markov graph associated to
P. Then, there exists a fixed point x of f^{n}, such that $f^{i}(x) \in I_{i}$ for $i=0,1, \ldots, n-1$. By choosing the loop in an appropriate way one can contain a point x whose (least) period is precisely n. Consequently, $n \in \operatorname{Per}(f)$.

Finally one gets $\operatorname{Per}(g)=S(s)$ by taking

$$
s=\max _{\mathrm{sh}} \geq \operatorname{Per}(g)
$$

Sets of periods of star maps

General Notation

A (topological) graph is a connected Hausdorff space G, which is a finite union of subspaces G_{i}, each of them homeomorphic to a closed, non-degenerate interval of the real line and $G_{i} \cap G_{j}$ is finite for all $i \neq j$. Clearly any graph is compact. The points from a graph which do not have a neighbourhood homeomorphic to an open interval are called vertices. The set of vertices of a graph G is denoted by $V(G)$ and is clearly finite (or empty - when G is homeomorphic to to the circle).

The closure of any connected component of $G \backslash V(G)$ is called an edge of G. Clearly, a graph has finitely many edges and each of them is homeomorphic to a closed interval or to the circle.

Trees and stars

A tree is a graph which is uniquely arcwise connected.
Let G be a graph, let $z \in G$ and let U be an open neighboorhood (in G) of z such that $\mathrm{Cl}(U)$ is a tree. The number of connected components of $U \backslash\{z\}$ is called the valence of z and is denoted by $\operatorname{Val}(z)$. This definition is independent of the choice of U and $\operatorname{Val}(z) \neq 2$ if and only if $z \in \mathrm{~V}(G)$. A vertex of valence 1 is called an endpoint of G whereas a point of valence larger than 2 is called a branching point of G.

Let $n \in \mathbb{N} \backslash\{1\}$. A n-star is a tree with n endpoints and at most one branching point. Note that a 2-star is homeomorphic to an interval (an thus it has no branching point) while an n-star with $n \geq 3$ has a unique branching point b with $\operatorname{Val}(b)=n$. X_{n} will denote a n star and \mathcal{X}_{n} the class of all continuous maps from X_{n} into X_{n}.

Baldwin partial orderings. The structure of $4 \geq$

Baldwin partial orderings. Formal definition

For each integer $t \geq 2$ we denote:

$$
\begin{aligned}
\mathbb{N}_{t} & =\left(\mathbb{N} \cup\left\{t \cdot 2^{\infty}\right\}\right) \backslash\{2,3, \ldots, t-1\} \text { and } \\
\mathbb{N}_{t}^{\vee} & =\{m t: m \in \mathbb{N}\} \cup\left\{1, t \cdot 2^{\infty}\right\}
\end{aligned}
$$

Then, the ordering ${ }_{t} \geq$ is defined in \mathbb{N}_{t} as follows: for $k, m \in \mathbb{N}_{t}$ we have $m_{t} \geq k$ if one of the following holds:
(i) $k=1 \circ k=m$,
(ii) $k, m \in \mathbb{N}_{t}^{\vee} \backslash\{1\}$ and $m / t_{\mathrm{sh}}>k / t$,
(iii) $k \in \mathbb{N}_{t}^{\vee}$ and $m \notin \mathbb{N}_{t}^{\vee}$,
(iv) $k, m \notin \mathbb{N}_{t}^{\vee}$ and $k=i m+j t$ with $i, j \in \mathbb{N}$,
where, in case (ii) we use the following arithmetic rule $t \cdot 2^{\infty}$: $t \cdot 2^{\infty} / t=2^{\infty}$.

Note: By identifying $2 \cdot 2^{\infty}$ with 2^{∞} we have ${ }_{2} \geq={ }_{s h} \geq$.

Initial segments

A set $S \subset \mathbb{N}_{t} \cap \mathbb{N}$ is an initial segment of the ordering ${ }_{t} \geq$ if for every $m \in S$ we have $\left\{k \in \mathbb{N}: m_{t} \geq k\right\} \subset S$ (that is, S is closed under predecessors).

Also we set

$$
\mathcal{S}_{t}(s):=\left\{n \in \mathbb{N}: n \leq_{t} s\right\}
$$

which is a particular case of an initial segment. Indeed, any initial segment of the \leq_{t} ordering can be expressed as the union of at most $t-1$ sets of the form $\mathcal{S}_{t}\left(s_{i}\right)$ because the set \mathbb{N}_{t} splits in at most $t-1$ branches by the ordering \leq_{t}.

Baldwin's Theorem

Theorem

Let $f \in \mathcal{X}_{n}$. Then, $\operatorname{Per}(f)$ is a finite union of initial segments of the orderings ${ }_{t} \geq$ with $2 \leq t \leq n$. Conversely, given a set A that is a finite union of initial segments of the orderings ${ }_{t} \geq$ with $2 \leq t \leq n$, there exists a map $f \in \mathcal{X}_{n}$ such that $f(b)=b$ and $\operatorname{Per}(f)=A$.

In a similar way to the interval case, the basic implication to prove is of the following kind: Assume that f has a periodic orbit with period n and type t. Then $\operatorname{Per}(f) \supset \mathcal{S}_{t}(n)$.

Sets of periods of continuous tree maps General strategy - I

Let S be a tree and let $g: S \longrightarrow S$ be continuous. To characterise the structure of the set $\operatorname{Per}(g)$ we use the following strategy: We fix a periodic orbit P of g :

Sets of periods of continuous tree maps

 General strategy - ILet S be a tree and let $g: S \longrightarrow S$ be continuous. To characterise the structure of the set $\operatorname{Per}(g)$ we use the following strategy: We fix a periodic orbit P of g :

Step 1. We reduce (if necessary) the model (S, P, g) in finitely many steps to a model $\left(S^{\prime}, P^{\prime}, g^{\prime}\right)$ which is either non twist or S^{\prime} is a star.

Sets of periods of continuous tree maps

General strategy - I

Let S be a tree and let $g: S \longrightarrow S$ be continuous. To characterise the structure of the set $\operatorname{Per}(g)$ we use the following strategy: We fix a periodic orbit P of g :

Step 1. We reduce (if necessary) the model (S, P, g) in finitely many steps to a model ($S^{\prime}, P^{\prime}, g^{\prime}$) which is either non twist or S^{\prime} is a star.

Step 2. Let us consider the canonical (minimal) model (T, A, f) of ($S^{\prime}, P^{\prime}, g^{\prime}$). For this model we calculate (or we get a good estimate) Λ_{P}, of the set of periods of f.

Step 3. Since (T, A, f) is the canonical (minimal) model of $\left(S^{\prime}, P^{\prime}, g^{\prime}\right)$, we prove that the "essential part" of $\operatorname{Per}(f)$ is contained in the set of periods of any map having the same pattern as (S, P, g). In particular, $\Lambda_{P} \subset \operatorname{Per}(g)$.

Step 3. Since (T, A, f) is the canonical (minimal) model of $\left(S^{\prime}, P^{\prime}, g^{\prime}\right)$, we prove that the "essential part" of $\operatorname{Per}(f)$ is contained in the set of periods of any map having the same pattern as (S, P, g). In particular, $\Lambda_{P} \subset \operatorname{Per}(g)$.

Step 4. Let us consider the set of all periodic orbits P of g. The structure of $\operatorname{Per}(g)$ can be obtained by organising the unions of all the sets Λ_{P} in an appropriate way.

Step 4: Structure of the set of periods

固 [AJM2005] L. Alsedà, D. Juher, and P. Mumbrú,
Periodic behavior on trees,
Ergodic Theory Dynam. Systems 25(5) (2005), 1373-1400.

Definition

Given S and T trees, and $p \geq 2$ we write $S \sqsupset p T$ when S contains a subtree W with p endpoints, such that T is homeomorphic to a connected component of $S \backslash \operatorname{Int}(W)$, and the number of endpoints of each connected component of
$S \backslash \operatorname{lnt}(W)$ is larger than or equal to the number of endpoints of T.

Example

$S \sqsupset 4 T$

Definition (continued)

Let Σ be the set of all finite sequences of positive integers
$\underline{s}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ with $p_{i} \geq 2$ for $1 \leq i<m$.
Given a tree S, Σ_{S} denotes the set of all sequences
$\left(p_{1}, p_{2}, \ldots, p_{m}\right) \in \Sigma$ for which there exists a sequence of trees $\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ satisfying:
(i) $S \supset S_{1}, S_{i} \sqsupset p_{i} S_{i+1}$ and $\operatorname{En}\left(S_{m}\right) \geq p_{m}$, where $\operatorname{En}(\cdot)$ denotes the number of endpoints of a tree.
(ii) S_{i} it is not a star for $1 \leq i<m$.

Note: Σ_{S} is finite since $m \leq 1+\log _{2}(\operatorname{En}(S)-1)$.

Examples

- The 4 -star has $\Sigma_{S}=\{(1),(2),(3),(4)\}$ as the set of admissible sequences.

Examples

- The 4 -star has $\Sigma_{S}=\{(1),(2),(3),(4)\}$ as the set of admissible sequences.

Admissible sequences:
$\Sigma_{S}=\{(1),(2),(3),(4),(5),(6)$,
$(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)$,

- $(4,1),(4,2),(5,1),(5,2),(6,1),(6,2)\}$

The characterisation of the set of periods

Theorem (Direct Implication)
Let $g: S \longrightarrow S$ be a tree map. Then there exists a (finite) set $S \subset \Sigma_{S}$ such that

$$
\operatorname{Per}(g)=\bigcup_{\underline{\mathbf{s}} \in \mathrm{S}}\left(\mathcal{K}_{\underline{\mathbf{s}}} \cup \mathcal{F}_{\underline{\mathbf{s}}} \cup\left(\mathcal{I}_{\underline{\mathbf{s}}} \backslash\left\lceil\underline{\underline{s}} \backslash\left\{2,3, \ldots, \lambda_{\underline{\mathbf{s}}}\right\}\right)\right)\right.
$$

where, for each $\underline{\mathbf{s}}=\left(p_{1}, p_{2}, \ldots, p_{m}\right) \in \mathrm{S}, \lambda_{\underline{\mathbf{s}}}$ is a positive integer, $\lceil\underline{\mathrm{s}}\rceil=p_{1} p_{2} \cdots p_{m}$ and
(a) $\mathcal{K}_{\underline{s}}=\left\{p_{1}, p_{1} p_{2}, \ldots, p_{1} p_{2} \cdots p_{m-1}\right\}$
(b) $\mathcal{I}_{\mathbf{s}}$ is an initial segment of the $\lceil\underline{\mathrm{s}}\rceil$-Baldwin ordering whose maximal elements belong to $\{1\} \cup p_{1} p_{2} \cdots p_{m-1}\left(\mathbb{N} \cup 2^{\infty}\right)$.
(c) If $\mathcal{I}_{\underline{s}} \subsetneq\{1\} \cup\lceil\underline{\mathbf{s}}\rceil \mathbb{N}$ then $\lambda_{\underline{s}}=0$ and $\mathcal{F}_{\underline{s}}=\emptyset$.

The characterisation of the set of periods-continued

Theorem (Direct Implication-continued)
(d) $\mathcal{F}_{\underline{s}}$ is disjoint from $\mathcal{K}_{\underline{s}} \cup \mathcal{I}_{\underline{s}} \backslash\lceil\underline{s}\rceil\left\{2,3, \ldots, \lambda_{\underline{s}}\right\}$.
(e) $\mathcal{F}_{\underline{s}}$ is finite (or empty). When $\mathcal{F}_{\underline{s}} \neq \emptyset$, we have $\min \mathcal{F}_{\underline{s}} \geq \lambda_{\underline{s}}[\underline{s}] / 2$ and $\left|\mathcal{F}_{\underline{s}}\right|$ is bounded in terms of $\operatorname{En}(S)$.

Theorem (Converse Implication)
Given a finite set $\mathrm{S} \subset \Sigma$ and a family $\left\{\mathcal{F}_{\underline{\mathrm{s}}}, \mathcal{I}_{\underline{\mathrm{s}}}, \lambda_{\underline{\mathrm{s}}}\right\}_{\mathrm{s} \in \mathrm{S}}$ verifying (a-e) of the Direct Theorem, there exists a tree S and a continuous map $g: S \longrightarrow S$ such that $S \subset \Sigma_{S}$ and

$$
\operatorname{Per}(g)=\bigcup_{\underline{\mathbf{s}} \in \mathrm{S}}\left(\mathcal{K}_{\underline{\mathbf{s}}} \cup \mathcal{F}_{\underline{\mathbf{s}}} \cup\left(\mathcal{I}_{\underline{\mathbf{s}}} \backslash\lceil\underline{\mathbf{s}}\rceil\left\{2,3, \ldots, \lambda_{\underline{\mathbf{s}}}\right\}\right)\right) .
$$

Example

In the notation of the theorem we have $\underline{s}=(3), \mathrm{S}=\{\underline{\mathbf{s}}\}$, $\mathcal{F}_{\underline{s}}=\{25,28,31,62,65,68\}, \mathcal{I}_{\underline{s}}=\mathcal{S}_{3}(34)$ and $\lambda_{\underline{s}}=2$.

Step 1: Reduction

Example of a periodic orbit 3-twist of period 12 (this notion generalises the notion of a division in the interval).

$g^{\prime}=r_{X} \circ g \circ r_{Z} \circ g \circ r_{Y} \circ g: X \longrightarrow X ; \quad \operatorname{Per}(g) \supset\{1\} \cup 3 \cdot \operatorname{Per}\left(g^{\prime}\right)$. Notation: $r_{Y}: S \longrightarrow y$ denotes the natural retraction from S to Y.

The above construction generalises the notion of a division in the interval:

Step 1: Formalisation

Proposition

For a model (S, P, g), the following statements hold:
(a) There exists a finite sequence of models $\left\{\left(S_{i}, P_{i}, g_{i}\right), p_{i}\right\}_{i=1}^{m}$ such that:
(i) $\left(S_{1}, P_{1}, g_{1}\right)=(S, P, g)$
(ii) P_{i} is a periodic orbit of g_{i} such that the endpoints of S_{i} are contained in P_{i} for $i>1$.
(iii) for each $i<m,\left(S_{i}, P_{i}, g_{i}\right)$ is p_{i}-twist and $\left(S_{i+1}, P_{i+1}, g_{i+1}\right)$ is a reduction of $\left(S_{i}, P_{i}, g_{i}\right)$.
(iv) $\left(S_{m}, P_{m}, g_{m}\right)$ is either not twist or S_{m} is a star.
(v) $|P|=p_{1} p_{2} \cdots p_{m-1}\left|P_{m}\right|$.
(b)

$$
\begin{array}{r}
\operatorname{Per}(g) \supset\left\{1, p_{1}, p_{1} p_{2}, \ldots, p_{1} p_{2} \cdots p_{m-1}\right\} \\
\cup p_{1} p_{2} \ldots p_{m-1} \operatorname{Per}\left(g_{m}\right)
\end{array}
$$

Step 1: Conclusion

Now the problem consists in estimating the set $\operatorname{Per}\left(g_{m}\right)$.

Step 1: Conclusion

Now the problem consists in estimating the set $\operatorname{Per}\left(g_{m}\right)$.

- If S_{m} is a star, then this set if given by Baldwin Theorem (stated before).

Step 1: Conclusion

Now the problem consists in estimating the set $\operatorname{Per}\left(g_{m}\right)$.

- If S_{m} is a star, then this set if given by Baldwin Theorem (stated before).
- In the other case, $\left(S_{m}, P_{m}, g_{m}\right)$ is not twist and the computation of its set of periods is done in the Steps 2 and 3.

Step 2: Computation of the set of periods in canonical models

One of the crucial notions in this theory is the concept of pattern for tree maps:
: [AGLMM] LI. Alsedà, J. Guaschi, J. Los, F. Mañosas and P. Mumbrú, Canonical representatives for patterns of tree maps, Topology 36 (1997), 1123-1153.

As in the interval case we need a definition of pattern for which it always exists a minimal model (canonical - in the interval is the "connect-the-dots" map) (T, A, f) with the following properties of dynamical minimality:

Basic requirements on a canonical (minimal) model

Basic requirements on a canonical (minimal) model

- f minimises the topological entropy among all the tree maps having a periodic orbit with the same pattern as (T, A, f) (this is essentially due to the fact that any such tree map will have \mathcal{G} as a subgraph - as in the interval case).

Basic requirements on a canonical (minimal) model

- f minimises the topological entropy among all the tree maps having a periodic orbit with the same pattern as (T, A, f) (this is essentially due to the fact that any such tree map will have \mathcal{G} as a subgraph - as in the interval case).
- The dynamics of f can be coded by means of a combinatorial (Markov) graph \mathcal{G}. Essentially, there exists a bijection between the periodic orbits of f and the loops of \mathcal{G}. Moreover, the topological entropy of f is the logarithm of the spectral radius of \mathcal{G}.

Basic requirements on a canonical (minimal) model

- f minimises the topological entropy among all the tree maps having a periodic orbit with the same pattern as (T, A, f) (this is essentially due to the fact that any such tree map will have \mathcal{G} as a subgraph - as in the interval case).
- The dynamics of f can be coded by means of a combinatorial (Markov) graph \mathcal{G}. Essentially, there exists a bijection between the periodic orbits of f and the loops of \mathcal{G}. Moreover, the topological entropy of f is the logarithm of the spectral radius of \mathcal{G}.
Note: Due to the existence of branch points, in this context there does not exist the "connect-the-dots" map. The price to pay for having minimal models in this context is that the space must be not fixed (homotopy relative to P)!!!.

Example: Pattern - 1st part

Example: Pattern - 2nd part

Properties of a canonical model

(1) f is A-monotone: if $\{a, b\} \subset A$ and $(a, b) \cap A=\emptyset$, then f maps $[a, b]$ monotonely "onto" $[f(a), f(b)]$.
(2) $f(V(T)) \subset V(T) \cup A$. Thus $A \cup V(T)$ is f-invariant and ($T, A \cup V(T), f)$ is a Markov model.
(3) In general $T \neq S$!!

Despite of Property (3), Properties (1) and (2) allow us to compute the periods associate to loops in the Markov Graph that are simple and extern:

Example

Sets of periods for canonical models

 NotationGiven $t \geq 2$ and $r \in \mathbb{N}_{t}$ we denote:

$$
\mathcal{S}_{t}^{*}(r)= \begin{cases}\left\{k \in \mathbb{N}: n \leq_{t} r\right\} & \text { si } r \notin \mathbb{N}_{t}^{\vee}, \\ \{1\} \cup t \mathbb{N} & \text { si } r \in \mathbb{N}_{t}^{\vee}\end{cases}
$$

Sets of periods for canonical models

Theorem

Let (T, A, f) be a non twist canonical model. Then,

$$
\operatorname{Per}(f) \supset \mathcal{S}_{p}^{*}(|A|+\mid p) \backslash\{2 p, 3 p, \ldots, \lambda p\},
$$

Where p is the type of the model (a generalisation of the corresponding notion introduced by Baldwin for the stars) and I and λ are bounded constants in terms of the combinatorial properties of T.
[[AJM2003] L. Alsedà, D. Juher, and P. Mumbrú, Sets of periods for piecewise monotone tree maps, Int. J. of Bifurcation and Chaos 13 (2003), 311-341.

Example

A model with $|A|=20, p=4, \lambda=2$ and $I=1$
$\operatorname{Per}(f)=\mathcal{S}_{4}^{*}(24) \backslash\{8\}=\{1\} \cup 4 \mathbb{N} \backslash\{8\}$

Step 3: Minimality of canonical models relative to the set of periods

Let $g: S \longrightarrow S$ be a tree map, let P be a periodic orbit of g and let (T, A, f) be a canonical representative of the pattern
(S, P, g). Is it true that $\operatorname{Per}(f) \subset \operatorname{Per}(g)$?

In
(AGLMM] LI. Alsedà, J. Guaschi, J. Los, F. Mañosas and P. Mumbrú,
Canonical representatives for patterns of tree maps, Topology 36 (1997), 1123-1153.
it is proved that if $n \in \operatorname{Per}(f)$ then $g^{2 n}$ has a fixed point x. However it is not made explicit which is really the least period of x.

In general the answer to this question is NO

Canonical model $\operatorname{Per}(g)=\{1,4\}$ $\operatorname{Per}(f)=\{1,2,4\}$

When the answer is positive?

A periodic point of (T, A, f) will be called significant if it does not travel together with a vertex of T.

Note: the periods computed in the Characterisation of the set of periods (Direct Implication) correspond to significant orbits.

When the answer is positive?

Theorem
Let $g: S \longrightarrow S$ be a tree map exhibiting a periodic orbit P with pattern \mathcal{P}. Let (T, A, f) be the canonical model of \mathcal{P}. If there is a significant n-periodic orbit of f, then $n \in \operatorname{Per}(g)$.
: [AJM2005b] L. Alsedà, D. Juher, and P. Mumbrú, On the preservation of combinatorial types for maps on trees,
Annales de l'Institut Fourier 55(7) (2205) 2375-2398.
[[AJM2006] L. Alsedà, D. Juher, and P. Mumbrú,
Periodic behaviour on trees,
In preparation.

Idea of the proof

Let x be a significant n-periodic point of f. There exists a unique simple loop β in the \mathcal{P}-path graph such that x and β are associated:

$$
\beta=\pi_{0} \rightarrow \pi_{1} \rightarrow \ldots \rightarrow \pi_{n-1} \rightarrow \pi_{0}
$$

Set $\pi_{0}=\{a, b\}$ and $\pi_{1}=\{c, d\}$.

There exists a finite union $J(\beta) \subset[a, b]$ of closed intervals with pairwise disjoint interiors such that $g^{i}(J) \subset\left\langle\pi_{i}\right\rangle$ for $0 \leq i<n$ and $g^{n}(J)=\left\langle\pi_{0}\right\rangle$:

It may happen that there are no fixed points of g^{n} in $[a, b]$. In fact there are several situations where this does not happen. Namely:

* When the loop β is positive i.e. g^{n} is "increasing" $\left(g^{n}(a)<a<b<g^{n}(b)\right)$:

The map g^{n}

* When $n=|\beta|$ is bigger than $K \cdot L$, where:
- K is the number of basic paths having some vertex in their interior.
- L is the maximum number of vertices contained in the interior of a basic path.

It is easy to see that

$$
K \cdot L \geq M(S):=\frac{1}{2}|\operatorname{En}(S)| \cdot(|\operatorname{En}(S)|-1) \cdot|V(S)|^{2}
$$

When $n>K \cdot L$, there is a basic path (say, π_{0}) in the loop β such that the number of occurrences of π_{0} in β is larger than the number of vertices in the interior of π_{0}. For instance, if π_{0} has 2 vertices in its interior, then π_{0} occurs at least 3 times in β.

Thus we can consider 3 (pairwise different) shifts of β starting at π_{0} (say, $\beta_{1}, \beta_{2}, \beta_{3}$) and get the corresponding $J\left(\beta_{1}\right), J\left(\beta_{2}\right)$ and $J\left(\beta_{3}\right)$:

So, we are left with the case:

$$
1<n<M(S) \text { and } \beta \text { negative }
$$

Key tool to study these cases: A theorem of persistence of orbits (among "homotopically conjugate" graph maps) from
[1AGGLMM] LI. Alsedà, F. Gautero, J. Guaschi, J. Los, F. Mañosas and P. Mumbrú,
Patterns and minimal dynamics for graph maps, Proc. London Math. Soc. 91(2) (2005), 9414-442.

Key notions:

- Nielsen fixed point class
- Index of a Nielsen fixed point class

Definition

Let $f: G \longrightarrow G$ and $g: G^{\prime} \longrightarrow G^{\prime}$ be graph maps such that there exist two homotopy equivalences $r: G \longrightarrow G^{\prime}$ and $s: G^{\prime} \longrightarrow G$ satisfying $r \circ s \simeq \operatorname{ld}_{G^{\prime}}, s \circ r \simeq \operatorname{Id}_{G}$ and $f \simeq s \circ g \circ r$. Then, there exists an index-preserving bijection that, for each $n \in \mathbb{N}$, sends essential fixed point classes of f^{n} to essential fixed point classes of g^{n}.

The trick to play

$\left(T^{G}, A, \bar{f}\right)$

$\left(S^{G}, P, \bar{g}\right)$

The above construction is done in such a way that:

The above construction is done in such a way that:

- $\bar{f}: T^{G} \longrightarrow T^{G}$ and $\bar{g}: S^{G} \longrightarrow S^{G}$ verify the hypotheses of the theorem of persistence.

The above construction is done in such a way that:

- $\bar{f}: T^{G} \longrightarrow T^{G}$ and $\bar{g}: S^{G} \longrightarrow S^{G}$ verify the hypotheses of the theorem of persistence.
- $\operatorname{Per}(\bar{f})=\operatorname{Per}(f)$ and $\operatorname{Per}(\bar{g}) \cap\{1,2, \ldots, M(S)\}=\operatorname{Per}(g) \cap\{1,2, \ldots, M(S)\}$.

The above construction is done in such a way that:

- $\bar{f}: T^{G} \longrightarrow T^{G}$ and $\bar{g}: S^{G} \longrightarrow S^{G}$ verify the hypotheses of the theorem of persistence.
- $\operatorname{Per}(\bar{f})=\operatorname{Per}(f)$ and $\operatorname{Per}(\bar{g}) \cap\{1,2, \ldots, M(S)\}=\operatorname{Per}(g) \cap\{1,2, \ldots, M(S)\}$.
- If a periodic point x of \bar{f} is associated to a negative loop β, then x is alone in its Nielsen class, and its index is -1 .

The above construction is done in such a way that:

- $\bar{f}: T^{G} \longrightarrow T^{G}$ and $\bar{g}: S^{G} \longrightarrow S^{G}$ verify the hypotheses of the theorem of persistence.
- $\operatorname{Per}(\bar{f})=\operatorname{Per}(f)$ and
$\operatorname{Per}(\bar{g}) \cap\{1,2, \ldots, M(S)\}=\operatorname{Per}(g) \cap\{1,2, \ldots, M(S)\}$.
- If a periodic point x of \bar{f} is associated to a negative loop β, then x is alone in its Nielsen class, and its index is -1 .

THUS, BY THE THEOREM OF PERSISTENCE, THE SIGNIFICANT PERIODS OF A CANONICAL (SIMPLIFIED) MODEL ARE ALSO PERIODS OF THE ORIGINAL MODEL.

