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The problem

We want to study the coexistence and implications between
periodic orbits of maps from Ω = S

1 × I , of the form:

Ω −→ Ω

F :

(
θ
x

)
7−→

(
R(θ)
f (θ, x)

)

where S
1 = R/Z, R(θ) = θ + ω (mod 1), ω ∈ R \ Q and

f (θ, x) = fθ(x) is continuous on both variables.

Remark

Instead of S1 we can take any compact metric space Θ that admits
a minimal homeomorphism R : Θ −→ Θ such that Rℓ is minimal
∀ ℓ > 1.

We call S(Ω) this class of skew products.
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The problem

In [FJJK] the Sharkovskii Theorem is extended to the above
setting.

[FJJK] R. Fabbri, T. Jäger, R. Johnson and G. Keller, A Sharkovskii-type

theorem for minimally forced interval maps, Topological Methods in
Nonlinear Analysis, Journal of the Juliusz Shauder Center, 26 (2005),
163–188.

Aim of the talk

Extend the Sharkovskii Theorem and the techniques from [FJJK]
to study the combinatorial dynamics (forcing) and entropy of the
skew-products from the class S(Ω).
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Plan of the talk

1 Short survey on the [FJJK] paper

2 Survey on the forcing relation on the interval

3 Definition of forcing in Ω

4 Characterization of the forcing in Ω

5 Topological entropy and forcing
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The notion of a periodic orbit

First we need to introduce what we understand by a periodic orbit
in this setting.

Idea

Instead of points we use objects that project over the whole S
1.

Strip

is a set B ⊂ Ω such that

B is closed

({θ} × I ) ∩ B 6= ∅ ∀ θ ∈ S
1 (B projects on the whole S

1)

({θ} × I ) ∩ B is an interval ∀ θ in a residual set of S1.
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The notion of a periodic orbit (II)

Periodic orbit (of strips) (of period n) for a map F ∈ S(Ω)

is a set B1,B2, . . . ,Bn of pairwise disjoint strips such that

F (Bi ) ⊂ Bi+1 for i = 1, 2, . . . , n − 1

F (Bn) ⊂ B1.
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Examples of periodic strips (attractors of F )

In both cases, R(θ) = θ +
√
5−1
2 (mod 1) and the map f (θ, x) is

specified below the figure in each case.
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A two periodic orbit of periodic
curves.
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A three periodic orbit of periodic
solid strips.
It corresponds to the three periodic
orbit of transitive intervals exhibited
by the map 3.85x(1− x).
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A refinement

The definition of a periodic orbit of strips is too general. It turns
out that every periodic orbit of strips contains another (more
restrictive) periodic orbit of strips that verifies:

Every strip is core

The new periodic orbit forms a minimal set

The new periodic orbit is F -strongly invariant
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That is,

for each i = 1, 2, . . . , n there exist a strip Ai ⊂ Bi such that

The strips Ai form a strongly invariant periodic orbit:
F (Ai) = Ai+1 for i = 1, 2, . . . , n − 1 and F (An) = A1.
n⋃

i=1
Ai is a minimal set for F .

Each strip Ai is core:

Ai = Ac
i :=

⋂

G residual

Ai ∩ (G × I ).

The core of Ai is what remains after “shaving” what is not seen by
the closures of Ai inside “fibered residual sets”.

There are two kind of strips which are minimal, core and strongly
invariant:
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The two basic kind of strips: Solid

B ⊂ Ω is a solid strip if:

B is closed.

Bθ := B ∩ ({θ} × I ) is a non-degenerate interval for every
θ ∈ S

1.

inf
θ∈S1

diam(Bθ) > 0.

Remark

A solid strip is a strip.

Proposition

A solid strip is connected.

Example

The right figure in Page 6 before.
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The two basic kind of strips: pseudo-curves (pinched)

A pseudo-curve is the closure of the graph of (ϕ,G ) where G is a
residual set of S1 and ϕ : G → I is continuous. That is, a
pseudo-curve is:

{(θ, ϕ(θ)) : θ ∈ G}.

Example

The left figure in Page 6 before.
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The properties of pseudo-curves

{(θ, ϕ(θ)) : θ ∈ G} is the “pinched set”.

If θ /∈ G , the intersection of the pseudo-curve with the
fiber {θ} × I may be a non-degenerate interval.

A pseudo-curve is either a curve or does not contain any arc
of a curve.

Each connected component of the boundary of a solid strip is
a pseudo-curve.

Arc of a curve:

is the graph of a continuous function from an arc of S1 to I .
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The Sharkovskĭı Ordering Sh≥

The coexistence of periodic orbits of strips is given by the next
theorem. To state it we use the Sharkovskĭı Ordering:

3 Sh> 5 Sh> 7 Sh> · · · Sh>
2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> · · · Sh>
4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> · · · Sh>

...
2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> · · · Sh>

...
2∞ Sh> · · · Sh> 2n Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

defined on the set NSh = N ∪ {2∞} (we have to include the symbol
2∞ to assure the existence of supremum for certain sets).

In the ordering Sh≥ the least element is 1 and the largest is 3. The
supremum of the set {1, 2, 4, . . . , 2n, . . . } is 2∞.
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Theorem (Fabbri, Jäger, Johnson and Keller)

Let P be a periodic orbit of solid strips or pseudo-curves of
period n of F ∈ S(Ω). Then F has a periodic orbit of solid strips
or pseudo-curves of period m for every m ≤Sh n.

As said, our aim is to extend the above theorem and the
techniques from [FJJK] to study the combinatorial dynamics
(forcing) of periodic orbits of strips for maps from S(Ω).
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Patterns in the interval

Pattern of a periodic orbit ←→ permutation

Definition

Let p1 < p2 < · · · < pn be a periodic orbit of a map f ∈ C0(I , I ).
The periodic orbit {p1, p2, . . . , pn} has pattern τ if and only if
f (pi ) = pτ(i) for i = 1, 2, . . . , n.

Example

1 2 3 4

1 −→ 2 −→ 3 −→ 4 −→ 1

τ = (1234) is the pattern
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Forcing in the interval

Definition (forcing)

τ =⇒I ν where τ and ν are patterns if and only if every
f ∈ C0(I , I ) that has a periodic orbit with pattern τ also has a
periodic orbit with pattern ν.

Theorem

=⇒I is an ordering relation (partial).
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The characterization of forcing. The connect-the-dots map

Given a pattern τ we take the connect-the-dots map fτ (the
τ -linear map):

τ = (1, 2, 3, 4)

1 2 3 4
1

2

3

4

Theorem (Characterization of forcing)

τ =⇒I ν if and only if fτ has a periodic orbit with pattern ν.
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Why we are interested in the forcing relation?

Theorem

Every pattern of period n forces a pattern of period m for every
m ≤Sh n.

Corollary

The Sharkovskii Theorem for maps from C0(I , I ) holds.
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Patterns and forcing in Ω

Pattern ←→ permutation (again)

Since a periodic orbit has disjoint strips we can order them from
lower to upper

Definition

The periodic orbit P1,P2, . . . ,Pn of
F ∈ S(Ω) has pattern τ if and only if

F (Pi ) = Pτ(i)

for every i = 1, 2, . . . , n.

Pn

P2

P1

Ω

So, patterns in I and Ω are the same abstract objects.
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The quasiperiodic τ -linear map Fτ

Definition

Given an interval pattern τ we
define

Fτ = (R(θ), fτ (x))

where R(θ) = θ + ω (mod 1).
This map will be called the
quasiperiodic τ -linear map.

Example

1
2

3
4

Observation

Fτ has a periodic orbit of strips (curves) with pattern ν if and only
if fτ has a periodic orbit with pattern ν.

Conclusion

Every interval pattern (permutation) occurs as pattern in Ω.
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Forcing in Ω

Definition

Let τ , ν be patterns in Ω. τ =⇒Ω ν if and only if every map
F ∈ S(Ω) that has a periodic orbit of strips with pattern τ also
has a periodic orbit of strips with pattern ν.
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Main result

Theorem

Let τ and ν be patterns (in I and Ω). Then,

τ =⇒I ν if and only if τ =⇒Ω ν.

Corollary

Every pattern of period n forces in Ω a pattern of period m for
every m ≤Sh n.

Corollary

The Sharkovskii Theorem holds for every F ∈ S(Ω).
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Entropy

By using Bowen definition h(F , Iθ) is defined for every
Iθ := {θ} × I . Then, Bowen Formula gives

h(R) + hfib(F ) ≥ h(F ) ≥ max{h(R), hfib(F )}

where
hfib(F ) = sup

θ∈S1
h(F , Iθ).

Since h(R) = 0, h(F ) = hfib(F ).

In the particular case of the map Fτ , from the definitions and the
fact that Fτ = (R , fτ ) is uncoupled, we get

Lemma

h(Fτ , Iθ) = h(fτ ) ∀ θ ∈ S
1. Consequently,

h(Fτ ) = hfib(Fτ ) = h(fτ ).
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Horseshoes in S(Ω)

Definition

Given F ∈ S(Ω) we define an s-horseshoe for F as a pair (J,D)
where J is a solid strip and D is a quasi-partition of J formed by s
solid strips such that F (D) ⊃ J, ∀ D ∈ D.

Quasi-partition

J =
⋃

D∈D
D, and the elements of D have pairwise disjoint interiors.
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Horseshoes and entropy in S(Ω)

Following the same ideas as in the interval we get

Theorem

Assume that F ∈ S(Ω) has an s-horseshoe. Then

h(F ) ≥ log s.

Theorem

Assume that F ∈ S(Ω) has a periodic orbit of strips with
pattern τ . Then

h(F ) ≥ h(fτ ) = h(Fτ ).
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Consequences: Entropy of patterns

Definition

h(τ) := inf

{
h(F ) :

F ∈ S(Ω) and F has a periodic orbit
of strips with pattern τ

}
.

Corollary

τ =⇒Ω ν implies h(τ) ≥ h(ν).

Proof.

From the last theorem, h(τ) = h(Fτ ).
Also, Fτ has a periodic orbit of strips with pattern ν. Hence, by
definition,

h(Fτ ) ≥ h(ν).
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Consequences: lower bounds of the entropy depending on
the set of periods

Corollary

If F has a periodic orbit of strips of period 2nq with n ≥ 0 and
q ≥ 1 odd then, as in the interval case,

h(F ) ≥
log λn

2k

where λ1 = 1 and, for each q ≥ 3 odd, λq is the largest root of
xq − 2xq−2 − 1.
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Proof of Main Theorem

τ =⇒Ω ν implies τ =⇒I ν.
Trivial: By definition, Fτ has a periodic orbit of strips with
pattern ν. Then fτ has a periodic orbit with pattern ν.
Therefore, τ =⇒I ν by the Forcing Characterization Theorem.

τ =⇒I ν implies τ =⇒Ω ν.

To prove this statement we need to introduce new tools
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New tools: Markov Graph of fτ

The closure of each connected component of 〈P〉 \ P is a basic
interval.

Definition (Signed Markov Graph (Combinatorial))

Vertices: Basic intervals

Signed arrows:

{
I

+
−→ J iff fτ (I ) ⊃ J; fτ

∣∣
I
increases

I
−
−→ J iff fτ (I ) ⊃ J; fτ

∣∣
I
decreases
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Example

1 2 3 4
1

2

3

4

fτ

A B C

A
+

B
+

−

C

−

−

T =




A B C

A 0 1 0
B 0 0 1
C 1 1 1




Theorem

h(fτ ) = max{0, log ρ(T )}

where ρ(T ) denotes the spectral radius of T .
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Signed Markov Graph for F ∈ S(Ω) having a periodic orbit
of strips: Basic strips

Definition

The closure of the strip between two consecutive strips is called a
basic strip

Example

Assume that P1,P2, . . . ,Pn is a periodic orbit of strips.

Pn

P2

P1

Pn−1

Basic strip

Basic strip

...
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Signed Markov Graph for F ∈ S(Ω) having a periodic orbit
of strips: Arrows

Definition

Given a strip A we set

Top of A: A+ :=

{
(θ,max

I
(({θ} × I ) ∩ A)) : θ ∈ S1

}

Bottom of A: A− :=

{
(θ,min

I
(({θ} × I ) ∩ A)) : θ ∈ S1

}

A
+
−→ B :

A
+

A
−

A

B

F (A+)

F (A−) A
−
−→ B :

A
+

A
−

A

B

F (A+)

F (A−)
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Properties of signed arrows in S(Ω)

Lemma

Assume that A
±
−→ B. Then,

1 B ⊂ T (A).

2 If D ⊂ B and D is a strip, then A
±
−→ D.

Remark

If A is a pseudo-curve, then B is a pseudo-curve and T (A) = B .

Important remark

By continuity, the signed Markov Graph of fτ is a subgraph of the
signed Markov Graph of F with respect to a periodic orbit of strips
with pattern τ .
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Back to the idea of the proof of τ =⇒I ν implies τ =⇒Ω ν

We may assume that ν 6= τ .

By the Forcing Characterization Theorem, fτ has periodic orbit
{q0, q1, · · · , qn−1} with pattern ν 6= τ such that
q0 = min{q0, q1, · · · , qn−1}.

Consider the loop in the Markov Graph of fτ associated to q0.
That is,

I0
s0−→ I1

s1−→ · · · · · ·
sn−2
−→ In−1

sn−1
−→ I0

∈ ∈ ∈

q0 fτ (q0) f n−1
τ (q0)

This loop also exists in the Markov Graph of F , replacing the
interval Ii by the basic strip Ĩi . Moreover, since ν 6= τ and fτ is
τ -linear, the loop is non-repetitive.
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A key lemma

Lemma

There exists a periodic orbit of strips Q0,Q1, . . . ,Qn−1 of F such
that Q0 is the lower strip, F n(Q0) = Q0 and
Q0 ⊂ Ĩ0, F (Q0) ⊂ Ĩ1, . . . , F n−1(Q0) ⊂ Ĩn−1.

Then, by the above lemma we have to see that
{Q0,Q1, . . . ,Qn−1} has period n and pattern ν.

First we prove that Q0 < Fi(Q0) for i = 1, 2, . . . , n − 1 (in
particular the period is n).

Secondly we prove that {Q0,Q1, . . . ,Qn−1} has pattern ν.
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{Q0,Q1, . . . ,Qn−1} has pattern ν

We have:

q0 ∼ I0 −→ I1 −→ . . . −→ In−1 −→ I0 ∼ Q0

fτ (q0) ∼ I1 −→ I2 −→ . . . −→ In−1 −→ I0 −→ I1 ∼ F (Q0)
f 2
τ
(q0) ∼ I2 −→ I3 −→ . . . −→ In−1 −→ I0 −→ I1 −→ I2 ∼ F 2(Q0)

...
f n−1
τ

(q0) ∼ In−1 −→ I0 −→ I1 −→ I2 −→ . . . −→ In−1 ∼ F n−1(Q0)

where the symbol ∼ means “associated with”.

The order of the points f iτ (q1) induces an order on the shifts of the
loop (with the usual lexicographical ordering) that induces the
same order on the strips F i (Q0). Thus, {q0, q1, · · · , qn−1} and
{Q0,Q1, . . . ,Qn−1} have the same pattern.
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