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Introduction — the setting

In the last two decades a lot of work has been devoted to find and
study Strange Non-chaotic Attractors (SNA).

Many of these attractors are found and studied for non autonomous
quasiperiodically forced dynamical systems of the type:

(1)

{
θn+1 = R(θn) = θn + ω (mod 1),

xn+1 = ψ(θn, xn)

where x ∈ R, θ ∈ S1 = R/Z and ω ∈ R \Q.

Similar models are studied also in higher dimensions and for
systems that are both discrete and continuous.

Other important studies are developed in the framework of
cocycles and spectral theory.
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Skew products

Systems of the form

{
θn+1 = ϕ(θ),

xn+1 = ψ(θn, xn)

of which System (1) is a particular case are called skew products.
The map ϕ is called the base map and each {θ} × R is called the
fibre based at θ. Fixing θ the map

ψ(θ, ·) : {θ} ×R −→ {ϕ(θ)} ×R

is a continuous function from the fibre based at θ into the fibre
based at ϕ(θ).
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The origin of the name

The term Strange Non-chaotic attractor (SNA) was introduced
and coined in

[GOPY] C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke.
Strange attractors that are not chaotic.
Phys. D, 13(1-2):261–268, 1984.

After this paper the study of these objects became rapidly popular
and a number a papers studying different related models appeared.
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The [GOPY] model

(2)

{
θn+1 = θn + ω (mod 1),

xn+1 = 2σ tanh(xn) cos(2πθn)

where x ∈ R, θ ∈ S1, ω =
√
5+1
2 and σ > 1.
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The authors called the attractor of the system an SNA
since:

the orbit of the point (θ, x) for almost every θ ∈ S1 and every
x > 0 converges to the SNA (attractor).
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The authors called the attractor of the system an SNA
since:

the orbit of the point (θ, x) for almost every θ ∈ S1 and every
x > 0 converges to the SNA (attractor).

it is strange because it is not piecewise differentiable: The
SNA cuts the line x = 0 (and then it does so at the orbit of a
point which is dense in x = 0) and it is different from zero in
a set whose projection to S1 is dense.

Remark

The line x = 0 is invariant because xn+1 = σ tanh(xn) cos(2πθn).
Moreover this invariant line turns to be a repellor.
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The authors called the attractor of the system an SNA
since:

the orbit of the point (θ, x) for almost every θ ∈ S1 and every
x > 0 converges to the SNA (attractor).

it is strange because it is not piecewise differentiable: The
SNA cuts the line x = 0 (and then it does so at the orbit of a
point which is dense in x = 0) and it is different from zero in
a set whose projection to S1 is dense.

Remark

The line x = 0 is invariant because xn+1 = σ tanh(xn) cos(2πθn).
Moreover this invariant line turns to be a repellor.

it is non-chaotic because the Lyapunov exponents are non
positive (computed numerically).

Ll. Alsedà (UAB) Attractors for unimodal quasiperiodically forced maps 5/39

Motivation The monotone case The non-monotone case Results Examples Questions

Early results

As pointed out by R. Johnson, constructions of flows containing
SNA’s can be found in

[M1] V.M. Millionščikov.
Proof of the existence of irregular systems of linear differential equations
with almost periodic coefficients.
Differ. Uravn., 4 (3): 391–396, 1968.

[M2] V.M. Millionščikov.
Proof of the existence of irregular systems of linear differential equations
with quasi periodic coefficients.
Differ. Uravn., 5 (11): 1979–1983, 1969.

[V] R.E. Vinograd.
A problem suggested by N.P. Erugin.
Differ. Uravn.,11 (4): 632–638, 1975.

Notice that these results were obtained much before than the
notion and term SNA was coined.
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Remarks

The notion of SNA is neither unified nor precisely formulated.
For instance there problems on whether it has to be imposed
that the attracting is closed or not.

The existence of SNA, often, is not proved rigorously. Some
authors just give very rough/rude numerical evidences of their
existence that easily can turn out to be wrong.

The theoretical tools to study these objects and derive these
consequences, are often used in a wrong way (Lyapounov
exponents).
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On the positive side there are some works where the existence of
an SNA is rigorously proved. For instance

[BO] Z. I. Bezhaeva and V. I. Oseledets.
On an example of a “strange nonchaotic attractor”.
Funktsional. Anal. i Prilozhen., 30(4):1–9, 95, 1996.

[Kel] G. Keller.
A note on strange nonchaotic attractors.
Fund. Math., 151(2):139–148, 1996.

[H] A. Haro.
On strange attractors in a class of pinched skew products
to appear.

Keller model is an abstract version of the [GOPY] example.
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The Keller model

It is a skew product of the form (1) where the function in the
second component has separated variables:

(3)

{
θn+1 = R(θn) = θn + ω (mod 1),

xn+1 = f (xn)g(θn)

where x ∈ R+, θ ∈ S1, ω ∈ R \Q and

1 f : [0,∞) −→ [0,∞) is C1, bounded, strictly increasing,
strictly concave and verifies f (0) = 0 (to fix ideas take
f (x) = tanh(x) as in the [GOPY] model).
Thus, x = 0 will be invariant.

2 g : S1 −→ [0,∞) is bounded and continuous (to fix ideas take
g(θ) = 2σ| cos(2πθ)| with σ > 0 in a similar way to the
[GOPY] model – except for the absolute value).
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Pinching

There are big differences between the cases when g takes the value
0 at some point: the pinched case and the case when g is strictly
positive.

Remark

In the pinched case any T–invariant set has to be 0 on a point and
hence on a dense set because the circle x ≡ 0 is invariant and the
θ-projection of every invariant object must be invariant under R .
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A particular example

(4)

{
θn+1 = θn + ω (mod 1),

xn+1 = 2σ tanh(xn)(ε+ | cos(2πθn)|)

where x ∈ R, θ ∈ S1, ω =
√
5+1
2 . σ > 0 and ε ≥ 0.

Remark

The attractor of the above system (if it exists) will be pinched if
and only if ε = 0.

Movie: A family of Keller Attractors
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The following theorem due to Keller [Kel] makes the above
informal ideas rigorous. Before stating it we need to introduce the
constant σ:

Since the line x = 0 is invariant, by using Birkhoff Ergodic
Theorem, it turns out that

σ := f ′(0) exp
(∫

S1
log g(θ)dθ

)
<∞.

is the vertical Lyapunov exponent on the circle x = 0.
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Keller Theorem

There exists an upper semicontinuous map φ : S1 −→ [0,∞) whose
graph is invariant under the Model (2). Moreover,

1 The Lebesgue measure on the circle, lifted to the graph of φ
is a Sinai-Ruelle-Bowen measure,

2 if σ ≤ 1 then φ ≡ 0,

3 if σ > 1 then φ(θ) > 0 for almost every θ,

4 if σ > 1 and g(θ0) = 0 for some θ0 then the set {θ : φ(θ) > 0}
is meager and φ is almost everywhere discontinuous,

5 if σ > 1 and g > 0 then φ is positive and continuous; if g is
C1 then so is φ,

6 if σ 6= 1 then |xn − φ(θn)| → 0 exponentially fast for almost
every θ and every x > 0.
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Basic ideas about Keller Theorem — invariant functions

A crucial fact is that f (x) is strictly concave.

The Model (2) can be written as (θn+1, xn+1) = F (θn, xn) where
F (θ, x) = (R(θ), f (x)g(θ)).

Let P be the space of all functions (not necessarily continuous)
from S1 to R (or, later, [0, 1]).

If we look for a functional version of the system (or the iterates of
F ) in P then we have to define the transfer operator T : P −→ P
as:

(Tψ)(θ) = f (ψ(R−1(θ))) · g(R−1(θ))

(the graph of Tψ is the image under F of the graph of ψ).

Observe that φ is invariant if and only if Tφ = φ.
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Basic ideas about Keller Theorem — invariant functions

To obtain φ, Keller takes a sufficiently large constant function u,
applies to it the iterates of the transfer operator T and takes the
limit (which is the infimum). This works because the map f is
monotone.

Movie: The iterates of the transfer operator
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Statement of the problem

We are interested in extending Keller Theorem to the case when f
is not monotone to the fibres. We will stay in the simplest case
when f is non-monotone (that is, when f is unimodal) and the
most interesting case (for us): the pinched one.

Thus, our assumptions will be:

f : [0, 1] −→ [0, 1] is a concave unimodal map with
f (0) = f (1) = 0 and f (c) = 1.

g : S1 −→ [0, 1] is a continuous function which takes the value
0 at some point.

Ll. Alsedà (UAB) Attractors for unimodal quasiperiodically forced maps 16/39



Motivation The monotone case The non-monotone case Results Examples Questions

The non-monotone model

{
θn+1 = θn + ω (mod 1),

xn+1 = af (x)θ(1− θ)

where x ∈ R, θ ∈ S1, ω = R \Q and f is a concave unimodal map
with f (0) = f (1) = 0 and f (c) = 1 (standard examples are
f (x) = 4x(1 − x) and f (x) = 1− |2x − 1|).

Observe that since g(θ) = aθ(1− θ) we are in the pinched case.
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Initial examples

We consider two basic situations. One with strict concavity and
another one with non-strict concavity. In any case we take the

golden mean as a rotation number: ω =
√
5+1
2 .

Movie: Case logistic-logistic

f (x) = 4x(1 − x)
a ∈ [1.8, 4]

Movie: Case tent-logistic

f (x) = 1− |2x − 1|
a ∈ [3.68, 4]
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Preliminaries

To overcome the non-monotonicity problem we define a
semitransfer operator S by:

(Sψ)(θ) = f̃
(
ψ(R−1(θ))

)
· g(R−1(θ))

where f̃ (x) = f (min{x , c}) = max{f (x), 1}. Clearly, the
semitransfer operator is the transfer operator of the map obtained
from F by replacing f by the monotone map f̃ .
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Figure: The map f in red and the map f̃ in blue.
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An invariant graph for the semitransfer operator

From the definition of the semitransfer operator we have

F
(
R−1(θ),min{ψ(R−1(θ)), c}

)
= (θ, (Sψ)(θ)),

so the image under F of the graph of the minimum of ψ and c is
the graph of Sψ.

The sequence (Sn1)∞n=0 is non-increasing. So, it converges
pointwise to

ξ+(θ) := inf{(Sn1)(θ) : n ∈ N} ∈ P.

The function ξ+ is upper semicontinuous and either zero almost
everywhere or positive almost everywhere (although zero on a
dense set).
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Upper bounds

Set X+ = {(θ, x) : x ≤ ξ+(θ)}.

Proposition

The set X+ is invariant for F and the ω-limit set of every point of
S1 × [0, 1] is contained in X+. Moreover, if F n(θ, x) = (θn, xn)
then xn ≤ (Sn1)(θn).

Remark

Since f (x) ≤ 1 and g(θ) = aθ(1− θ), it follows that S1 ≤ a/4.
Thus, X+ is below the circle x = a/4.
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The core

Set

β = f (sup ξ+),

Y = {(θ, x) : βξ+(θ) ≤ x ≤ ξ+(θ)}, and

X =
∞⋂

n=0

F n(Y ).

Y is invariant for F .

Thus, X ⊂ Y and X is also invariant for F .

Since the intersection of Y with every fibre is a closed interval
or a point, the same is true for X .

All interesting dynamics of F takes place in the set X which
basically plays a role of the core of the unimodal map (that is the
interval [f 2(c), f (c)]).
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Vertical Lyapunov exponent at x = 0

Since we do not assume that f is smooth, we cannot speak about
vertical Lyapunov exponents almost everywhere on the cylinder.

However, since f is concave, there exists a one-sided derivative
f ′+(0) of f at 0. Therefore we can consider the vertical Lyapunov
exponent at x = 0, or more precisely, on S1 × {0}. It can be
defined by (see for instance [Kel]):

Λ = log f ′+(0) +
∫

S1
log g(θ) dθ.

Here we assume that f ′+(0) is finite, but admit the possibility of∫
S1 log g(θ) dθ = −∞.
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The sign of Λ strongly influences the dynamics

Theorem (Negative Lyapunov exponent Theorem)

If Λ < 0 then ξ+ ≡ 0, and for every θ ∈ S1 and every x ∈ [0, 1] the
trajectory of (θ, x) converges exponentially fast to S1 × {0}.

Theorem

If ξ+ = 0 a.e., then Λ ≤ 0.

Corollary

If Λ > 0 then ξ+ is positive a.e.
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Existence of an invariant curve–I

If ξ+ is zero a.e., then the sequence (T nψ))∞n=0 converges a.e. to
zero for every function ψ ∈ P.

Assume now that Λ > 0 and hence ξ+ is positive a.e. To study this
case we:

additionally assume that the map f is strictly concave,

moreover we set

b := sup

{
x ∈ (c , 1] : − f ′−(x) <

f (x)

x

}
.

Note that b < 1. In particular, f (b) > 0.
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Existence of an invariant curve–II

Theorem (Invariant Curve Theorem)

Assume that 0 < ess sup ξ+ < b and let β′ = f (ess sup ξ+). Then
there exists a function ζ ∈ P such that

(a) 0 ≤ ζ ≤ ξ+ and ζ ≥ β′ξ+ almost everywhere;

(b) T ζ = ζ;

(c) if ψ ∈ P and εξ+ ≤ ψ ≤ ξ+ for some ε > 0 then T nψ
converges to ζ almost everywhere as n tends to infinity;

(d) ζ is a measurable function;

(e) ζ is positive almost everywhere.
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Exponentially fast convergence

Theorem (Exponentially fast convergence Theorem)

Assume that 0 < ess sup ξ+ < b. Then for almost every θ ∈ S1 and
all x ∈ (0, 1) the trajectory of (θ, x) either converges exponentially
fast to the graph of ζ or falls into S1 × {1} and then stays in
S1 × {0}. In particular, for almost every θ ∈ S1 and all but
countable number of x ∈ (0, 1) the trajectory of (θ, x) converges
exponentially fast to the graph of ζ.
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Invariant measures

Theorem

If Λ < 0 then F is uniquely ergodic.

Theorem

Assume that f is strictly concave and 0 < ess sup ξ+ < b. Then F
has only two invariant ergodic probability measures, namely m0

and mζ . In particular, the topological entropy of F is 0. The
measure mζ is the (unique) Sinai-Ruelle-Bowen measure for F .
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Examples: Looking for examples which cannot be reduced
to the monotone case
logistic-logistic

The first family of examples consists in taking

f (x) = 4x(1 − x).

The integral of log g is equal to log a− 2, and f ′(0) = 4. Thus,
the vertical Lyapunov exponent is Λ = log(4a/e2). So the
interesting case, Λ > 0, occurs when
a > e2/4 ≈ 1.84726402473266. However, even for slightly larger
values of a (definitely for a < 2, because then S1 < 1/2) we have
sup ξ+ < 1/2, so this is basically Keller’s case. On the other hand,
if a is too large, then ess sup ξ+ > b = 2/3 and our main theorems
do not apply. Numerical estimates (which do not distinguish
between sup ξ+ and ess sup ξ+) suggest an interval of “good”
values of a, in particular a = 2.6 (see the next figures).
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Logistic map forced by a logistic map, a = 2.3. The
attractor seems to be below the level x = 1/2.

x = 1
2

x = b = 2
3
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Logistic map forced by a logistic map, a = 2.9. The
attractor seems to stick above the level x = b = 2/3.

x = 1
2

x = b = 2
3
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Logistic map forced by a logistic map, a = 2.6. The
attractor seems to be between the levels x = 1/2 and
x = b = 2/3.

x = 1
2

x = b = 2
3
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An example that cannot be reduced to the monotone case

We have to find an f which satisfies f (1/2) = 1 and
1/2 < ess sup ξ+ < b.

We do it with the help of the following

Lemma

Let g be a logistic map, g(θ) = aθ(1− θ), with a > e2/2, and let
f be such that its turning point c is 1/2. Then ess sup ξ+ > 1/2.

Then we can take f (x) = 1− (2x − 1)2n with sufficiently large n
(computations show that n ≥ 13 is sufficient) to assure that
e2/8 < b < 1. Then we only need to choose a value of a such that
e2/8 < a/4 < b. This implies that e2/2 < a and, since
S1 ≤ a/4 < b, we get 1/2 < ess sup ξ+ < b as we wanted.

Thus, the Invariant Curve Theorem applies but the study of this
system cannot be reduced to the monotone case.
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tent-logistic

The next example shows that if we do not assume that f is strictly
concave, the situation can be completely different. Namely, let us
take again g(θ) = aθ(1− θ) with a > e2/2, but as f we take the
tent map,

f (x) = 1− |2x − 1|.
Then the vertical Lyapunov exponent is the same everywhere in
S1 × [0, 1], and is positive. Thus, by the results of Buzzi, there
exists an invariant probability measure for F , absolutely continuous
with respect to the Lebesgue measure. This implies that, in this
case, the attractor is not a curve. It consists in some region filled
by transitive orbits.
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Remark

For the above family, the previous lemma tells us that for all
a > e2/2 we have ess sup ξ+ > 1/2, while for all a < e2/2 we have
Λ < 0, and thus by the Negative Lyapunov exponent Theorem,
ξ+ ≡ 0. This is in a sharp contrast to the family from the first
example, where computer experiments suggest continuous
dependence of ess sup ξ+ on a.

Ll. Alsedà (UAB) Attractors for unimodal quasiperiodically forced maps 35/39

Motivation The monotone case The non-monotone case Results Examples Questions

Tent map forced by a logistic map, a = 3.696, slightly more
than e2/2. The attractor sticks above the level x = 1/2.

x = 1
2
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Tent map forced by a logistic map, a = 4.

x = 1
2
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Questions

Q 1. Are the Invariant Curve Theorem and the Exponentially fast
convergence Theorem true without the assumption that the
essential supremum of ξ+ is smaller than b?
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Questions

Q 1. Are the Invariant Curve Theorem and the Exponentially fast
convergence Theorem true without the assumption that the
essential supremum of ξ+ is smaller than b?

Q 2. When both f and g are logistic maps and g depends on the
parameter: g(θ) = aθ(1− θ) the computer experiments
suggest some kind of continuous dependence of the
attractor on the parameter. Is this dependence really
continuous? If yes, in what sense (what topology)? If no, is
at least the supremum (or the essential supremum) of ξ+

depending continuously on the parameter? Of course the
same question can be asked for other similar families. As we
noted at the end of the preceding section, the situation may
be different if f is not strictly concave.
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Q 3. Are the supremum and the essential supremum of ξ+ always
equal? If not, what natural assumptions imply this?
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Q 3. Are the supremum and the essential supremum of ξ+ always
equal? If not, what natural assumptions imply this?

Q 4. An attracting invariant graph is an analogue of an attracting
fixed point for an interval map. However, for interval maps
we see often periodic attracting points of periods n > 1.
Can in our model an attracting periodic graph occur? To be
more specific, we are asking about a possibility of an
attracting invariant set that has n points in almost every
fibre and is in some sense irreducible.
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