Forcing for skew-products on the cylinder

Lluís Alsedà

in collaboration with F. Mañosas and L. Morales
Departament de Matemàtiques
Universitat Autònoma de Barcelona
http://www.mat.uab.cat/~alseda

The problem

We want to study the coexistence and implications between periodic orbits of maps from $\Omega=\mathbb{S}^{1} \times I$, of the form:

$$
\begin{aligned}
\Omega & \left.\longrightarrow \begin{array}{c}
\Omega \\
F: \quad\binom{\theta}{x} \\
\longmapsto\binom{R(\theta)}{f(\theta, x)}
\end{array}, \begin{array}{rl}
\\
\end{array}\right)
\end{aligned}
$$

where $\mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}, R(\theta)=\theta+\omega(\bmod 1), \omega \in \mathbb{R} \backslash Q$ and $f(\theta, x)=f_{\theta}(x)$ is continuous on both variables.

Remark

Instead of \mathbb{S}^{1} we can take any compact metric space Θ that admits a minimal homeomorphism $R: \Theta \longrightarrow \Theta$ such that R^{ℓ} is minimal $\forall \ell>1$.

We call $\mathcal{S}(\Omega)$ this class of skew products.

The problem

In [FJJK] the Sharkovskii Theorem is extended to the above setting.
[FJJK] R. Fabbri, T. Jäger, R. Johnson and G. Keller, A Sharkovskii-type theorem for minimally forced interval maps, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Shauder Center, 26 (2005), 163-188.

Aim of the talk

Extend the Sharkovskii Theorem and the techniques from [FJJK] to study the combinatorial dynamics (forcing) and entropy of the skew-products from the class $\mathcal{S}(\Omega)$.

Plan of the talk

(1) Short survey on the [FJJK] paper
(2) Survey on the forcing relation on the interval
(3) Definition of forcing in Ω
(9) Characterization of the forcing in Ω
(3) Topological entropy and forcing

The notion of a periodic orbit

First we need to introduce what we understand by a periodic orbit in this setting.

Idea

Instead of points we use objects that project over the whole \mathbb{S}^{1}.

Strip

is a set $B \subset \Omega$ such that

- B is closed
- $(\{\theta\} \times I) \cap B \neq \emptyset \quad \forall \theta \in \mathbb{S}^{1}\left(B\right.$ projects on the whole $\left.\mathbb{S}^{1}\right)$
- $(\{\theta\} \times I) \cap B$ is an interval $\forall \theta$ in a residual set of \mathbb{S}^{1}.

The notion of a periodic orbit (II)

Periodic orbit (of strips) (of period n) for a map $F \in \mathcal{S}(\Omega)$

is a set $B_{1}, B_{2}, \ldots, B_{n}$ of pairwise disjoint strips such that

$$
\begin{aligned}
& F\left(B_{i}\right) \subset B_{i+1} \text { for } i=1,2, \ldots, n-1 \\
& F\left(B_{n}\right) \subset B_{1} .
\end{aligned}
$$

Examples of periodic strips (attractors of F)

In both cases, $R(\theta)=\theta+\frac{\sqrt{5}-1}{2}(\bmod 1)$ and the map $f(\theta, x)$ is specified below the figure in each case.

$3.28 x(1-x)+\frac{4}{100} \cos (2 \pi \theta)$
A two periodic orbit of periodic curves.

$3.85 x(1-x)\left(1+\frac{111}{10^{5}} \cos (2 \pi \theta)\right)$
A three periodic orbit of periodic solid strips.
It corresponds to the three periodic orbit of transitive intervals exhibited by the map $3.85 x(1-x)$.

A refinement

The definition of a periodic orbit of strips is too general. It turns out that every periodic orbit of strips contains another (more restrictive) periodic orbit of strips that verifies:

- Every strip is core
- The new periodic orbit forms a minimal set
- The new periodic orbit is F-strongly invariant

That is,

for each $i=1,2, \ldots, n$ there exist a strip $A_{i} \subset B_{i}$ such that

- The strips A_{i} form a strongly invariant periodic orbit:

$$
F\left(A_{i}\right)=A_{i+1} \text { for } i=1,2, \ldots, n-1 \text { and } F\left(A_{n}\right)=A_{1}
$$

- $\bigcup^{n} A_{i}$ is a minimal set for F. ${ }_{i=1}$
- Each strip A_{i} is core:

$$
A_{i}=A_{i}^{c}:=\bigcap_{G \text { residual }} \overline{A_{i} \cap(G \times I)}
$$

The core of A_{i} is what remains after "shaving" what is not seen by the closures of A_{i} inside "fibered residual sets".

There are two kind of strips which are minimal, core and strongly invariant:

The two basic kind of strips: Solid

$B \subset \Omega$ is a solid strip if:

- B is closed.
- $B^{\theta}:=B \cap(\{\theta\} \times I)$ is a non-degenerate interval for every $\theta \in \mathbb{S}^{1}$.
- $\inf _{\theta \in \mathbb{S}^{1}} \operatorname{diam}\left(B^{\theta}\right)>0$.

Remark

A solid strip is a strip.

Proposition

A solid strip is connected.

Example

The right figure in Page 6 before.

The two basic kind of strips: pseudo-curves (pinched)

A pseudo-curve is the closure of the graph of (φ, G) where G is a residual set of \mathbb{S}^{1} and $\varphi: G \rightarrow I$ is continuous. That is, a pseudo-curve is:

$$
\overline{\{(\theta, \varphi(\theta)): \theta \in G\}} .
$$

Example

The left figure in Page 6 before.

The properties of pseudo-curves

- $\{(\theta, \varphi(\theta)): \theta \in G\}$ is the "pinched set".
- If $\theta \notin G$, the intersection of the pseudo-curve with the fiber $\{\theta\} \times I$ may be a non-degenerate interval.
- A pseudo-curve is either a curve or does not contain any arc of a curve.
- Each connected component of the boundary of a solid strip is a pseudo-curve.

Arc of a curve:

is the graph of a continuous function from an arc of \mathbb{S}^{1} to I.

The Sharkovskiir Ordering ${ }_{\text {sn }} \geq$

The coexistence of periodic orbits of strips is given by the next theorem. To state it we use the Sharkovskiir Ordering:
$3_{\mathrm{sh}}>5_{\mathrm{sh}}>7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>$
$2 \cdot 3_{\mathrm{sh}}>2 \cdot 5_{\mathrm{sh}}>2 \cdot 7_{\mathrm{sh}}>\cdot{ }_{\mathrm{sh}}>$
$4 \cdot 3_{\mathrm{sh}}>4 \cdot 5 \mathrm{sh}>4 \cdot 7 \mathrm{sh}>\cdot{ }_{\mathrm{sh}}>$
$2^{n} \cdot 3_{\mathrm{sh}}>2^{n} \cdot 5_{\mathrm{sh}}>2^{n} \cdot 7_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>$
$2^{\infty}{ }_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>2^{n}{ }_{\mathrm{sh}}>\cdots_{\mathrm{sh}}>16_{\mathrm{sh}}>8 \mathrm{sh}>4_{\mathrm{sh}}>2_{\mathrm{sh}}>1$.
defined on the set $\mathbb{N}_{\mathrm{Sh}}=\mathbb{N} \cup\left\{2^{\infty}\right\}$ (we have to include the symbol 2^{∞} to assure the existence of supremum for certain sets).

In the ordering ${ }_{s h} \geq$ the least element is 1 and the largest is 3 . The supremum of the set $\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$ is 2^{∞}.

Theorem (Fabbri, Jäger, Johnson and Keller)

Let P be a periodic orbit of solid strips or pseudo-curves of period n of $F \in \mathcal{S}(\Omega)$. Then F has a periodic orbit of solid strips or pseudo-curves of period m for every $m \leq_{s h} n$.

As said, our aim is to extend the above theorem and the techniques from [FJJK] to study the combinatorial dynamics (forcing) of periodic orbits of strips for maps from $\mathcal{S}(\Omega)$.

Patterns in the interval

Pattern of a periodic orbit \longleftrightarrow permutation

Definition

Let $p_{1}<p_{2}<\cdots<p_{n}$ be a periodic orbit of a map $f \in \mathcal{C}^{0}(I, I)$. The periodic orbit $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ has pattern τ if and only if $f\left(p_{i}\right)=p_{\tau(i)}$ for $i=1,2, \ldots, n$.

Example

$$
\begin{gathered}
1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 1 \\
\tau=(1234) \text { is the pattern }
\end{gathered}
$$

Forcing in the interval

Definition (forcing)

$\tau \Longrightarrow, \nu$ where τ and ν are patterns if and only if every
$f \in \mathcal{C}^{0}(I, I)$ that has a periodic orbit with pattern τ also has a periodic orbit with pattern ν.

Theorem

$\Longrightarrow I$ is an ordering relation (partial).

The characterization of forcing. The connect-the-dots map

Given a pattern τ we take the connect-the-dots map f_{τ} (the τ-linear map):

$$
\tau=(1,2,3,4)
$$

Theorem (Characterization of forcing)

$\tau \Longrightarrow I \nu$ if and only if f_{τ} has a periodic orbit with pattern ν.

Why we are interested in the forcing relation?

Theorem

Every pattern of period n forces a pattern of period m for every $m \leq_{\text {sh }} n$.

Corollary

The Sharkovskii Theorem for maps from $\mathcal{C}^{0}(I, I)$ holds.

Patterns and forcing in Ω

$$
\text { Pattern } \longleftrightarrow \text { permutation (again) }
$$

Since a periodic orbit has disjoint strips we can order them from lower to upper

Definition

The periodic orbit $P_{1}, P_{2}, \ldots, P_{n}$ of $F \in \mathcal{S}(\Omega)$ has pattern τ if and only if

$$
F\left(P_{i}\right)=P_{\tau(i)}
$$

for every $i=1,2, \ldots, n$.

So, patterns in I and Ω are the same abstract objects.

The quasiperiodic τ-linear map F_{τ}

Definition

Given an interval pattern τ we define

$$
F_{\tau}=\left(R(\theta), f_{\tau}(x)\right)
$$

where $R(\theta)=\theta+\omega(\bmod 1)$.
This map will be called the quasiperiodic τ-linear map.

Example

Observation

F_{τ} has a periodic orbit of strips (curves) with pattern ν if and only if f_{τ} has a periodic orbit with pattern ν.

Conclusion

Every interval pattern (permutation) occurs as pattern in Ω.

Forcing in Ω

Definition

Let τ, ν be patterns in $\Omega . \tau \Longrightarrow \Omega \nu$ if and only if every map $F \in \mathcal{S}(\Omega)$ that has a periodic orbit of strips with pattern τ also has a periodic orbit of strips with pattern ν.

Main result

Theorem

Let τ and ν be patterns (in I and Ω). Then,

$$
\tau \Longrightarrow । \nu \quad \text { if and only if } \tau \Longrightarrow_{\Omega} \nu .
$$

Corollary

Every pattern of period n forces in Ω a pattern of period m for every $m \leq_{\text {sh }} n$.

Corollary

The Sharkovskii Theorem holds for every $F \in \mathcal{S}(\Omega)$.

Entropy

By using Bowen definition $h\left(F, I_{\theta}\right)$ is defined for every $I_{\theta}:=\{\theta\} \times I$. Then, Bowen Formula gives

$$
h(R)+h_{\text {fib }}(F) \geq h(F) \geq \max \left\{h(R), h_{\mathrm{fib}}(F)\right\}
$$

where

$$
h_{\mathrm{fib}}(F)=\sup _{\theta \in \mathbb{S}^{1}} h\left(F, I_{\theta}\right) .
$$

Since $h(R)=0, h(F)=h_{\text {fib }}(F)$.
In the particular case of the map F_{τ}, from the definitions and the fact that $F_{\tau}=\left(R, f_{\tau}\right)$ is uncoupled, we get

Lemma

$h\left(F_{\tau}, l_{\theta}\right)=h\left(f_{\tau}\right) \quad \forall \theta \in \mathbb{S}^{1}$. Consequently,

$$
h\left(F_{\tau}\right)=h_{\text {fib }}\left(F_{\tau}\right)=h\left(f_{\tau}\right)
$$

Horseshoes in $\mathcal{S}(\Omega)$

Definition

Given $F \in \mathcal{S}(\Omega)$ we define an s-horseshoe for F as a pair (J, \mathcal{D}) where J is a solid strip and \mathcal{D} is a quasi-partition of J formed by s solid strips such that $F(D) \supset J, \forall D \in \mathcal{D}$.

Quasi-partition

$J=\bigcup_{D \in \mathcal{D}} D$, and the elements of \mathcal{D} have pairwise disjoint interiors.

Horseshoes and entropy in $\mathcal{S}(\Omega)$

Following the same ideas as in the interval we get

Theorem

Assume that $F \in \mathcal{S}(\Omega)$ has an s-horseshoe. Then

$$
h(F) \geq \log s
$$

Theorem

Assume that $F \in \mathcal{S}(\Omega)$ has a periodic orbit of strips with pattern τ. Then

$$
h(F) \geq h\left(f_{\tau}\right)=h\left(F_{\tau}\right)
$$

Consequences: Entropy of patterns

Definition

$$
h(\tau):=\inf \left\{h(F): \begin{array}{l}
F \in \mathcal{S}(\Omega) \text { and } F \text { has a periodic orbit } \\
\text { of strips with pattern } \tau
\end{array}\right\} .
$$

Corollary

$\tau \Longrightarrow \Omega \nu$ implies $h(\tau) \geq h(\nu)$.

Proof.

From the last theorem, $h(\tau)=h\left(F_{\tau}\right)$.
Also, F_{τ} has a periodic orbit of strips with pattern ν. Hence, by definition,

$$
h\left(F_{\tau}\right) \geq h(\nu)
$$

Consequences: lower bounds of the entropy depending on the set of periods

Corollary

If F has a periodic orbit of strips of period $2^{n} q$ with $n \geq 0$ and $q \geq 1$ odd then, as in the interval case,

$$
h(F) \geq \frac{\log \lambda_{n}}{2^{k}}
$$

where $\lambda_{1}=1$ and, for each $q \geq 3$ odd, λ_{q} is the largest root of $x^{q}-2 x^{q-2}-1$.

Proof of Main Theorem

- $\tau \Longrightarrow \Omega \nu$ implies $\tau \Longrightarrow \quad \nu$.

Trivial: By definition, F_{τ} has a periodic orbit of strips with pattern ν. Then f_{τ} has a periodic orbit with pattern ν. Therefore, $\tau \Longrightarrow, \nu$ by the Forcing Characterization Theorem.

- $\tau \Longrightarrow \quad \nu$ implies $\tau \Longrightarrow \Omega \nu$.

To prove this statement we need to introduce new tools

New tools: Markov Graph of f_{τ}

The closure of each connected component of $\langle P\rangle \backslash P$ is a basic interval.

Definition (Signed Markov Graph (Combinatorial))

Vertices:
Basic intervals
Signed arrows: $\begin{cases}I \xrightarrow{+} J & \text { iff } f_{\tau}(I) \supset J ; f_{\tau} \mid, \text { increases } \\ I \xrightarrow{-} J & \text { iff } f_{\tau}(I) \supset J ; f_{\tau} \mid, \text { decreases }\end{cases}$

Example

$$
\begin{gathered}
A+B\left(\begin{array}{lll}
A & B & C \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{gathered}
$$

Theorem

$h\left(f_{\tau}\right)=\max \{0, \log \rho(T)\}$
where $\rho(T)$ denotes the spectral radius of T.

Signed Markov Graph for $F \in \mathcal{S}(\Omega)$ having a periodic orbit of strips: Basic strips

Definition

The closure of the strip between two consecutive strips is called a basic strip

Example

Assume that $P_{1}, P_{2}, \ldots, P_{n}$ is a periodic orbit of strips.

Signed Markov Graph for $F \in \mathcal{S}(\Omega)$ having a periodic orbit of strips: Arrows

Definition

Given a strip A we set
Top of $A: \quad A^{+}:=\overline{\left\{\left(\theta, \max _{I}((\{\theta\} \times I) \cap A)\right): \theta \in \mathbb{S}^{1}\right\}}$
Bottom of $A: \quad A^{-}:=\overline{\left\{\left(\theta, \min _{I}((\{\theta\} \times I) \cap A)\right): \theta \in \mathbb{S}^{1}\right\}}$

Properties of signed arrows in $\mathcal{S}(\Omega)$

Lemma

Assume that $A \xrightarrow{ \pm} B$. Then,
(1) $B \subset T(A)$.
(2) If $D \subset B$ and D is a strip, then $A \xrightarrow{ \pm} D$.

Remark

If A is a pseudo-curve, then B is a pseudo-curve and $T(A)=B$.

Important remark

By continuity, the signed Markov Graph of f_{τ} is a subgraph of the signed Markov Graph of F with respect to a periodic orbit of strips with pattern τ.

Back to the idea of the proof of $\tau \Longrightarrow / \nu$ implies $\tau \Longrightarrow \Omega \nu$

We may assume that $\nu \neq \tau$.
By the Forcing Characterization Theorem, f_{τ} has periodic orbit $\left\{q_{0}, q_{1}, \cdots, q_{n-1}\right\}$ with pattern $\nu \neq \tau$ such that
$q_{0}=\min \left\{q_{0}, q_{1}, \cdots, q_{n-1}\right\}$.
Consider the loop in the Markov Graph of f_{τ} associated to q_{0}. That is,

This loop also exists in the Markov Graph of F, replacing the interval I_{i} by the basic strip \widetilde{I}_{i}. Moreover, since $\nu \neq \tau$ and f_{τ} is τ-linear, the loop is non-repetitive.

A key lemma

Lemma

There exists a periodic orbit of strips $Q_{0}, Q_{1}, \ldots, Q_{n-1}$ of F such that Q_{0} is the lower strip, $F^{n}\left(Q_{0}\right)=Q_{0}$ and $Q_{0} \subset \widetilde{I}_{0}, F\left(Q_{0}\right) \subset \widetilde{I}_{1}, \ldots, F^{n-1}\left(Q_{0}\right) \subset \widetilde{I}_{n-1}$.

Then, by the above lemma we have to see that $\left\{Q_{0}, Q_{1}, \ldots, Q_{n-1}\right\}$ has period n and pattern ν.

- First we prove that $Q_{0}<F_{i}\left(Q_{0}\right)$ for $i=1,2, \ldots, n-1$ (in particular the period is n).
- Secondly we prove that $\left\{Q_{0}, Q_{1}, \ldots, Q_{n-1}\right\}$ has pattern ν.

$\left\{Q_{0}, Q_{1}, \ldots, Q_{n-1}\right\}$ has pattern ν

We have:

$$
\begin{array}{llll}
q_{0} & \sim I_{0} \longrightarrow I_{1} \longrightarrow \ldots \longrightarrow I_{n-1} \longrightarrow I_{0} & \sim Q_{0} \\
f_{\tau}\left(q_{0}\right) & \sim I_{1} \longrightarrow I_{2} \longrightarrow \ldots \longrightarrow I_{n-1} \longrightarrow I_{0} \longrightarrow I_{1} & \left.\sim I_{0}\right) \\
f_{\tau}^{2}\left(q_{0}\right) & \sim I_{2} \longrightarrow I_{3} \longrightarrow \ldots \longrightarrow I_{n-1} \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow I_{2} & \sim F^{2}\left(Q_{0}\right) \\
& & \\
f_{\tau}^{n-1}\left(q_{0}\right) & \sim I_{n-1} \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow I_{2} \longrightarrow \ldots \longrightarrow I_{n-1} & \sim F^{n-1}\left(Q_{0}\right)
\end{array}
$$

where the symbol \sim means "associated with".
The order of the points $f_{\tau}^{i}\left(q_{1}\right)$ induces an order on the shifts of the loop (with the usual lexicographical ordering) that induces the same order on the strips $F^{i}\left(Q_{0}\right)$. Thus, $\left\{q_{0}, q_{1}, \cdots, q_{n-1}\right\}$ and $\left\{Q_{0}, Q_{1}, \ldots, Q_{n-1}\right\}$ have the same pattern.

