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Graphs and Trees — Introduction1

A combinatorial graph is an ordered pair G = (V ,E ) of vertices or
nodes V , and a subset E ⊂ V × V of the Cartesian product
V × V .
In the case of an undirected graph, the elements of E are called
edges and the pairs (v ,w) ∈ E are considered without ordering
(that is, there is an edge between v ∈ V and w ∈ V when
(v ,w) ∈ E or (w , v) ∈ E ).
In the case of a directed or oriented graph, the elements of E are
called arrows and the pairs (v ,w) ∈ E are considered with ordering
(that is, there is an arrow from v ∈ V to w ∈ V if and only if
(v ,w) ∈ E ).

F D E

A

C B
Undirected
graph

A B E

C D

Directed graph

1http://en.wikipedia.org/wiki/Graph_theory
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Graphs and Trees — Introduction

Graphs are used to represent communication networks, data
organizations, computing devices, computing flows and, currently,
in all disciplines from linguistics to sociology and biology, to
mention a highly restricted list of examples.
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Graphs and Trees — Introduction

For example, the link structure of a website can be represented and
studied by means of a directed graph, in which the vertices
represent web pages and directed edges represent links from one
page to another.
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A little bit of history

The article written by Leonhard Euler on the seven bridges of
Königsberg and published in 1736 is considered the first document
in the history of graph theory. In this work, as well the one written
by Vandermonde on the knight problem, they studied what today
is known as the Euler Formula relating the number of edges,
vertices, and faces of a convex polyhedron, that is at the origin of
the topology.

2Figure extracted from Wikipedia
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Graphs and Trees — Introduction

One of the most famous and stimulating problems in graph theory
is, and it has been the problem of the four colors:

It is true that any map drawn in the plane can have its regions
coloured with four colors, such that two regions who have a
common border have different colors?
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Graphs and Trees — Basic Definitions

Contents
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2 Valence and Degree
3 Leaf vertex
4 Paths and Loops
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Basic definitions — Order and Size

Order of a graph
The order of a graph is the number of vertices |V |.

Example: The graphs on page 2 have order 6 and 5 respectively.

Size of a graph
The size of a graph is the number of edges or arrows |E |.

Example: The graphs on page 2 have size 7 and 6 respectively.
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Basic definitions — Valence and Degree

Degree of a vertex
The degree or valence is the number of edges reaching or leaving
the vertex. If an edge connects a vertex with itself it counts twice.

Example: The vertex D of the undirected graph of page 2 has
valence 3 while vertex E of the directed graph of the same page
has valence 4.

Degree of a vertex — Directed case
The in-degree is the number of edges that reach the vertex.
The out-degree is the number of edges leaving the vertex.

Example: The vertex E of the directed graph of page 2 has
in-degree 3 and out-degree 1.
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Basic definitions — Leaf and Branching vertices

Leaf vertex
The vertices belonging to a single edge (i.e. the vertices of valence
1) are called terminal or leaf.

Example: The only leaf vertex of the undirected graph of page 2 is
vertex F, and the only leaf of the directed graph of the same page
is vertex D.

Branching vertex
A branching vertex is any vertex with valence greater than two.

Example: The branching vertices of the undirected graph of
page 2 are B, D and E, and the branching vertices of the directed
graph of the same page are B and E.
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Basic definitions — Paths and loops
Path
A path is a sequence of edges connected linearly. If the graph is
directed the end of an arrow should be the beginning of the next
one.
The length of a path is its number of edges.

Example: (F,D,C,B,A) is a path length 4 of the undirected graph
from page 2, while B→ C→ A→ B→ E→ E→ E is a path of
length 6 of the oriented graph of the same page.

Loop or Circuit
A loop or circuit is a closed path. That is, the end of the last edge
is the beginning of the first one.

Example: (B,C,D,E,B) is a length 4 loop of the undirected graph
in page 2, while B→ C→ A→ B is a length 3 loop of the oriented
graph of the same page.
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Connectedness in graphs

Contents

1 Connectedness in undirected graphs
2 Connectedness in directed graphs
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Connectedness in undirected graphs

Connectedness
An undirected graph is connected
when there is a path between
each pair of vertices (i.e., there
are no inaccessible vertices).

Connected Component
A connected component of an
undirected graph is a maximal
connected subgraph.
Note that each vertex and each
edge belongs to a single
connected component.

Example: An unconnected graph
with two connected components.

6 4 5

1

3 27

8

9

10
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Connectedness in directed graphs
Weak connection
A directed graph is called weakly connected when it is connected
as an undirected graph. That is, when replacing all its (directed)
arrows with undirected edges we get a connected (undirected)
graph.

Example:
The directed graph of page 2

A B E

C D
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Connectedness in directed graphs

Semi-connection
A directed graph is called unilaterally connected or semi-connected
when, given any two vertices u, v , it contains a path from u to v
or a path from v to u.

Strong connection
A directed graph is called strongly connected when, given any two
vertices u, v , it contains a path from u to v and a path from v to
u. A strongly connected component is a strongly connected
maximal subgraph.
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Strongly connected components

Example: a directed graph which is not strongly connected,
with three strongly connected components.

0 1

2

3

4
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Memory models

Contents

1 List representations — Adjacency List
2 List representations — Incidence List
3 Matrix representations — Adjacency Matrix
4 Matrix representations — Incidence Matrix
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Memory models

There are different ways to store graphs in memory.

The used data structure depends on the structure of the graph and
also on the algorithm used to manipulate the graph. There are two
basic types of representations: lists and matrix structures.

For scattered graphs (with few edges) the representation as a list
structure is often preferred as it has smaller memory requirements.
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List representations — Adjacency List

Adjacency list
The vertices are stored as structures, and each vertex stores a list
of adjacent vertices. This data structure allows the storage of
additional data about vertices (e.g. latitude and longitude in the
case of geographic data).

An example in C— The undirected graph of page 2
typedef struct {

char name;
unsigned short nsucc;
unsigned short successors[3];

} node_simple;
node_simple GrafNO[6]={{’A’, 2, {1, 4}},

{’B’, 3, {0, 2, 4}},
{’C’, 2, {1, 3}},
{’D’, 3, {2, 4, 5}},
{’E’, 3, {0, 1, 3}},
{’F’, 1, {3}} };

Made with vectors of fixed size.
It is more inefficient but simpler.
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List representations — Adjacency List
Another example: the directed graph of page 2
typedef struct {

char name[11];
double lat, lon;
unsigned short nsucc;
unsigned short successors[2];

} node;
node nodeslist[5] = {{"Home", 41.4833, 2.1333, 1, {1}},

{"Square", 41.4667, 2.0833, 2, {2, 4}},
{"Crossing", 41.3818, 2.1685, 1, {0}},
{"Fountain", 40.41925, -3.69327, 1, {4}},
{"House", 42.5, 1.6, 1, {4}}};

nodeslist[0] nodeslist[1] nodeslist[2] nodeslist[3] nodeslist[4]
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Made with vectors of fixed size.
It is more inefficient but simpler.
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List representations — Incidence List

Incidence list
Vertices and edges are stored as structures. Each edge stores its
incident vertices. In addition, optionally, each vertex can store its
incident edges. This data structure allows the storage of additional
data on vertices and edges (e.g. names, weights, . . . ).

An example in C— The directed graph of page 2
typedef struct {

char name [11];
double lat, lon;

} node;

node llnod [5] = {
{"Home", 41.4833, 2.1333},
{"Square", 41.4667, 2.0833},
{"Crossing", 41.3818, 2.1685},
{"Fountain", 40.41925, -3.69327},
{"House", 42.5, 1.6}};

typedef struct {
unsigned short begin;
unsigned short end;

} dir_edge;

unsigned short graph_size = 6;

dir_edge edges [graph_size] = {
{0, 1},{1, 2},{2, 0},
{1, 4},{3, 4},{4, 4}

};
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Matrix representations — Adjacency Matrix

Adjacency matrix
It is an array (two-dimensional — with two indexes), in which the
rows represent the starting vertices and the columns represent the
final ones. The entry i , j in the array stores the number of arrows
that start at i and end at j . In an undirected graph this matrix is
symmetric. Additional data on edges and vertices must be stored
apart.

Again the directed graph of page 2
0 1 0 0 0
0 0 1 0 1
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
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Matrix representations — Incidence Matrix

Incidence matrix
It is a two-dimensional boolean matrix, in which the rows represent
the vertices and the columns represent the edges. Its entries
indicate if the vertex in a row is incident at the edge of a column.
For directed graphs
+1 indicates that the vertex is the origin of the edge, and
−1 indicates that the vertex is the end of the edge.

Again the directed graph of page 2
The edges are numbered as follows:
α1 = 1→ 2, α2 = 2→ 3, α3 = 3→ 1, α4 = 2→ 5, α5 = 4→ 5.

1 0 −1 0 0
−1 1 0 1 0
0 −1 1 0 0
0 0 0 0 1
0 0 0 −1 −1


Note that this graph
cannot be represented
in this way: Indeed, the
edge 5→ 5 cannot
be represented.
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Graph traversal — Introduction
Unlike vectors, linked lists, and other linear data structures, which
can be traversed canonically in linear order, trees and graphs can
be traversed in several ways which are essentially different since
they are not linearly ordered.

Traversing a graph involves iteration over all nodes and, given a
fixed a node, there is more than one possible choice for the next
node (we are not in a linear data structure). Therefore, in a
sequential computation framework, algorithms and rules are needed
to determine in each case the choice of the next node. Moreover
these algorithms and rules have to regulate the treatment of the
other (remaining) adjacent nodes, to visit them later.

There are basically two philosophies of graph traversal:
In depth: When choosing the next node we prioritize to
increase the depth.
By levels: When choosing the next node we prioritize to
maintain the depth level.
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Graph traversal — Introduction
Since a graph is a self-referential (recursively defined) data
structure, the traversal can be implemented very naturally and
clearly by recursivity (in this case, deferred nodes are implicitly
stored in the stack).
Observations/problems of the depth notion

It is not an absolute notion. It clearly depends on what the
source node is.
As we will see, the definition is simple and canonical
(independent of the path taken) when there is a unique path
between the source node and each of the other nodes.
The first problem is easy to solve: just specify the source
node.
The second problem is more difficult to solve. We will do this
in two stages: initially we will deal with the easy case of trees
(for which, given two nodes, there is a single path that
connects them). Then it will be easier to deal with the
general case of an arbitrary graph.
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Trees and Rooted trees

Contents

1 Trees — Uniquely arcwise connected
2 Rooted trees: Fixing the source node
3 Rooted trees: Leaves and Branching vertices
4 Rooted trees — Depth of a vertex
5 Rooted trees — Tree depth
6 Rooted trees — Parents and Children
7 n-ary trees
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Trees 2 — Uniquely arcwise connected
Definition

A tree is a connected graph without loops (circuits).
Equivalently:

A tree is a uniquely arcwise connected graph: Any two
vertices are connected by a single path.

Properties
Adding an arbitrary edge to a (non
oriented) tree forms a loop.
Deleting any edge the tree gets
disconnected.
A tree with n vertices has exactly
n − 1 edges (the Euler
characteristic is equal to 1).

Example: a tree

2http://en.wikipedia.org/wiki/Tree_(graph_theory)
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Rooted trees: Fixing the source node
Rooted trees
A rooted tree is a tree in which one vertex has been designated to
be the root or source node.

Example: A rooted tree Example — Another rooted tree:
With 1 as root or source node

1

2 3

4 5 6

7 8 9

Depth
0

1

2

3

Example: Vertices 4, 7, 8, and 9 are leaves or
end-nodes.
Vertices 2 and 5 are branching nodes.
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Rooted trees: Leaf and Branching vertices

Leaf and Branching vertices
For rooted trees, the leaf and branching vertices are usual leaf or
branching vertices which are different from the root.

Example: the rooted tree from the previous page
The leaves are the vertices 4, 7, 8 and 9.
The vertices 2 and 5 are branching.

Note: The valence of a vertex does not depend on the root node
Therefore, the leaves and branching vertices of a tree are
independent of the root node except for the root node itself (which
abandons its character when designated root).
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Rooted trees — Depth of a vertex

Definition: Depth of a vertex
In a rooted tree the depth of a vertex is defined as the distance
from this node to the root.
Distance: The distance between two nodes is measured as the
length of the unique path that connects them (remember that a
tree is uniquely arcwise connected).
Obviously the distance from a node to itself is 0.

Note: The root depth is 0.

Example: Depths of the rooted tree of page 28:

Depth 0 1 2 3

Vertices


1 2 4 7

3 5 8
6 9

Example: The depth of the node v = 5
1 −→ 2 −→ 5 is the only path that
connects the root with node 5, and this
path that has length 2.
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Rooted trees — Depth of a vertex

Important Note (to remember)
The depths of the vertices of a
rooted tree depend on the root.

Depths of the example on the right
(compare with the example above)

Depth 0 1 2 3 4 5

Vertices
{

6 3 1 2 4 7
9 5 8

Remarks:
When we switch the root from node 1 to 6:

the only vertex that keeps the same
depth is the node 3.

leaves and terminal vertices do not vary
(since both roots have valence 2).

Example: The tree in page 28
with vertex 6 as root

6

3 9

1

2

4 5

7 8

Depth
0

1

2

3

4

5
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Rooted trees
Depth as vertex ordering
Note (explaining a previous comment)

A rooted tree defines a partial ordering in the set of vertices in the
direction of increasing depth
(see the rooted trees on pages 28 and 31).

The root is the smallest vertex, and
the leaves are the maximum ones.
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Rooted trees — Tree depth

Definition
The depth of a rooted tree is defined as the maximum depth of the
vertices (as above, it depends on the chosen root).

Example
The rooted tree 1 on page 28 has depth 3.
The same root tree 6 on page 31 has depth 5.
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Rooted Trees — Parents and Children
Definition: parent
Given a rooted tree and a vertex v of depth p > 0 (i.e. v is not
the root), the parent of v is defined as the unique vertex adjacent
to v of depth p − 1. Equivalently, the parent of v is the node
adjacent to v in the unique path that connects the root with v .
Obviously the root has no parent (in fact it is the only vertex that
has no parent).

Example: Parents of the tree in page 28

vertices 1 2 3 4 5 6 7 8 9
even - 1 1 2 2 3 5 5 6

Example: Parents of the tree in page 31

vertices 1 2 3 4 5 6 7 8 9
even 3 1 6 2 2 - 5 5 6
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Rooted Trees — Parents and Children
Definition: child
Let v be a vertex of depth p ≥ 0 in a rooted tree. A node with
depth p + 1 adjacent to v is called a child of v .

Leaves have no children
(and are the only vertices that have no children).
A vertex which is not a leaf can have more than one child.

Example: Children of the tree in Page 28

vertices 1 2 3 4 5 6 7 8 9

children
{

2 4 6 – 7 9 – – –
3 5 8

Exemple: Children of the tree in Page 31

vertices 1 2 3 4 5 6 7 8 9

children
{

2 4 1 – 7 3 – – –
5 8 9
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n-ary trees

Definition
An n-ary tree is a rooted tree for which each vertex has as up to n
children.

2-ary trees are called binary, and
3-ary trees are called ternary.

Example
The rooted trees in pages 28 and 31 are binary trees.
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Tree traversal

Contents

1 In depth: depth-first search — pre-order
2 In depth: depth-first search — in-order
3 In depth: depth-first search — post-order
4 By levels: breadth-first search
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Tree traversal 3 in depth: depth-first search
pre-order

Description
This search algorithm first visits
(lists) every traversed node.
Then, it moves towards the left
child and, upon the second
traversal of the node (uphill), it
moves towards the right child. Visiting order:

F, B, A, D, C, E, G, I, H

3https://en.wikipedia.org/wiki/Tree_traversal
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Tree traversal in depth: depth-first search
pre-order — pseudocode

Algorithm: recursive pre-order
procedure preorder(node)

if (node = null) then
return

end if
visit(node)
preorder(node.left)
preorder(node.right)

end procedure

Comment
The initial check (if) is necessary
to detect when we are on a leaf
and, in this case, stop the
recursive algorithm because we
can’t go deeper.

Algorithm: iterative pre-order
procedure IterativePreorder(noderoot)

s ← EmptyStack
s.push(noderoot)
while (not s.IsEmpty) do

node ← s.pop
visit(node)
if (node.right 6= null) then

s.push(node.right)
end if
if (node.left 6= null) then

s.push(node.left)
end if

end while
end procedure

Comment
It is understood that we do not cheat by
entering noderoot null.
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Tree traversal in depth: depth-first search
in-order

Description
This search algorithm first moves
towards the left child of every
traversed node. Afterwards, upon
the second traversal of the node
(uphill), it visits the node and
moves to the right child. Visiting order:

A, B, C, D, E, F, G, H, I
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Tree traversal in depth: depth-first search
in-order — pseudocode

Algorithm: recursive in-order
procedure inorder(node)

if (node = null) then
return

end if
inorder(node.left)
visit(node)
inorder(node.right)

end procedure

Algorithm: iterative in-order
procedure IterativeInOrder(noderoot)

s ← EmptyStack
node ← noderoot
while (true) do

if (node 6= null) then
s.push(node)
node ← node.left

else
if (s.IsEmpty) then return; end if
node ← s.pop
visit(node)
node ← node.right

end if
end while

end procedure
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Tree traversal in depth: depth-first search
post-order

Description
This search algorithm first moves
towards the left child of every
traversed node. Afterwards, upon
the second traversal of the node
(uphill), it moves to the right
child. Finally, at the third
traversal of the node (uphill but
coming from the right child), the
node is visited.

Visiting order:
A, C, E, D, B, H, I, G, F
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Tree traversal in depth: depth-first search
post-order — pseudocode

Algorithm: iterative post-order
procedure IterativePostOrder(root)

s ← EmptyStack
v ← root; lastV ← null;
while (true) do

if (v 6= null) then
s.push(v); v ← v.left;

else
if (s.IsEmpty) then return; end if
peekv ← s.peek
if (peekv.right 6= null and lastV 6= peekv.right) then

v ← peekv.right
else

visit(peekv); lastV ← s.pop;
end if

end if
end while

end procedure

Algorithm:
recursive post-order
procedure postorder(v)

if (v = null) then
return

end if
postorder(v.left)
postorder(v.right)
visit(v)

end procedure

peek retrieves the information con-
tained in the top element of the stack
(the last entered) but it does not re-
move this item from the stack, as pop
does.
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Tree traversal by levels:
breadth-first search

Description
The nodes are listed by
depth level, giving priority
to the left.

Visiting order:
F, B, G, A, D, I, C, E, H

Algorithm: breadth-first search (iterative)
procedure BreadthFirstSearch(root)

q ← EmptyQueue
q.enqueue(root)
while (not q.IsEmpty) do

node ← q.dequeue
visit(node)
if (node.left 6= null) then

q.enqueue(node.left)
end if
if (node.right 6= null) then

q.enqueue(node.right)
end if

end while
end procedure
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Rooted graphs

Contents

1 Rooted graphs: Specifying the source node
2 An example of a rooted graph
3 Depths in rooted graphs
4 Rooted graphs — Depth properties
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Rooted graphs

A rooted graph (also called a pointed graph or a flow graph) is a
graph in which one vertex has been distinguished as the root.

Definitions
A leaf of a rooted graph is any vertex of valence 1 different from
the root. A branching vertex is any vertex with valence greater
than two that is different from the root.

Remark: The valence of a vertex does not depend on the root
Therefore, the leaves and branching vertices of a graph are
independent of the root node except the root node itself (which
abandons its leaf or branching character when it is designated to
be the root).
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An example of a rooted graph (with root A)

A

B

D

C

E

G

I

F H

J K

Examples on the definitions
This rooted graph has the vertices J and K as leaves, and B, D,
E , F , G , H and I as branching vertices.
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Depths in rooted graphs
Definition: Depth of a vertex
In a rooted graph the depth of a vertex is defined as the minimum
distance from the root to the selected vertex.
Minimum distance:
Given two vertices α and β, the minimum distance from α to β
is measured as the shortest length of a path from α to β (note
that in a graph there may be more than one of these paths —
there may even be more than one path of minimum length from
α to β).
Obviously the distance of a node to itself is 0.
On the other hand, in a graph there may be no path from α to
β. In this case the distance from α to β is ∞ by convention.

Definition: Depth of a rooted graph
The depth of a rooted graph is defined as the maximum depth of
the vertices.
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Rooted graphs — Depth properties

From the above definitions and examples it follows:
The depth of the root is 0.
The depths of the vertices of a rooted graph depend on the
chosen root.
Therefore, the depth of a rooted graph depends on the root.

The computation of the depth of a rooted graph (and
therefore of the depths of all its vertices) requires the
computations of the minimum distances (shorter paths)
from the root to each node.

In a connected undirected rooted graph all nodes have finite
depth. However, on a directed rooted graph (even if it is
connected) there might exist nodes with infinite depth.
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Rooted graphs traversal: Breadth-first search

Contents

1 Rooted graphs traversal and the depth function: breadth-first
search algorithm

2 An example
3 Comments on the depth function for rooted graphs
4 Comments on graph traversal with breadth-first search
5 Spanning Trees and Minimal Spanning Trees
6 An implementation of the breadth-first search algorithm in C
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Rooted graphs traversal and the depth function:
the breadth-first search algorithm

Graph traversal or graph search refers to the process of visiting
each vertex in a graph. Such traversals are classified by the order
in which the vertices are visited.

A breadth-first search (BFS) is a technique for traversing a finite
graph. BFS visits the sibling vertices before visiting the child
vertices, and a queue is used in the search process.

This algorithm finds a shortest path from the root of the graph to
every one of its vertices, thus computing the depths of all vertices.
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The Breadth-first search algorithm

Pseudocode of Breadth-first search with parents memory for graphs
procedure BFS(graph G, order, source, parent[order])

depth[order] ← initialized to ∞ .
To store the depths of all nodes, and to control
whether a node has been already visited

q ← EmptyQueue . Initialization

q.enqueue(source) . Initialization

depth[source] ← 0 . source has depth 0 and it has been already enqueued ( 6= ∞)

parent[source] ←∞ . source has no parent

while (not q.IsEmpty) do
node ← q.dequeue
for each adj ∈ node.successors do

if (depth[adj] = ∞) then . adj has not been enqueued (visited) previously

q.enqueue ← adj
depth[adj] ← depth[node]+1 .

node is already visited (depth[node] 6= ∞)
depth[adj] is derived from depth[node]

parent[adj] ← node . Setting parent as the node arriving to adj

end if
end for

end while
end procedure

Lluís Alsedà Graphs: Definitions and Basic Algorithms General TOC 52/91



An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B

1 B

D

1 D

C

2 C

E

2 E

G

3 G

I

3 I

F

4 F

H

4 H

A

B D C E G I F H

depth 0

1 1 2 2 3 3 4 4

parent nil

A A B B E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C

2 C

E

2 E

G

3 G

I

3 I

F

4 F

H

4 H

A B D

C E G I F H

depth 0 1 1

2 2 3 3 4 4

parent nil A A

B B E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G

3 G

I

3 I

F

4 F

H

4 H

A B D C E

G I F H

depth 0 1 1 2 2

3 3 4 4

parent nil A A B B

E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G

3 G

I

3 I

F

4 F

H

4 H

A B D C E

G I F H

depth 0 1 1 2 2

3 3 4 4

parent nil A A B B

E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G

3 G

I

3 I

F

4 F

H

4 H

A B D C E

G I F H

depth 0 1 1 2 2

3 3 4 4

parent nil A A B B

E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G3 G

I3 I

F

4 F

H

4 H

A B D C E G I

F H

depth 0 1 1 2 2 3 3

4 4

parent nil A A B B E E

G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G3 G

I3 I

F4 F H

4 H

A B D C E G I F

H

depth 0 1 1 2 2 3 3 4

4

parent nil A A B B E E G

I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G3 G

I3 I

F4 F H4 H

A B D C E G I F H
depth 0 1 1 2 2 3 3 4 4
parent nil A A B B E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G3 G

I3 I

F4 F H4 H

A B D C E G I F H
depth 0 1 1 2 2 3 3 4 4
parent nil A A B B E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G3 G

I3 I

F4 F H4 H

A B D C E G I F H
depth 0 1 1 2 2 3 3 4 4
parent nil A A B B E E G I

Q
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An example of the Breadth-first search algorithm
Computing a minimal spanning tree

A0 A

B1 B

D1 D

C2 C

E2 E

G3 G

I3 I

F4 F H4 H

A B D C E G I F H
depth 0 1 1 2 2 3 3 4 4
parent nil A A B B E E G I

Q
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Comments on the depth function for rooted graphs
All depths
The depth of every node in the rooted graph of the previous
example is listed in the table, and included in the graph itself (the
number at the left of every node’s box).

The depth of the whole graph is 4.

Example: Why the depth of node G in the above graph is 3
Recall that in a rooted graph the depth of a vertex is defined as the minimum
distance from the root to the selected vertex. So, let us write some of the
paths from A to G in the above graph.

A −→ B −→ E −→ G . a shortest path from A to G — of length 3

A −→ D −→ E −→ G . another shortest path from A to G — recall the non-unicity

A −→ D −→ B −→ E −→ G . wrong: A → D → B is not minimal

A −→ D −→ B −→ E −→ I −→ H −→ G
A −→ D −→ E −→ G −→ I −→ H −→ G . non-sense turning around a circuit

A→ D → E → G → I → H → G → I → H → G . more non-sense circuit turning
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Comments on graph traversal with breadth-first search

Remark
The breadth-first search algorithm finds a shortest path from the
root of the graph to every one of its vertices, thus computing the
depths of all vertices.

Remark
This is NOT equivalent to the computation of the shortest path
between any pair of nodes of the graph.

In fact the BFS algorithm returns a minimal spanning tree.

Example
The minimal spanning tree of the previous example is the one
(whose arrows are) marked in blue.
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Spanning Tree
Definition
A spanning tree of a connected graph is a subset of edges of the
graph that connects all its vertices, and is a tree.

Remarks
A non-connected graph has no spanning tree (since trees are connected
and spanning trees must contain all vertices).
Non-unicity: A graph can have more than one spanning tree.
If all edges of a graph are also edges of a spanning tree, then the graph
coincides with its spanning tree. Therefore, any tree coincides with its
(unique) spanning tree.
A spanning tree of a connected graph can also be defined both as a
maximal set of edges that do not contain cycles, or as a minimal set of
edges connecting all vertices.
In particular, a connected graph always has a spanning tree. Moreover,
this spanning tree can be obtained by deleting edges so that each deletion
breaks a circuit (loop).
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Minimal Spanning Tree

Definition
A minimal spanning tree of a connected graph is a spanning tree
such that every path α in the spanning tree, starting at the root
vertex, has minimum length among all paths in the graph starting
at the root and ending at the same vertex as α.

Example
See the spanning tree (marked in blue) in the previous example.
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Implementation of the breadth-first search algorithm in C
The main BFS code

typedef struct { char name; unsigned short nsucc, successors[3]; } graph_node;

void graph_node_print(graph_node *Graph, unsigned short v, unsigned short d, unsigned short p){
char static head_print = 0;
if(!head_print){ head_print = 1;

fprintf(stdout, "Visit | Depth |\nOrder | found | Parent\n------|-------|-------\n"); }
fprintf(stdout, "%c (%u) |%4u |", Graph[v].name, v, d);
if(p != USHRT_MAX) fprintf(stdout, "%2c (%u)", Graph[p].name, p);
fprintf(stdout, "\n");

}

void BFS( graph_node *Graph, unsigned short order, unsigned short source ){
Queue Q = { NULL, NULL };
unsigned short depth[order], parent[order];
memset(depth, USHRT_MAX, order*sizeof(unsigned short));
enqueue(source, &Q); depth[source]=0U; parent[source] = USHRT_MAX;

while( !IsEmpty(Q) ){ register unsigned short v, i, s;
v = dequeue(&Q); graph_node_print(Graph, v, depth[v], parent[v]);
for(i=0; i < Graph[v].nsucc; i++) {

s = Graph[v].successors[i];
if(depth[s] == USHRT_MAX){ enqueue(s, &Q); depth[s] = depth[v] + 1; parent[s] = v; }

}}}

int main (void) {
graph_node GraphDem[9] = { {’A’, 2, {1,3}}, {’B’, 2, {2,4}}, {’C’, 0, {}}, {’D’, 2, {1,4}},

{’E’, 3, {2,6,8}}, {’F’, 2, {3,7}}, {’G’, 2, {5,8}}, {’H’, 1, {6}}, {’I’, 1, {7}} };

BFS(GraphDem, 9U, 0U);
}

Output: depths and
the spanning tree

Visit | Depth |
Order | found | Parent
------|-------|-------
A (0) | 0 |
B (1) | 1 | A (0)
D (3) | 1 | A (0)
C (2) | 2 | B (1)
E (4) | 2 | B (1)
G (6) | 3 | E (4)
I (8) | 3 | E (4)
F (5) | 4 | G (6)
H (7) | 4 | I (8)
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Direct assignment at declaration time as initialization.
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Implementation of the breadth-first search algorithm in C
Initializations and queue functions

#include <stdio.h>
#include <stdlib.h> // For exit() and malloc()
#include <limits.h> // For USHRT_MAX
#include <string.h> // For memset

typedef struct QueueElementstructure {
unsigned short vertex;
struct QueueElementstructure *seg;

} QueueElement;

typedef struct { QueueElement *start, *end; } Queue;
int IsEmpty( Queue Q ){ return ( Q.start == NULL ); }

int enqueue( unsigned short vert2Q, Queue *Q ){
QueueElement *aux = (QueueElement *) malloc(sizeof(QueueElement)); if( aux == NULL ) return 0;

aux->vertex=vert2Q; aux->seg=NULL;
if( Q->start ) Q->end->seg=aux; else Q->start=aux;
Q->end = aux;
return 1;

}

unsigned int dequeue( Queue *Q ){ if( IsEmpty(*Q) ) return UINT_MAX;
QueueElement *node_inicial = Q->start;
unsigned int v = node_inicial->vertex;

Q->start = Q->start->seg;
free(node_inicial);
return v;

}

The number of elements nel of the queue is not
used in this application. Hence, it is omitted.

Similarly, the function to initialise the queue is
not necessary as we use direct assignment when
declaring the queue:

Queue Q = { NULL, NULL };
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Implementation of the BFS in C: an exercise

Optional Exercise
By using the parents vector, create a procedure that writes the shortest path found by
BFS from the root to each of the nodes.

Remark
It is more compact (but more difficult) to find first the leaves
of the spanning tree, and then write the minimum paths from
the root to each of these nodes.
To compute the paths, go backwards (from children to
parents — starting at the end of the paths) and then reverse
the paths.
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Rooted graphs traversal: Depth-first search

Contents

1 The Depth-first search algorithm
2 An example
3 Comments on graph traversal with depth-first search
4 A second example (with a different root)
5 An implementation of the depth-first search algorithm in C
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Rooted graphs traversal: Depth-first search
The depth-first search algorithm for graphs
does not work as for trees, and likewise it is not similar to the
breadth-first search algorithm for graphs (page 52) with
queues replaced by stacks.

Remarks: on the depth-first search algorithm for graphs
It traverses successfully the graph “in depth” (see the example
starting on page 74) though the order of visit of the nodes
depends on the combinatorics of the graph and the order in
which adjacent nodes are expanded.
It does not compute the depth function correctly.
It correctly computes a spanning tree, although in this case it
is not necessarily minimal (since it does not calculate well the
depth function).
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The Depth-first search algorithm
Pseudocode of Depth-first search with parents memory for graphs
procedure DFS(graph G, order, root, parent[order])

visited[order] ← initialized to false . To control whether a node has been visited or not.

s ← EmptyStack
s.push(root)
parent[root] ←∞ . The root has no parent.

while (not s.IsEmpty) do
node ← s.pop
if (visited[node]) then continue . A vertex may have been placed several times in

the stack. When processing the first of these
instances the vertex is visited. After this, the re-
maining instances of the vertex must be ignored.

visited[node] ← true
visit(node)
for each adj ∈ node.successors do .

It determines the order in which the nodes are
visited, their parents, and a spanning tree.

if (not visited[adj]) then . Visited nodes do not need to be re-visited.

parent[adj] ← node
s.push(adj)

end if
end for

end while
end procedure

A node v can be placed in the stack several times
since it can be adjacent to several nodes explored but not
visited, and each of these nodes adds a copy of v to the
stack. Obviously we will only remove one of these copies
from the stack: the last one we added.

Lluís Alsedà Graphs: Definitions and Basic Algorithms General TOC 73/91



An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity)
Finding a spanning tree (not necessarily minimal)

A E D

C

F

B

Visited nodes
ordering 1

2 3 4 5 6

node A

E D F C

parent

A E D D

Stack
1 A
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An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity)
Finding a spanning tree (not necessarily minimal)

A E D

C

F

B

Visited nodes
ordering 1

2 3 4 5 6

node A

E D F C

parent

A E D D

Stack
2 E B
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An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity)
Finding a spanning tree (not necessarily minimal)

A E D

C

F

B

Visited nodes
ordering 1 2

3 4 5 6

node A E

D F C

parent A

E D D

Stack
3 D B B
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An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity)
Finding a spanning tree (not necessarily minimal)

A E D

C

F

B

Visited nodes
ordering 1 2 3

4 5 6

node A E D

F C

parent A E

D D

Stack
4 F C B B
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An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity)
Finding a spanning tree (not necessarily minimal)

A E D

C

F

B

Visited nodes
ordering 1 2 3 4

5 6

node A E D F

C

parent A E D

D

Stack
5 C B B
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An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity)
Finding a spanning tree (not necessarily minimal)

A E D

C

F

B

Visited nodes
ordering 1 2 3 4 5

6

node A E D F C
parent A E D D

Stack
6 B B B
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An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity)
Finding a spanning tree (not necessarily minimal)

A E D

C

F

B

Visited nodes
ordering 1 2 3 4 5 6
node A E D F C B
parent A E D D C

Stack
7 B B
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Comments on graph traversal with depth-first search

The depth-first search algorithm
traverses the whole graph “in depth” visiting all graph’s nodes but
it does not compute the depth function correctly.

In fact the DFS algorithm returns a spanning tree (which is not
necessarily minimal).

Example
The spanning tree of the previous example is the one (whose
arrows are) marked in blue.
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A second example of the Depth-first search algorithm
The same graph as before (the undirected graph from page 2) with a diffrent root

F

A E D

C

B

Visited nodes
ordering 1 2 3 4 5 6
node F D E B C A
parent F D E B B
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Implementation of the depth-first search algorithm in C
The main DFS code

typedef unsigned short u_short;
typedef struct { char name; u_short nsucc, successors[3]; } graph_node;
void graph_node_print(graph_node *G, u_short v, u_short p, u_short s){

if(v == s) { fprintf(stdout,
"\n\n ordering | parent\n----------|-------\n%4c (%u) |\n", G[v].name, v

); } else fprintf(stdout, "%4c (%u) | %c (%u)\n", G[v].name, v, G[p].name, p);
}

void DFS( graph_node *Graph, u_short order, u_short source ){
register u_short i;
u_short parent[order];
Stack St = NULL;
char visited[order]; memset(visited, 0, order);
push(source, &St); parent[source] = USHRT_MAX;

while(!IsEmpty(St)){ u_short node = pop(&St);
if(visited[node]) continue;
visited[node] = 1;
graph_node_print(Graph, node, parent[node], source);
for(i=0; i < Graph[node].nsucc; i++) {

u_short adj = Graph[node].successors[i];
if(!visited[adj]) { push(adj, &St); parent[adj] = node; }

}}}

int main (void) {
graph_node GrafNO[6] = { {’A’, 2, {1, 4}}, {’B’, 3, {0, 2, 4}}, {’C’, 2, {1, 3}},

{’D’, 3, {2, 4, 5}}, {’E’, 3, {0, 1, 3}}, {’F’, 1, {3}} };
DFS(GrafNO, 6U, 0U);
DFS(GrafNO, 6U, 5U);

}

Output:Traversal and
the spanning tree

ordering | parent
----------|-------

A (0) |
E (4) | A (0)
D (3) | E (4)
F (5) | D (3)
C (2) | D (3)
B (1) | C (2)

ordering | parent
----------|-------

F (5) |
D (3) | F (5)
E (4) | D (3)
B (1) | E (4)
C (2) | B (1)
A (0) | B (1)
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Implementation of the depth-first search algorithm in C
Initializations and queue functions

#include <stdio.h>
#include <stdlib.h> // For exit() and malloc()
#include <limits.h> // For USHRT_MAX
#include <string.h> // For memset

typedef struct StackElementstructure {
unsigned short vertex;
struct StackElementstructure *lower;

} StackElement;

typedef StackElement * Stack;
int IsEmpty( Stack S ){ return ( S == NULL ); }
unsigned short pop( Stack *S ){

Stack aux = *S;
unsigned short v = (*S)->vertex;

*S = (*S)->lower;
free(aux);

return v;
}

int push( unsigned short vert2S, Stack *S ){
StackElement *aux = (StackElement *) malloc(sizeof(StackElement)); if( aux == NULL ) return 0;

aux->vertex = vert2S;
aux->lower = *S;
*S = aux;
return 1;

}
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Algorithms for checking the graph connection, and
counting the number of connected components

Contents

1 Undirected graphs: how to detect the connectedness and
count the number of connected components

2 Directed graphs: weak connection
3 Directed graphs: strong connection
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Undirected graphs: how to detect the connectedness and
count the number of connected components

Algorithm: checking the connectedness on undirected graphs

1 Select a random vertex s that will be used as root.
2 Traverse the graph using BFS or DFS, taking the vertex s as root.
3 At the end of the traversal, check whether we have visited all the vertices

of the graph.
The graph is connected if and only if the traversal visits all of its vertices.
The graph, when connected, has a unique connected component.

Algorithm: counting connected components in undirected graphs
The number of connected components of an undirected graph coincides
with the number of times that the previous algorithm must be iterated (i.e. the
algorithm that checks the connection in undirected graphs), taking as a root a
vertex not visited in the previous iterations, until we have visited all vertices.

Note: As we said before, if the first time we apply the algorithm that checks the
connection in undirected graphs we visit all the vertices of the graph, the graph
is connected and therefore it has exactly one connected component.
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Directed graphs: weak connection

Obvious observation
To detect if a directed graph is weakly connected, and count its
number of weak connected components, the algorithms from the
previous page must be used after converting the graph from
directed to non-directed.

Exercise
Justify how a directed graph can be converted to undirected for
each one of the four memory models of graph representation
(explained in page 17 and subsequent pages).
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Directed graphs: strong connection

Algorithm: inefficiently checking strong connection in directed graphs
Iterate the following for each vertex s in the graph

Procedure
Scroll the graph using BFS or DFS taking s as root, and check if all
vertices of the graph have been visited.
In this case we know that there is a (oriented) path that goes from s to
every vertex of the graph.
Otherwise the graph cannot be strongly connected as it exists inaccessible
vertices from s.

In summary: a graph is strongly connected if the procedure above can be per-
formed for each vertex of the graph, visiting all other vertices at every repetition
of the procedure.
Alternatively, the first time that the previous procedure fails (i.e. inaccessible
vertices are found), we know that the graph is not strongly connected.
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Directed graphs: strong connection
An efficient check of the strong connection condition for directed
graphs is based on the following

Observation
A directed graph is strongly connected if and only if the following
two conditions are verified by every vertex s:

1 There is a (directed) path from s to each vertex of the graph.
2 For each vertex u of the graph there is a directed path from u

to s.
Note that condition (2) is equivalent to (1), if we reverse all edges
of the graph.

Exercise
Justify how the edges of a directed graph can be reversed, for each
one of the four memory models of graph representation (explained
in page 17 and subsequent pages).
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Directed graphs: strong connection
The above observation gives rise to the following
Algorithm: checking strong connection on directed graphs

1 Select a random vertex s, that we will use as root.
2 Perform a graph traversal by using BFS or DFS, taking the vertex s as

root.
3 At the end of the traversal, check whether we have visited all the vertices

of the graph.
In the negative, the graph is not strongly connected.
In the affirmative:

a Reverse all edges of the graph.
b Perform a new graph traversal by using BFS or DFS, taking

the vertex s as root.
c At the end of the traversal, check whether we have visited all

the vertices of the graph.
The graph is strongly connected if and only if all the vertices of the graph
are visited with the reversed edges.

The graph, when strongly connected, has exactly one strongly connected
component.
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Directed graphs: strong connection

Algorithm:
counting the number of strongly connected components in directed graphs
The number of strongly connected components of an undirected graph is the
number of times the previous algorithm must be iterated (that is, the algorithm
that checks the strong connection in directed graphs), taking as a root a vertex
not visited in the previous iterations, until we have visited all vertices.

Note: If the first time we apply the algorithm that checks the strong connection
in undirected graphs we visit all the vertices of the graph, the graph is connected
and therefore it has a single strongly connected component.
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