Forcing for skew-products on the cylinder

Lluís Alsedà

in collaboration with F. Mañosas and L. Morales

Departament de Matemàtiques Universitat Autònoma de Barcelona http://www.mat.uab.cat/~alseda

DEPARTAMENT DE MATEMÀTIQUES

The problem

We want to study the coexistence and implications between periodic orbits of maps from $\Omega = \mathbb{S}^1 \times I$, of the form:

$$\begin{array}{ccc} \Omega & \longrightarrow & \Omega \\ F : & \begin{pmatrix} \theta \\ x \end{pmatrix} \longmapsto \begin{pmatrix} R(\theta) \\ f(\theta, x) \end{pmatrix} \end{array}$$

where $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$, $R(\theta) = \theta + \omega \pmod{1}$, $\omega \in \mathbb{R} \setminus Q$ and $f(\theta, x) = f_{\theta}(x)$ is continuous on both variables.

Remark

Instead of \mathbb{S}^1 we can take any compact metric space Θ that admits a minimal homeomorphism $R: \Theta \longrightarrow \Theta$ such that R^{ℓ} is minimal $\forall \ell > 1$.

We call $\mathcal{S}(\Omega)$ this class of skew products.

In [FJJK] the Sharkovskii Theorem is extended to the above setting.

[FJJK] R. Fabbri, T. Jäger, R. Johnson and G. Keller, *A Sharkovskii-type theorem for minimally forced interval maps*, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Shauder Center, **26** (2005), 163–188.

Aim of the talk

Extend the Sharkovskii Theorem and the techniques from [FJJK] to study the combinatorial dynamics (*forcing*) and entropy of the skew-products from the class $S(\Omega)$.

- Short survey on the [FJJK] paper
- Survey on the forcing relation on the interval
- **③** Definition of forcing in Ω
- $\textcircled{O} Characterization of the forcing in Ω}$
- Topological entropy and forcing

First we need to introduce what we understand by a *periodic orbit* in this setting.

Idea

Instead of points we use objects that project over the whole \mathbb{S}^1 .

Strip

is a set $B \subset \Omega$ such that

- B is closed
- $(\{\theta\} \times I) \cap B \neq \emptyset$ $\forall \ \theta \in \mathbb{S}^1$ (*B* projects on the whole \mathbb{S}^1)
- $(\{\theta\} \times I) \cap B$ is an interval $\forall \theta$ in a residual set of \mathbb{S}^1 .

Periodic orbit (of strips) (of period n) for a map $F \in \mathcal{S}(\Omega)$

is a set B_1, B_2, \ldots, B_n of pairwise disjoint strips such that

$$F(B_i) \subset B_{i+1}$$
 for $i = 1, 2, \dots, n-1$
 $F(B_n) \subset B_1$.

Examples of periodic strips (attractors of F)

In both cases, $R(\theta) = \theta + \frac{\sqrt{5}-1}{2} \pmod{1}$ and the map $f(\theta, x)$ is specified below the figure in each case.

A three periodic orbit of periodic solid strips.

It corresponds to the three periodic orbit of transitive intervals exhibited by the map 3.85x(1-x).

The definition of a periodic orbit of strips is too general. It turns out that every periodic orbit of strips contains another (more restrictive) periodic orbit of strips that verifies:

- Every strip is *core*
- The new periodic orbit forms a minimal set
- The new periodic orbit is F-strongly invariant

That is,

for each i = 1, 2, ..., n there exist a strip $A_i \subset B_i$ such that

- The strips A_i form a strongly invariant periodic orbit: $F(A_i) = A_{i+1}$ for i = 1, 2, ..., n-1 and $F(A_n) = A_1$.
- $\bigcup_{i=1}^{n} A_i$ is a minimal set for F.
- Each strip A_i is core:

$$A_i = A_i^c := \bigcap_{G \text{ residual}} \overline{A_i \cap (G \times I)}.$$

The *core of* A_i is what remains after "shaving" what is not seen by the closures of A_i inside "fibered residual sets".

There are two kind of strips which are minimal, core and strongly invariant:

The two basic kind of strips: Solid

$B \subset \Omega$ is a *solid strip* if:

- B is closed.
- $B^{\theta} := B \cap (\{\theta\} \times I)$ is a non-degenerate interval for every $\theta \in \mathbb{S}^1$.
- $\inf_{\theta \in \mathbb{S}^1} \operatorname{diam}(B^{\theta}) > 0.$

Remark

A solid strip is a strip.

Proposition

A solid strip is connected.

Example

The right figure in Page 6 before.

A pseudo-curve is the closure of the graph of (φ, G) where G is a residual set of \mathbb{S}^1 and $\varphi \colon G \to I$ is continuous. That is, a pseudo-curve is:

$$\overline{\{(heta, \varphi(heta)) : heta \in G\}}.$$

Example

The left figure in Page 6 before.

The properties of pseudo-curves

- $\{(\theta, \varphi(\theta)) : \theta \in G\}$ is the "pinched set".
- If θ ∉ G, the intersection of the pseudo-curve with the fiber {θ} × I may be a non-degenerate interval.
- A pseudo-curve is either a curve or does not contain any *arc* of *a curve*.
- Each connected component of the boundary of a solid strip is a pseudo-curve.

Arc of a curve:

is the graph of a continuous function from an arc of \mathbb{S}^1 to I.

The Sharkovskii Ordering $_{sh} \ge$

The coexistence of periodic orbits of strips is given by the next theorem. To state it we use the *Sharkovskii Ordering*:

$$\begin{array}{c} 3_{\text{ sh}} > 5_{\text{ sh}} > 7_{\text{ sh}} > \cdots + s_{\text{h}} > \\ 2 \cdot 3_{\text{ sh}} > 2 \cdot 5_{\text{ sh}} > 2 \cdot 7_{\text{ sh}} > \cdots + s_{\text{h}} > \\ 4 \cdot 3_{\text{ sh}} > 4 \cdot 5_{\text{ sh}} > 4 \cdot 7_{\text{ sh}} > \cdots + s_{\text{h}} > \\ & \vdots \\ 2^{n} \cdot 3_{\text{ sh}} > 2^{n} \cdot 5_{\text{ sh}} > 2^{n} \cdot 7_{\text{ sh}} > \cdots + s_{\text{h}} > \\ & \vdots \\ 2^{\infty} + s_{\text{sh}} > \cdots + s_{\text{sh}} > 2^{n} + s_{\text{sh}} > \cdots + s_{\text{sh}} > 16_{\text{ sh}} > 8_{\text{ sh}} > 4_{\text{ sh}} > 2_{\text{ sh}} > 1. \end{array}$$

defined on the set $\mathbb{N}_{sh} = \mathbb{N} \cup \{2^{\infty}\}$ (we have to include the symbol 2^{∞} to assure the existence of supremum for certain sets).

In the ordering $_{\text{Sh}} \ge$ the least element is 1 and the largest is 3. The supremum of the set $\{1, 2, 4, \dots, 2^n, \dots\}$ is 2^{∞} .

Theorem (Fabbri, Jäger, Johnson and Keller)

Let P be a periodic orbit of solid strips or pseudo-curves of period n of $F \in S(\Omega)$. Then F has a periodic orbit of solid strips or pseudo-curves of period m for every $m \leq_{sh} n$.

As said, our aim is to extend the above theorem and the techniques from [FJJK] to study the combinatorial dynamics (*forcing*) of periodic orbits of strips for maps from $S(\Omega)$.

Pattern of a periodic orbit \iff permutation

Definition

Let $p_1 < p_2 < \cdots < p_n$ be a periodic orbit of a map $f \in C^0(I, I)$. The periodic orbit $\{p_1, p_2, \dots, p_n\}$ has pattern τ if and only if $f(p_i) = p_{\tau(i)}$ for $i = 1, 2, \dots, n$.

Definition (forcing)

 $\tau \Longrightarrow_{I} \nu$ where τ and ν are patterns if and only if *every* $f \in C^{0}(I, I)$ that has a periodic orbit with pattern τ also has a periodic orbit with pattern ν .

Theorem

 \implies_{I} is an ordering relation (partial).

Given a pattern τ we take the connect-the-dots map f_{τ} (the τ -linear map):

Theorem (Characterization of forcing)

 $\tau \Longrightarrow_{I} \nu$ if and only if f_{τ} has a periodic orbit with pattern ν .

Why we are interested in the forcing relation?

Theorem

Every pattern of period n forces a pattern of period m for every $m \leq_{\text{Sh}} n$.

Corollary

The Sharkovskii Theorem for maps from $C^0(I, I)$ holds.

Pattern \leftrightarrow permutation (again)

Since a periodic orbit has disjoint strips we can order them from lower to upper

Definition

The periodic orbit P_1, P_2, \ldots, P_n of $F \in S(\Omega)$ has *pattern* τ if and only if

$$F(P_i) = P_{\tau(i)}$$

for every i = 1, 2, ..., n.

So, patterns in I and Ω are the same abstract objects.

The quasiperiodic τ -linear map F_{τ}

Definition

Given an interval pattern $\boldsymbol{\tau}$ we define

 $F_{\tau} = (R(\theta), f_{\tau}(x))$

where $R(\theta) = \theta + \omega \pmod{1}$. This map will be called the *quasiperiodic* τ *-linear map*.

Observation

 F_{τ} has a periodic orbit of strips (curves) with pattern ν if and only if f_{τ} has a periodic orbit with pattern ν .

Conclusion

Every interval pattern (permutation) occurs as pattern in Ω .

LI. Alsedà (UAB)

Definition

Let τ , ν be patterns in Ω . $\tau \Longrightarrow_{\Omega} \nu$ if and only if every map $F \in S(\Omega)$ that has a periodic orbit of strips with pattern τ also has a periodic orbit of strips with pattern ν .

Theorem

Let τ and ν be patterns (in I and Ω). Then,

$$\tau \Longrightarrow_{I} \nu$$
 if and only if $\tau \Longrightarrow_{\Omega} \nu$.

Corollary

Every pattern of period n forces in Ω a pattern of period m for every $m \leq_{\text{Sh}} n$.

Corollary

The Sharkovskii Theorem holds for every $F \in S(\Omega)$.

Entropy

By using Bowen definition $h(F, I_{\theta})$ is defined for every $I_{\theta} := \{\theta\} \times I$. Then, Bowen Formula gives

 $h(R) + h_{fib}(F) \ge h(F) \ge \max\{h(R), h_{fib}(F)\}$

where

$$h_{\mathrm{fib}}(F) = \sup_{\theta \in \mathbb{S}^1} h(F, I_{\theta}).$$

Since h(R) = 0, $h(F) = h_{fib}(F)$.

In the particular case of the map F_{τ} , from the definitions and the fact that $F_{\tau} = (R, f_{\tau})$ is uncoupled, we get

Lemma

 $h(F_{\tau}, I_{\theta}) = h(f_{\tau}) \quad \forall \ \theta \in \mathbb{S}^1.$ Consequently,

 $h(F_{\tau}) = h_{\rm fib}(F_{\tau}) = h(f_{\tau}).$

Definition

Given $F \in S(\Omega)$ we define an *s*-horseshoe for F as a pair (J, \mathcal{D}) where J is a solid strip and \mathcal{D} is a quasi-partition of J formed by ssolid strips such that $F(D) \supset J, \forall D \in \mathcal{D}$.

Quasi-partition

 $J = \bigcup_{D \in \mathcal{D}} D$, and the elements of \mathcal{D} have pairwise disjoint interiors.

Following the same ideas as in the interval we get

Theorem

Assume that $F \in \mathcal{S}(\Omega)$ has an s-horseshoe. Then

 $h(F) \geq \log s.$

Theorem

Assume that $F \in S(\Omega)$ has a periodic orbit of strips with pattern τ . Then

 $h(F) \geq h(f_{\tau}) = h(F_{\tau}).$

Consequences: Entropy of patterns

Definition

$$h(\tau) := \inf \begin{cases} h(F) \colon F \in \mathcal{S}(\Omega) \text{ and } F \text{ has a periodic orbit} \\ \text{of strips with pattern } \tau \end{cases}$$

Corollary

$$\tau \Longrightarrow_{\Omega} \nu \text{ implies } h(\tau) \ge h(\nu).$$

Proof.

From the last theorem, $h(\tau) = h(F_{\tau})$. Also, F_{τ} has a periodic orbit of strips with pattern ν . Hence, by definition,

$$h(F_{\tau}) \geq h(\nu).$$

Consequences: lower bounds of the entropy depending on the set of periods

Corollary

If F has a periodic orbit of strips of period 2^nq with $n \ge 0$ and $q \ge 1$ odd then, as in the interval case,

$$h(F) \geq rac{\log \lambda_n}{2^k}$$

where $\lambda_1 = 1$ and, for each $q \ge 3$ odd, λ_q is the largest root of $x^q - 2x^{q-2} - 1$.

• $\tau \Longrightarrow_{\Omega} \nu$ implies $\tau \Longrightarrow_{I} \nu$. **Trivial**: By definition, F_{τ} has a periodic orbit of strips with pattern ν . Then f_{τ} has a periodic orbit with pattern ν . Therefore, $\tau \Longrightarrow_{I} \nu$ by the Forcing Characterization Theorem.

•
$$\tau \Longrightarrow_{I} \nu$$
 implies $\tau \Longrightarrow_{\Omega} \nu$.

To prove this statement we need to introduce new tools

The closure of each connected component of $\langle P \rangle \setminus P$ is a *basic interval*.

Definition (Signed	l Markov Graph (Combinatorial))
Vertices:	Basic intervals
Signed arrows:	$\begin{cases} I \xrightarrow{+} J & \text{iff } f_{\tau}(I) \supset J; \ f_{\tau} \big _{I} \text{ increases} \\ I \xrightarrow{-} J & \text{iff } f_{\tau}(I) \supset J; \ f_{\tau} \big _{I} \text{ decreases} \end{cases}$

Example

Theorem

 $h(f_{\tau}) = \max\{0, \log \rho(T)\}$

where $\rho(T)$ denotes the spectral radius of T.

Signed Markov Graph for $F \in S(\Omega)$ having a periodic orbit of strips: Basic strips

Definition

The closure of the strip between two consecutive strips is called a *basic strip*

Example

Assume that P_1, P_2, \ldots, P_n is a periodic orbit of strips.

Signed Markov Graph for $F \in \mathcal{S}(\Omega)$ having a periodic orbit of strips: Arrows

Definition

Given a strip A we set

Top of *A*:
$$A^+ := \overline{\left\{ (\theta, \max_I ((\{\theta\} \times I) \cap A)) : \theta \in \mathbb{S}^1 \right\}}$$

Bottom of *A*: $A^- := \overline{\left\{ (\theta, \min_I ((\{\theta\} \times I) \cap A)) : \theta \in \mathbb{S}^1 \right\}}$

Properties of signed arrows in $\mathcal{S}(\Omega)$

Lemma

Assume that $A \xrightarrow{\pm} B$. Then,

$$B \subset T(A).$$

2 If $D \subset B$ and D is a strip, then $A \stackrel{\pm}{\longrightarrow} D$.

Remark

If A is a pseudo-curve, then B is a pseudo-curve and T(A) = B.

Important remark

By continuity, the signed Markov Graph of f_{τ} is a subgraph of the signed Markov Graph of F with respect to a periodic orbit of strips with pattern τ .

Back to the idea of the proof of $\tau \Longrightarrow_{I} \nu$ implies $\tau \Longrightarrow_{\Omega} \nu$

We may assume that $\nu \neq \tau$.

By the Forcing Characterization Theorem, f_{τ} has periodic orbit $\{q_0, q_1, \cdots, q_{n-1}\}$ with pattern $\nu \neq \tau$ such that $q_0 = \min\{q_0, q_1, \cdots, q_{n-1}\}.$

Consider the loop in the Markov Graph of f_{τ} associated to q_0 . That is,

This loop also exists in the Markov Graph of F, replacing the interval I_i by the basic strip \tilde{I}_i . Moreover, since $\nu \neq \tau$ and f_{τ} is τ -linear, the loop is non-repetitive.

Lemma

There exists a periodic orbit of strips $Q_0, Q_1, \ldots, Q_{n-1}$ of F such that Q_0 is the lower strip, $F^n(Q_0) = Q_0$ and $Q_0 \subset \widetilde{I}_0, \ F(Q_0) \subset \widetilde{I}_1, \ \ldots, \ F^{n-1}(Q_0) \subset \widetilde{I}_{n-1}.$

Then, by the above lemma we have to see that $\{Q_0, Q_1, \ldots, Q_{n-1}\}$ has period *n* and pattern ν .

- First we prove that Q₀ < F_i(Q₀) for i = 1, 2, ..., n − 1 (in particular the period is n).
- Secondly we prove that $\{Q_0, Q_1, \ldots, Q_{n-1}\}$ has pattern ν .

$\{ \mathit{Q}_{0}, \mathit{Q}_{1}, \ldots, \mathit{Q}_{n-1} \}$ has pattern u

We have:

where the symbol \sim means "associated with".

The order of the points $f_{\tau}^{i}(q_{1})$ induces an order on the shifts of the loop (with the usual lexicographical ordering) that induces the same order on the strips $F^{i}(Q_{0})$. Thus, $\{q_{0}, q_{1}, \dots, q_{n-1}\}$ and $\{Q_{0}, Q_{1}, \dots, Q_{n-1}\}$ have the same pattern.