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Motivation

We are interested in studying complicate objects semianalitically
(obtaining expansions in a truncated base) to be able to predict
and understand changes in the geometry or dynamical properties
as reducibility and others.

To fix ideas let us describe a couple of models that we use as toy
models.

We consider skew products of the form{
θn+1 = R(θn) = θn + ω (mod 1),

xn+1 = T (θ, x)
(1)

where x ∈ R+, θ ∈ S1, ω ∈ R \Q and T (θ, x) is of the form either
f (x)g(θ) or f (x) + g(θ).
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The [GOPY]-Keller model

In the system (1) we take T (θ, x) = f (x)g(θ) with

1 f : [0,∞) −→ [0,∞) ∈ C1, bounded, strictly increasing,
strictly concave and verifying f (0) = 0 (to fix ideas take
f (x) = 2σ tanh(x) with σ > 0 as in the [GOPY] model).
Thus, x = 0 will be invariant.

2 g : S1 −→ [0,∞) bounded and continuous (to fix ideas take
g(θ) = ε+ | cos(2πθ)| in a similar way to the [GOPY] model
– except for ε and the absolute value).

We get: {
θn+1 = θn + ω (mod 1),

xn+1 = 2σ tanh(xn)(ε+ | cos(2πθn)|)
(2)

ω =
√

5+1
2 , σ > 0 and ε ≥ 0.
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The [GOPY]-Keller model

Remark

The attractor of the above system (if it exists) will be pinched if
and only if ε = 0.

Pinching

There are big differences between the cases when g takes the value
0 at some point: the pinched case and the case when g is strictly
positive.

In the pinched case any T–invariant set has to be 0 on a point and
hence on a dense set because the circle x ≡ 0 is invariant and the
θ-projection of every invariant object must be invariant under R.
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The [GOPY]-Keller model

The following theorem due to Keller [Kel] makes the above
informal ideas rigorous. Before stating it we need to introduce the
constant σ:

Since the line x = 0 is invariant, by
using Birkhoff Ergodic Theorem, it
turns out that

σ := f ′(0) exp

(∫
S1

log g(θ)dθ

)
<∞.

is the vertical Lyapunov exponent on
the circle x = 0.

Movie: A family of Keller Attractors
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Keller Theorem

There exists an upper semicontinuous map φ : S1 −→ [0,∞) whose
graph is invariant under the Model (2). Moreover,

1 The Lebesgue measure on the circle, lifted to the graph of φ
is a Sinai-Ruelle-Bowen measure,

2 if σ ≤ 1 then φ ≡ 0,
3 if σ > 1 then φ(θ) > 0 for almost every θ,
4 if σ > 1 and g(θ0) = 0 for some θ0 then the set {θ : φ(θ) > 0}

is meager and φ is almost everywhere discontinuous,
5 if σ > 1 and g > 0 then φ is positive and continuous; if g is
C1 then so is φ,

6 if σ 6= 1 then |xn − φ(θn)| → 0 exponentially fast for almost
every θ and every x > 0.

For this model we want to compute the attractor so that we can
detect the pinching point.
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The Nishikawa-Kaneko model.
Plots with a = 3.0 (taken from the original paper)

{
θn+1 = θn + ω (mod 1),

xn+1 = ax(1− x) + ε sin(2πθn)
(3)

where x ∈ [0, 1] and ω =
√

5+1
2 .
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The Nishikawa-Kaneko model

In the Nishikawa-Kaneko paper it is described the fractalization
route seen (that they illustrate in the pictures) with support on
rough numerical computations.

Currently there is a strong debate about this route and about the
fact that what we get at the end is really a fractal.

For this model we want to compute the attractors so that we can
approximate their regularities and, perhaps, helping in deciding
whether the final object is a fractal.
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On the use of wavelets

As we have seen the invariant objects that we want to compute are
expressed as graphs of functions (from S1 to R).

The standard approach to compute invariant objects is to use finite
Fourier approximations (trigonometric polynomials) to get
expansions as:

F(θ) = a0 +
N∑

n=1

(an cos(nθ) + bn sin(nθ)) .

However, the regularity and periodicity of the trigonometric basis
makes clear that this approach is too complicate (or can be use at
a very high cost) since, as we have seen, the topology and
geometry of these objects is extremely complicate.
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On the use of wavelets

In this case it seems more natural to use wavelets that adapt much
better to oscillatory, irregular and highly discontinuous objects.

Our aim is to devise an algorithm to compute massive finite
wavelet approximations for attractors with complicate geometry.
We need these massive approximations because we want to be able
to compute the regularities of the objects and this, as we will see,
requires a massive computation of wavelet coefficients.
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A (short) crash course on wavelets and regularity

Let us start by the definition of Multiresolution Analysis (MRA)

Definition

A sequence of closed subspaces of L 2(R), {Vj}j∈Z, is a Multiresolution
Analysis if it satisfies:

{0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L 2(R).

{0} =
⋂

j∈Z Vj .

clos
(⋃

j∈Z Vj
)

= L 2(R).

There exists a function φ(x) whose integer translates, φ(x − n),
form an orthonormal basis of V0. Such function is called the scaling
function.

For each j ∈ Z it follows that f (x) ∈ Vj if and only if
f (x − 2jn) ∈ Vj for each n ∈ Z.

For each j ∈ Z it follows that f (x) ∈ Vj if and only if f (x/2) ∈ Vj+1.
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A (short) crash course on wavelets and regularity

Consider the bi-indexed family of maps obtained by dilations and
translations of φ(x):

φj ,n(x) =
1√
2j
φ

(
x − 2jn

2j

)
.

It can be shown that

1 {φj ,n}n∈Z is an orthonormal basis of Vj for each j ∈ Z, and

2 φ(x) characterizes the whole MRA (see [Mal]).

[Mal] Mallat, Stéphane, A wavelet tour of signal processing, Academic Press
Inc., San Diego, CA, 1998, xxiv+577.
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A (short) crash course on wavelets and regularity

If we fix an MRA, we know that Vj ⊂ Vj−1. Then we define the subspace
Wj as the orthogonal complement of Vj on Vj−1.

That is
Vj−1 =Wj ⊕ Vj .

We are looking for an orthonormal basis of Wj , which verifies a relation
with φ(x), (the wavelets). This basis is given from a function called the
mother wavelet ψ(x) by the formula

ψj,n(x) =
1√
2j
ψ

(
x − 2jn

2j

)
.

In [Mal] it is shown that:

Mallat and Meyer Theorem

For every j ∈ Z the family {ψj,n}n∈Z is an orthonormal basis of each
Wj ,

The wavelets {ψj,n}(j,n)∈Z×Z are an orthonormal basis of L 2(R) for
all j , n ∈ Z.
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A (short) crash course on wavelets and regularity
How to compute the mother wavelet
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A (short) crash course on wavelets and regularity
Examples of mother wavelets

Shannon wavelet (no compact support)

ψ(x) =
sin(2π(x − 1/2))

2π(x − 1/2)
−

sin(π(x − 1/2))

π(x − 1/2)

h[n] =


√

2
2

if n = 0,
√

2−1(n−1)/2

πn
if n odd,

0 otherwise.

Daubechies wavelet (compact support)

No closed formula

h[n] =



0.4829629131445341 . . . if n = 0,

0.8365163037378079 . . . if n = 1,

0.2241438680420134 . . . if n = 2,

−0.1294095225512604 . . . if n = 3,

0 otherwise.
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A (short) crash course on wavelets and regularity
Examples of mother wavelets

0 0.5 1

−1

0

1

Haar wavelet (compact support)

ψ(x) := 1[0, 1
2

)(x)− 1[ 1
2
,1)(x) where 1[a,b)(x) =

{
1 if x ∈ [a, b),

0 otherwise.
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A (short) crash course on wavelets and regularity
Wavelet expansions

We know that given a function f ∈ L 2(R) and an MRA, f can be
expanded in the wavelet basis:

f (x) =
∑
j∈Z

∑
n∈Z
〈f , ψj ,n〉ψj ,n(x) =

∑
j∈Z

∑
n∈Z

dj [n]ψj ,n(x)

We look for finite (truncated) wavelet approximations of f of the
type:

f ∼
J∑

j=0

2j−1∑
n=0

〈f , ψj ,n〉ψj ,n =
J∑

j=0

2j−1∑
n=0

dj [n]ψj ,n(x)

To obtain such approximations one uses the Fast Wavelet
Transform (FWT).

Ll. Alsedà (UAB) Numerical computation of invariant objects with wavelets 16/51



Motivation Wavelets in Theory Computing regularities FWT Invariance Daubechies

A (short) crash course on wavelets and regularity
The FWT

With J > 0 fixed and an MRA {Vj}j∈Z, we can decompose

L 2(R) = V−J ⊕
(
L 2(R)\V−J

)
.

That is, we can write the projection of f to V−J as

PV−J
(f ) =

∑
n∈Z
〈f , φ−J,n〉φ−J,n ∈ V−J

and
f = PV−J

(f ) + (f − PV−J
(f )),

with (f − PV−J
)(f ) ∈

(
L 2(R)\V−J

)
.
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A (short) crash course on wavelets and regularity
The FWT

Then we can truncate PV−J
(f ) to the finite dimensional version of

V−J to get

f ∼
2J−1∑
n=0

〈f , φ−J,n〉φ−J,n =
2J−1∑
n=0

a−J [n]φ−J,n.

But, recall that V−J = V−J+1 ⊕W−J+1. Therefore,

f ∼
2J−1∑
n=0

a−J [n]φ−J,n

=
2J−1−1∑
n=0

〈f , φ−J+1,n〉φ−J+1,n +
2J−1−1∑
n=0

〈f , ψ−J+1,n〉ψ−J+1,n

=
2J−1−1∑
n=0

a−J+1[n]φ−J+1,n +
2J−1−1∑
n=0

d−J+1[n]ψ−J+1,n.
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A (short) crash course on wavelets and regularity
The FWT

By iterating this process we get:

f ∼ φ0,0 +
J∑

j=0

2j−1∑
n=0

〈f , ψj ,n〉ψj ,n = φ0,0 +
J∑

j=0

2j−1∑
n=0

d−J+j [n]ψj ,n(x)

with φ0,0 = 〈f , φ〉. This will give a good approximation for f

provided that J is big enough (so φ0,0 +
∑2J−1

n=0 a−J [n]φ−J,n is a
sufficiently good approximation of f ).

But additionally we need a formula to compute the coefficients
aj+1[n] and dj+1[n] from the coefficients aj [n].
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A (short) crash course on wavelets and regularity
The FWT

This formula is given by the

Mallat Theorem (see [Mal])

Let {Vj}j∈Z be an MRA and let aj [n] := 〈f , φj ,n〉 denote the
scaling coefficients and let dj [n] := 〈f , ψj ,n〉 denote the wavelet
coefficients. Then, the following recursive formulas hold.

At the decomposition:

aj+1[p] =
∑
n∈N

h[n − 2p]aj [n] and dj+1[p] =
∑
n∈N

g [n − 2p]aj [n].

At the reconstruction:

aj [p] =
∑
n∈N

h[p − 2n]aj+1[n] +
∑
n∈N

g [p − 2n]dj+1[n].

Ll. Alsedà (UAB) Numerical computation of invariant objects with wavelets 20/51



Motivation Wavelets in Theory Computing regularities FWT Invariance Daubechies

A (short) crash course on wavelets and regularity
The FWT

To start the FWT we need the scaling coefficients aJ [n]. Under
certain reasonable conditions, which includes that f is Lipschitz, in
[Fra] it is shown:

Lemma

|〈f , φj ,n〉 − 2−j/2f (2jn)| < C2−j(α+1/2).

Therefore,
2J/2aJ [n] ≈ f (2Jn).

[Fra] Frazier, Michael W., An introduction to wavelets through linear algebra,
Springer, 1999.
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A (short) crash course on wavelets and regularity
Summarizing the FWT

1 Fix a J large enough such that
∑2J−1

n=0 a−J [n]φ−J,n is a good
approximation of f and C2−J(α+1/2) is small enough.

2 With such J, take f (2Jn) to be an approximation of 2J/2aJ [n]

3 Apply

aj+1[p] =
∑
n∈N

h[n − 2p]aj [n] and dj+1[p] =
∑
n∈N

g [n − 2p]aj [n].
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Computing regularities

We start by defining the regularity spaces that we will use

Definition

Let ϕ = {ϕj}∞j=0 be a dyadic resolution of unity (see the figure
below). We define the Besov spaces Bs∞,∞ with s ∈ R by

Bs∞,∞(R) = {f ∈ S ′(R) : ‖f ‖∞,∞,s <∞},

with
‖f ‖∞,∞,s = sup

j≥0
2js
(
‖(ϕj f̂ )∨‖∞

)
.

The graph of some ϕj(x) from ϕ.
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Computing regularities

From [Tri2] and [Coh]

Theorem

Let s ∈ R \ {0} and let ψ be a mother Daubechies wavelet with
more than max(s, 5/2− s) vanishing moments. Then f ∈ Bs∞,∞ if
and only if there exists C > 0 such that

sup
n∈Z
|〈f , ψj ,n〉| ≤ C2τ j with τ =

{
s + 1

2 if s > 0,

s − 1
2 if s < 0,

for all j ≤ 0.

We will use this result to estimate the regularity of the
Keller-GOPY attractor.

[Coh] Cohen, Albert, Numerical analysis of wavelet methods, North-Holland,
2003.
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Using the FWT to compute wavelet coefficients

we consider the following parametrization of the system (2):{
θn+1 = θn + ω (mod 1),

xn+1 = 2σ tanh(xn)(ε(σ) + | cos(2πθn)|)
(4)

with ω =
√

5+1
2 , σ ∈ [1, 2] and

ε(σ) =

{
(σ − 1.5)2 when 1.5 ≤ σ ≤ 2,

0 when 1 ≤ σ ≤ 1.5.
.

In this way the system is pinched if and only if σ ≤ 1.5.

Following de la Llave and Petrov, take a Daubechies wavelet with

k > max

(
s,

5

2
− s

)
vanishing moments and fix a positive integer

J.
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Using the FWT to compute wavelet coefficients

To compute an estimate of the Hölder exponent of the attractor
we will perform the following steps:

Step 0 Approximate the attractor by iterating with a
transient to obtain a signal (θi , λ(θi )) (use Simo’s principle: if
we have an attractor let it work (attract) for us). Since Keller
Theorem says that we have exponential contraction the
approximation will be moderately good.

Step 1 Calculate a−J [n] ≈ 〈λ, φ−J,n〉, where 0 ≤ n ≤ 2J − 1.

Step 2 Calculate, by means of the FWT the coefficients

dj[n] = 〈λ, ψj ,n〉

where 0 ≤ j ≤ J and, for each, j 0 ≤ n ≤ 2j − 1.
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Using the FWT to compute wavelet coefficients

Step 3 For 0 ≤ j ≤ J, calculate

sj = log2

(
sup

0≤n≤2j−1

|dj [n]|

)
.

Step 4 Make a linear regression to estimate the slope τ of the
graph of the pairs (j , sj) with j = 0,−1,−2, . . . ,−J and use
the above theorem to get s provided that the wavelet used
had more than max(s, 5/2− s) vanishing moments.

This algorithm gives an effective way of computing wavelet
coefficients and regularities. It has only two problems that must be
solved:
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Using the FWT to compute wavelet coefficients

Remark

Steps 3 and 4 before justify why we need massive computation on
wavelets coefficients. To have J points in the above regression we
need 2J+1 coefficients. Conversely, with 230 coefficients we only
have 29 values to estimate the regularity.
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Using the FWT to compute wavelet coefficients: the
problems

1 The function λ which defines the attractor is far from being
Lipschitz. Thus, the estimate a−J [n] ≈ 〈λ, φ−J,n〉 in principle
is not valid. However, using ideas from the proof of Keller
Theorem and the dominated Convergence Theorem it can be
shown that the approximation is valid provided that the
transient in the computation of the algorithm is big enough.

2 The points θi that give the attractor are, a priori not
equispaced. This can be solved by conjugating the attractor
with a diffeomorphism of class C2 to a version of the attractor
with points equispaced and sorting the signal to get the values
λ(θi ) in the right ordering. The conjugacy is not a problems
since by using a theorem from de la Llave and Obaya one can
prove that the regularity of both attractors is the same.
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Using the FWT to compute wavelet coefficients

With these tricks we get the following regularity graph:

Figure: The estimate of the regularity of the (strange) attractor of
System (2) for σ ∈ [1, 2] and ε given by the parametrization ε(σ). The
results are obtained by using a sample of 230 points (that is, J = 30), a
transient N0 = 105 and the Daubechies Wavelet with 16 vanishing
moments.
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Using the FWT to compute wavelet coefficients

This algorithm detects in a correct way the pinching point despite
of the fact that the regularities for σ ' 1.5 are wrong, as the
following lemma shows:

Lemma

The upper semi continuous function λ : S1 −→ R+ whose graph is
in ϕ is in B0

∞,∞(S1) when ε = 0 and Bs
∞,∞(S1), with s ∈ (0, 1]

when ε > 0.

This also explains why we have to use the Besov spaces instead of
the Hölder ones: to allow regularity zero that is not attainable with
Hölder spaces.

The problem in this algorithm comes from the fact that the initial
signal (the attractor) does not have enough quality (precision) due
to the extremely complicate geometry
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Using the the invariance equation to compute wavelet
coefficients

To overcome the above method its better to use the invariance
equation to fix the attractor and solve numerically the problem.

Also we will use Haar wavelets that have better properties than
Daubechies ones.
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The invariance equation

The study of the above systems is based on the iteration of the
Transfer Operator. Let P be the space of all functions (not
necessarily continuous) from S1 to R. If we look for a functional
version of the System (2) in the space P one can define the
Transfer Operator T : P −→P as

T(ϕ)(θ) = f (ϕ(R−1
ω (θ))) · g(R−1

ω (θ)).

Notice that the graph of a function ϕ : S1 −→ R is invariant for
the System (2) if and only if

f (ϕ(R−1
ω (θ))) · g(R−1

ω (θ)) = T(ϕ)(θ) = ϕ(θ)

or equivalently we get the invariance equation

f (ϕ(θ)) · g(θ) = ϕ(Rω(θ)).
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The invariance equation

To solve the above functional equation we write the attractor as

ϕ(θ) = φ0,0 +
J∑

j=0

2j−1∑
n=0

dj [n]ψj ,n(θ)

where the coefficients φ0,0 and dj [n] are the unknowns.

To make this formula easier we set N = 2J+1, φ0,0 = d0 and we
set ` = `(j , n) = 2j + n, which gives a linear indexing of dj [n] and
ψj ,n(θ). With this notation the formula becomes:

ϕ(θ) = d0 +
N−1∑
`=1

d`ψ`(θ)
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The invariance equation

As usual we plug this expression into the invariance equation and
we get:

d0 +
N−1∑
`=1

d`ψ`(Rω(θ)) = f

(
d0 +

N−1∑
`=1

d`ψ`(θ)

)
· g(θ).

To be able to solve it we discretize the variable θ into N dyadic
points in the circle θi = i

N for i = 0, 1, . . . ,N − 1 and we impose
that the invariance equation is verified on the dyadic points θi . We
get

d0 +
N−1∑
`=1

d`ψ`(Rω(θi ))− f

(
d0 +

N−1∑
`=1

d`ψ`(θi )

)
· g(θi ) = 0

for every i = 0, 1, . . . ,N − 1.

Thus we get a non-linear system of N equations with N unknowns.
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The invariance equation

We will use the Newton Method to solve this system.

To do this we are facing two problems:

Find a good initial seed

Solve a huge linear system that, as we will see, is ill
conditioned.

The solution to the first problem is easy. We find an approximation
to the attractor at the prescribed points θi (for this we have to
start at the appropriate pre-image of each θi ) and compute the
wavelet coefficients. This process need not be very precise since
this will not give the final solution but it will give a good initial
seed.
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The Jacobian matrix

The solution to the second problem consists in understanding well
the properties of the values ψ`(Rω(θi )) and ψ`(θi ).

The Jacobian of the system, denoted Φ = (Φi ,`) is

Φi,` =

1− f ′
(
d0 +

∑N−1
`=1 d`ψ`(θi )

)
· g(θi ) if ` = 0,

ψ`(Rω(θi ))− f ′
(
d0 +

∑N−1
`=1 d`ψ`(θi )

)
· g(θi ) · ψ`(θi ) if ` 6= 1,

.
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The Jacobian matrix

It is useful to have the Jacobian of the system in matrix form. So,
we introduce some vectors and matrices.

δ := (d0, d1, . . . , dN−1)>

Ψ = (Ψi ,`) is the matrix N × N such that

Ψi ,` =

{
1 if ` = 0

ψ`(θi ) if ` 6= 0

ΨR =
(

ΨR
i ,`

)
is the matrix such that

ΨR
i ,` =

{
1 if ` = 0

ψ`(Rω(θi )) if ` 6= 0

Λ is the diagonal matrix that has
f ′ ([Ψδ]0) · g(θ0), f ′ ([Ψδ]1) · g(θ1), . . . , f ′

(
[Ψδ]N−1

)
· g(θN−1)

as the elements in the diagonal, where [α]` denotes the
component ` of the vector α.
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The Jacobian matrix

Observe that

[Ψδ]i = d0 +
N−1∑
`=1

d`ψ`(θ)ϕ(θi ) = ϕ(θi )

With all this notation the Jacobian matrix can be written as

Φ = ΨR − ΛΨ.

At each iteration of the Newton Method we have to solve the
linear system with Φ as a matrix and whose independent term is
the evaluation of the invariance equation.
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The Jacobian matrix

In the figure below we show a typical spectrum of this matrix
which explains why all standard methods to solve the system fail.

There is a good solution to this problem which is preconditioning.
But for this we need to know better the wavelet matrices ΨR and
Ψ
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The wavelet matrices

First we consider the case of Haar wavelets defined before.

Lemma (Properties of the Haar wavelet matrices)

The following statement hold:

1 The wavelets matrix is very simple:

ψj ,n(`/N) =


1√
N

2−j/2 for 0 ≤ `− ns < s/2,

− 1√
N

2−j/2 for s/2 ≤ `− ns < s,

0 if `− ns ≥ 0.

with s = 2J−j .

2 The matrix Ψ is orthogonal.

3 Set r = bωNc and let P = (pi ,j) be the permutation matrix
such that pi ,j = 1 if and only if j = i + r (mod N). Then,

ΨR = PΨ .
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The Jacobian matrix revisited: preconditioning

We have to solve (many times) the system

(ΨR − ΛΨ)z = b

where b is the evaluation of the invariance equation.

Notice that

ΨΨ>R = Ψ(PΨ)> = ΨΨ>P> = P>,

ΨRΨ>R = PΨΨ>P> = PP> = Id .

Hence,
(ΨR − ΛΨ)Ψ>R = Id−ΛP>

is the matrix that has 1’s in the diagonal and the elements Λi ,i in
the entry i , i + N − r (mod N).
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The Jacobian matrix revisited: preconditioning

So, if we make the change of variables z = Ψ>R y . Then, the system
(ΨR − ΛΨ)z = b becomes

(Id−ΛP>)y = b.

By performing Gauss Method formally on the system we obtain an
explicit recurrence that manages to solve the system in linear time
with N. The only small difficulty is that there might be several
dependence cycles in the substitution process of the yi .
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A word on the change of variables and its consequences

The previous change of variables suggest that we should do this
change permanently and work with the rotated wavelet coefficients
defined as c = ΨRδ (or equivalently δ = Ψ>R c).

Let us see that this has strong simplifying consequences.
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A word on the change of variables and its consequences

Reconstruction

Above we have noted:

[Ψδ]i = ϕ(θi )

In other words,

Ψδ = (ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)>

allows us to get the attractor from the wavelet coefficients. But to
get the attractor from the rotated wavelet coefficients we have

(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)> = Ψδ = ΨΨ>R c = P>c .

So, the reconstruction is much easier done with the rotated
coefficients than with the standard ones.
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A word on the change of variables and its consequences

Producing the initial seed

As we have said the initial seed is obtained by computing an
approximation of the vector (ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)>. Since Ψ
is orthogonal, we can get an initial seed for delta by

δ = Ψ>Ψδ ≈ Ψ>(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)>.

But again, if we work with rotated coefficients we get

c = ΨRδ ≈ ΨRΨ>(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)>

and ΨRΨ> = (ΨΨ>R )> = (P>)> = P. Again, to obtain the initial
seed is much easier with the rotated coefficients than with the
standard ones.
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A word on the change of variables and its consequences

The invariance equation with rotated coefficients

The invariance equation written algebraically is:

[ΨRδ]i − f ([Ψδ]i ) · g(θi ) = 0.

With rotated coefficients we have[
ΨRΨ>R c

]
i
− f

([
ΨΨ>R c

]
i

)
· g(θi ) = 0,

which is equivalent to

ci − f
([

P>c
]
i

)
· g(θi ) = 0,

And, once more, the invariance equation is much easier with the
rotated coefficients than with the standard ones.
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A word on the change of variables and its consequences

Implementing this algorithm leads to the following results in a
pinched difficult case with Lyapunov exponent close to zero:

BigJ = 25; N = 33554432

\sigma = 1.090000

\epsilon = 0.0000000000000000

angle \omega = 0.61803398874989490253

Computation of \phi(theta_i = i/N): 1787.088863 CPU secs..

Computation of g(theta_i = i/N): 2.561167 CPU secs.

...................

Newton iterate 683. SupNorm of Inv. Eq. 1.1102230246251565e-16

Time of last Newton iterate = 4.280968"

Newton iterate 684. SupNorm of Inv. Eq. 0.0000000000000000e+00

These computations have been done with a single computer with and Intel i7-4770K

QuadCore processor @ 3.50GHz with 32Gb of RAM DDR3 @ 1867MHz.
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The Haar results

By a result analogous to Triebel Theorem quoted above but for
Haar wavelets we get the following picture analogous to the
previous one. The same comments apply
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A word on Daubechies wavelets

Daubechies Wavelets do not have closed form. This means
that a specific iterative algorithm (Vidakovich algorithm) is
necessary to compute the wavelet coefficients. This algorithm
involves multiplying two matrices T0 and T1 according to the
binary expansion of the fractional part on the point θ where
the matrix has to be evaluated. This is very specific and
difficult programming, since a high level of optimization is
essential.

Fortunately the wavelets matrices are sparse and self similar.
This means that they can be stored saving a lot of memory.
Again a very delicate programming is necessary. It is
compulsory to develop specific data types.
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A word on Daubechies wavelets

Bad news: The nice equalities that we have for Haar
Wavelets do not hold. Preconditioning works but the
preconditioned Jacobian matrix is not so nice as the Haar one.
It has the same properties but band-wise. So, the solution of
the system is not iterative and is not linear on time with N.
However GMRES-Arnoldi seem to work efficiently on the
preconditioned system.
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