Table of Contents

Graphs: Definitions and Basic Algorithms

Lluís Alsedà

Revised and improved by Albert Ruiz
Departament de Matemàtiques
Universitat Autònoma de Barcelona
http://www.mat.uab.cat/~alseda

Version 3.54 (April, 2023)

UAB

UAB DEPARTAMENT DE MATEMÅTIQUES
(c) (1)()(2) Subject to a Creative Commons Attribution-NonCommercial

Graphs and Trees - Introduction

Contents

IntroductionA bit of history| Graphs and Trees - Introduction | $\square 1$ |
| :---: | :---: |
| Graphs and Trees - Basic Definitions | $\bigcirc 7$ |
| Connectedness in graphs | 2 |
| Memory models | 17 |
| Graph Traversal - Introduction | |
| Trees and Rooted trees | |
| Tree traversal | ${ }^{37}$ |
| Rooted graphs | 45 |
| Rooted graphs traversal: Breadth-first search | - 50 |
| Rooted graphs traversal: Depth-first search | ${ }^{71}$ |
| Algorithms for checking the graph connection connected components | |

Graphs and Trees - Introduction ${ }^{1}$

A combinatorial graph is an ordered pair $G=(V, E)$ of vertices or nodes V, and a subset $E \subset V \times V$ of the Cartesian product $V \times V$.
In the case of an undirected graph, the elements of E are called edges and the pairs $(v, w) \in E$ are considered without ordering (that is, there is an edge between $v \in V$ and $w \in V$ when $(v, w) \in E$ or $(w, v) \in E)$.
In the case of a directed or oriented graph, the elements of E are called arrows and the pairs $(v, w) \in E$ are considered with ordering (that is, there is an arrow from $v \in V$ to $w \in V$ if and only if $(v, w) \in E)$.

Graphs and Trees - Introduction

Graphs are used to represent communication networks, data organizations, computing devices, computing flows and, currently, in all disciplines from linguistics to sociology and biology, to mention a highly restricted list of examples.

A little bit of history

The article written by Leonhard Euler on the seven bridges of Königsberg and published in 1736 is considered the first document in the history of graph theory. In this work, as well the one written by Vandermonde on the knight problem, they studied what today is known as the Euler Formula relating the number of edges, vertices, and faces of a convex polyhedron, that is at the origin of the topology.

[^0]
Contents

Order of a graph

The order of a graph is the number of vertices $|V|$.
Example: The graphs on page 2 have order 6 and 5 respectively.
(1) Order and Size
(2) Valence and Degree
(3) Leaf vertex
(0) Paths and Loops

Size of a graph
The size of a graph is the number of edges or arrows $|E|$.
Example: The graphs on page 2 have size 7 and 6 respectively.

Degree of a vertex

The degree or valence is the number of edges reaching or leaving the vertex. If an edge connects a vertex with itself it counts twice

Example: The vertex D of the undirected graph of page 2 has valence 3 while vertex E of the directed graph of the same page has valence 4.

Degree of a vertex - Directed case

The in-degree is the number of edges that reach the vertex. The out-degree is the number of edges leaving the vertex.

Example: The vertex E of the directed graph of page 2 has in-degree 3 and out-degree 1 .

Basic definitions - Leaf and Branching vertices

Leaf vertex

The vertices belonging to a single edge (i.e. the vertices of valence 1) are called terminal or leaf.

Example: The only leaf vertex of the undirected graph of page 2 is vertex \mathbf{F}, and the only leaf of the directed graph of the same page is vertex D .

Branching vertex

A branching vertex is any vertex with valence greater than two
Example: The branching vertices of the undirected graph of page 2 are B, D and E , and the branching vertices of the directed graph of the same page are B and E .

Path

A path is a sequence of edges connected linearly. If the graph is directed the end of an arrow should be the beginning of the next one.

The length of a path is its number of edges.
Example: ($\mathrm{F}, \mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{A}$) is a path length 4 of the undirected graph from page 2, while $\mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{E} \rightarrow \mathbf{E} \rightarrow \mathbf{E}$ is a path of length 6 of the oriented graph of the same page.

Loop or Circuit

A loop or circuit is a closed path. That is, the end of the last edge is the beginning of the first one.

Example: $(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{B})$ is a length 4 loop of the undirected graph in page 2, while $\mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$ is a length 3 loop of the oriented graph of the same page.

Connectedness in undirected graphs

Connectedness

An undirected graph is connected when there is a path between each pair of vertices (i.e., there are no inaccessible vertices).

Connected Component

A connected component of an undirected graph is a maximal connected subgraph.
Note that each vertex and each edge belongs to a single connected component. \qquad

Example: An unconnected graph with two connected components

Contents

(1) Connectedness in undirected graphs
(2) Connectedness in directed graphs

Connectedness in graphs

Connectedness in directed graphs

Semi-connection

A directed graph is called unilaterally connected or semi-connected when, given any two vertices u, v, it contains a path from u to v or a path from v to u.

Strong connection

A directed graph is called strongly connected when, given any two vertices u, v, it contains a path from u to v and a path from v to u. A strongly connected component is a strongly connected maximal subgraph.

Strongly connected components

Contents

List representations - Adjacency ListList representations - Incidence List
(0) Matrix representations - Adjacency MatrixMatrix representations - Incidence Matrix

Example: a directed graph which is not strongly connected, with three strongly connected components.

Lluís Alsedà Graphs: Definitions and Basic Algorithms

Memory models

There are different ways to store graphs in memory.
The used data structure depends on the structure of the graph and also on the algorithm used to manipulate the graph. There are two basic types of representations: lists and matrix structures.

For scattered graphs (with few edges) the representation as a list structure is often preferred as it has smaller memory requirements.

List representations - Adjacency List

Adjacency list

The vertices are stored as structures, and each vertex stores a list of adjacent vertices. This data structure allows the storage of additional data about vertices (e.g. latitude and longitude in the case of geographic data).

An example in C- The undirected graph of page 2
typedef struct \{
char name; Made with vectors of fixed size.
unsigned short nsucc;
unsigned short successors [3];
\} node_simple;
node_simple GrafNO[6]=\{\{'A', 2, \{1, 4\}\},
\{'B', $3,\{0,2,4\}\}$,
\{'C', 2, \{1, 3\}\},
\{'D', 3, \{2, 4, 5\}\},
\{'E', 3, \{0, 1, 3\}\},
$\left.\left\{{ }^{\prime} F^{\prime}, 1,\{3\}\right\}\right\}$;

Lluís Alsedà Graphs: Definitions and Basic Algorithms
©O®O - General TOC
19/91

Incidence list

Vertices and edges are stored as structures. Each edge stores its incident vertices. In addition, optionally, each vertex can store its incident edges. This data structure allows the storage of additional data on vertices and edges (e.g. names, weights, ...).

An example in C-The directed graph of page 2

typedef struct \{
char name [11];
double lat, lon;
$\}$ node;
node llnod [5] = \{
\{"Home", 41.4833, 2.1333\},
\{"Square", 41.4667, 2.0833\},
\{"Crossing", 41.3818, 2.1685\},
\{"Fountain", 40.41925, -3.69327\},
\{"House", 42.5, 1.6\}\};
typedef struct \{
unsigned short begin;
unsigned short end;
\} dir_edge;
unsigned short graph_size = 6;
dir_edge edges [graph_size] = \{ $\{0,1\},\{1,2\},\{2,0\}$,
$\{1,4\},\{3,4\},\{4,4\}$ \};

List representations - Adjacency List

Another example: the directed graph of page 2
typedef struct \{
char name[11];
Made with vectors of fixed size.
double lat, lon; It is more inefficient but simpler.
unsigned short nsucc;
unsigned short successors[2];
$\}$ node;
node nodeslist [5] = \{\{"Home", 41.4833, 2.1333, 1, \{1\}\}, \{"Square", 41.4667, 2.0833, 2, \{2, 4\}\} \{"Crossing", 41.3818, 2.1685, 1, \{0\}\}, \{"Fountain", 40.41925, -3.69327, 1, \{4\}\}, \{"House", 42.5, 1.6, 1, \{4\}\}\};

nodeslist[0]	nodeslist[1]	nodeslist[2]	nodeslist[3]	nodeslist[4]

Lluís Alsedà Graphs: Definitions and Basic Algorithms
@@®® - General TOC

Matrix representations - Adjacency Matrix

Adjacency matrix

It is an array (two-dimensional - with two indexes), in which the rows represent the starting vertices and the columns represent the final ones. The entry i, j in the array stores the number of arrows that start at i and end at j. In an undirected graph this matrix is symmetric. Additional data on edges and vertices must be stored apart.

Incidence matrix

It is a two-dimensional boolean matrix, in which the rows represent the vertices and the columns represent the edges. Its entries indicate if the vertex in a row is incident at the edge of a column. For directed graphs
+1 indicates that the vertex is the origin of the edge, and -1 indicates that the vertex is the end of the edge.

Again the directed graph of page 2
The edges are numbered as follows:
$\alpha_{1}=1 \rightarrow 2, \alpha_{2}=2 \rightarrow 3, \alpha_{3}=3 \rightarrow 1, \alpha_{4}=2 \rightarrow 5, \alpha_{5}=4 \rightarrow 5$.
$\left(\begin{array}{rrrrr}1 & 0 & -1 & 0 & 0 \\ -1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1\end{array}\right)$

Note that this graph cannot be represented in this way: Indeed, the edge $5 \rightarrow 5$ cannot be represented.

Graph traversal — Introduction

Since a graph is a self-referential (recursively defined) data structure, the traversal can be implemented very naturally and clearly by recursivity (in this case, deferred nodes are implicitly stored in the stack).

Observations/problems of the depth notion

- It is not an absolute notion. It clearly depends on what the source node is.
- As we will see, the definition is simple and canonical (independent of the path taken) when there is a unique path between the source node and each of the other nodes.
- The first problem is easy to solve: just specify the source node.
- The second problem is more difficult to solve. We will do this in two stages: initially we will deal with the easy case of trees (for which, given two nodes, there is a single path that connects them). Then it will be easier to deal with the general case of an arbitrary graph.

Trees ${ }^{2}$ - Uniquely arcwise connected

Definition

- A tree is a connected graph without loops (circuits).

Equivalently:

- A tree is a uniquely arcwise connected graph: Any two vertices are connected by a single path.

Properties

- Adding an arbitrary edge to a (non oriented) tree forms a loop.
- Deleting any edge the tree gets disconnected.
- A tree with n vertices has exactly $n-1$ edges (the Euler characteristic is equal to 1).

${ }^{2}$ http://en.wikipedia.org/wiki/Tree_(graph_theory)

Rooted trees: Leaf and Branching vertices

Leaf and Branching vertices

For rooted trees, the leaf and branching vertices are usual leaf or branching vertices which are different from the root.

Example: the rooted tree from the previous page

The leaves are the vertices $4,7,8$ and 9 .
The vertices 2 and 5 are branching.

Note: The valence of a vertex does not depend on the root node
Therefore, the leaves and branching vertices of a tree are independent of the root node except for the root node itself (which abandons its character when designated root).

Rooted trees: Fixing the source node

Rooted trees

A rooted tree is a tree in which one vertex has been designated to be the root or source node.

Example: Vertices 4, 7, 8, and 9 are leaves or end-nodes.
Vertices 2 and 5 are branching nodes.

Definition: Depth of a vertex

In a rooted tree the depth of a vertex is defined as the distance from this node to the root.
Distance: The distance between two nodes is measured as the length of the unique path that connects them (remember that a tree is uniquely arcwise connected)
Obviously the distance from a node to itself is 0
Note: The root depth is 0 .
Example: Depths of the rooted tree of page 28:

| Depth | $\mathbf{0}$ $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Rooted trees - Depth of a vertex

Important Note (to remember)

The depths of the vertices of a rooted tree depend on the root.

Depths of the example on the right

(compare with the example above)

Depth	0		2	4		5
ices						7

Remarks:
When we switch the root from node 1 to 6 :

- the only vertex that keeps the same
depth is the node 3.
- leaves and terminal vertices do not vary (since both roots have valence 2)

Example: The tree in page 28
with vertex 6 as root

Luís Alsedà Graphs: Definitions and Basic Algorithms
@®®® - General TOC
Rooted trees - Tree depth

Definition
The depth of a rooted tree is defined as the maximum depth of the vertices (as above, it depends on the chosen root).

Example

- The rooted tree 1 on page 28 has depth 3 .
- The same root tree 6 on page 31 has depth 5 .

Rooted trees

Depth as vertex ordering
Note (explaining a previous comment)

A rooted tree defines a partial ordering in the set of vertices in the direction of increasing depth
(see the rooted trees on pages 28 and 31).

The root is the smallest vertex, and the leaves are the maximum ones.

Rooted Trees - Parents and Children

Definition: parent

Given a rooted tree and a vertex v of depth $p>0$ (i.e. v is not the root), the parent of v is defined as the unique vertex adjacent to v of depth $p-1$. Equivalently, the parent of v is the node adjacent to v in the unique path that connects the root with v. Obviously the root has no parent (in fact it is the only vertex that has no parent).

Example: Parents of the tree in page 28

vertices	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
even	-	1	1	2	2	3	5	5	6

| Example: Parents of the tree in page 31
 vertices $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$
 $\mathbf{7}$ $\mathbf{8}$ $\mathbf{9}$
 even 3 1 6 2 2 -
 5 5 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Lluís Alsedà Graphs: Definitions and Basic Algorithms

Tree traversal

Contents

In depth: depth-first search - pre-order
(2) In depth: depth-first search - in-order

- In depth: depth-first search - post-orderBy levels: breadth-first search

Definition

An n-ary tree is a rooted tree for which each vertex has as up to n children.

- 2-ary trees are called binary, and
- 3-ary trees are called ternary.

Example

The rooted trees in pages 28 and 31 are binary trees.


```
Tree traversal }\mp@subsup{}{}{3}\mathrm{ in depth: depth-first search
pre-order
```


Description

This search algorithm first visits (lists) every traversed node. Then, it moves towards the left child and, upon the second traversal of the node (uphill), it moves towards the right child.

Visiting order:
F, B, A, D, C, E, G, I, H

Tree traversal in depth: depth-first search in-order

Description

This search algorithm first moves towards the left child of every traversed node. Afterwards, upon the second traversal of the node (uphill), it visits the node and moves to the right child.

Visiting order: A, B, C, D, E, F, G, H, I

```
Tree traversal in depth: depth-first search
post-order
```


Description

This search algorithm first moves towards the left child of every traversed node. Afterwards, upon the second traversal of the node (uphill), it moves to the right child. Finally, at the third traversal of the node (uphill but coming from the right child), the node is visited.

Visiting order:
A, C, E, D, B, H, I, G, F

Tree traversal in depth: depth-first search post-order - pseudocode	
Algorithm: iterative post-order	
Algorithm: recursive post-order	```procedure ITERATIVEPOSTORDER(root) s}\leftarrow\mathrm{ EmptyStack v}\leftarrow\mathrm{ root; lastV }\leftarrow null peek retrieves the information con- while (true) do tained in the top element of the stack (the last entered) but it does not reif (\(v \neq\) null \()\) then move this item from the stack, as pop does. s.push(v); \(v \leftarrow\) v.left; does.```
```procedure POSTORDER(v) if (v=null) then return end if postorder(v.left) postorder(v.right) visit(v) end procedure```	else   if (s.IsEmpty) then return; end if   peekv $\leftarrow$ s.peek   if (peekv.right $\neq$ null and last $V \neq$ peekv.right) then $v \leftarrow$ peekv.right   else   visit(peekv); lastV $\leftarrow$ s.pop;   end if   end if   end while   end procedure

Lluís Alsedà Graphs: Definitions and Basic Algorithms

## Rooted graphs

## Contents

Rooted graphs: Specifying the source node
An example of a rooted graph
Depths in rooted graphs
Rooted graphs - Depth properties

## Tree traversal by levels: <br> breadth-first search

## Description

The nodes are listed by depth level, giving priority to the left.


Visiting order:
F, B, G, A, D, I, C, E, H

Algorithm: breadth-first search (iterative)
procedure BreadthFirstSEARCH(root) $\mathrm{q} \leftarrow$ EmptyQueue
q.enqueue(root)
while (not q.IsEmpty) do node $\leftarrow$ q.dequeue visit(node)
if (node.left $\neq$ null) then q.enqueue(node.left)
if (node.right $\neq$ null) then q.enqueue(node.right)
end if
end while
end procedure

Rooted graphs

A rooted graph (also called a pointed graph or a flow graph) is a graph in which one vertex has been distinguished as the root.

## Definitions

A leaf of a rooted graph is any vertex of valence 1 different from the root. A branching vertex is any vertex with valence greater than two that is different from the root.

Remark: The valence of a vertex does not depend on the root
Therefore, the leaves and branching vertices of a graph are independent of the root node except the root node itself (which abandons its leaf or branching character when it is designated to be the root).

## An example of a rooted graph (with root A)



## Examples on the definitions

This rooted graph has the vertices $J$ and $K$ as leaves, and $B, D$, $E, F, G, H$ and $I$ as branching vertices.

## Depths in rooted graphs

## Definition: Depth of a vertex

In a rooted graph the depth of a vertex is defined as the minimum distance from the root to the selected vertex.

## Minimum distance:

Given two vertices $\alpha$ and $\beta$, the minimum distance from $\alpha$ to $\beta$ is measured as the shortest length of a path from $\alpha$ to $\beta$ (note that in a graph there may be more than one of these paths there may even be more than one path of minimum length from $\alpha$ to $\beta$ ).
Obviously the distance of a node to itself is 0 .
On the other hand, in a graph there may be no path from $\alpha$ to $\beta$. In this case the distance from $\alpha$ to $\beta$ is $\infty$ by convention.

## Definition: Depth of a rooted graph

The depth of a rooted graph is defined as the maximum depth of the vertices.

Lluís Alsedà Graphs: Definitions and Basic Algorithms

## Rooted graphs traversal: Breadth-first search

## Contents

(1) Rooted graphs traversal and the depth function: breadth-first search algorithm
(2) An example
(3) Comments on the depth function for rooted graphs
(4) Comments on graph traversal with breadth-first search
(3) Spanning Trees and Minimal Spanning Trees
(6) An implementation of the breadth-first search algorithm in C

- In a connected undirected rooted graph all nodes have finite depth. However, on a directed rooted graph (even if it is connected) there might exist nodes with infinite depth.
From the above definitions and examples it follows:
- The depth of the root is 0 .
- The depths of the vertices of a rooted graph depend on the chosen root.
- Therefore, the depth of a rooted graph depends on the root
- The computation of the depth of a rooted graph (and therefore of the depths of all its vertices) requires the computations of the minimum distances (shorter paths) from the root to each node.

Graph traversal or graph search refers to the process of visiting each vertex in a graph. Such traversals are classified by the order in which the vertices are visited.

A breadth-first search (BFS) is a technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process.

This algorithm finds a shortest path from the root of the graph to every one of its vertices, thus computing the depths of all vertices

## The Breadth-first search algorithm

```
Pseudocode of Breadth-first search with parents memory for graphs
 procedure BFS(graph G, order, source, parent[order])
 depth[order] \(\leftarrow\) initialized to \(\infty \quad \triangleright \mid\) To store the depths of all nodes, and to control
 \(\mathrm{q} \leftarrow\) EmptyQueue
 To store the depths of all nodes, and to cont
 \(\triangleright\) Initialization
 q.enqueue(source)
 \(\triangleright\) Initialization
 depth[source] \(\leftarrow 0\)
 parent[source] \(\leftarrow \infty\)
 \(\triangleright\) source has depth 0 and it has been already enqueued \((\neq \infty)\)
 while (not q.IsEmpty) do
 node \(\leftarrow\) q.dequeue
 for each adj \(\in\) node.successors do
 if (depth[adj] \(=\infty\)) then \(\quad \triangleright\) adj has not been enqueued (visited) previous/ly
 q.enqueue \(\leftarrow\) adj
 depth[adj] \(\leftarrow\) depth[node] \(+\left.1 \quad\right|_{\text {depth }} ^{\text {node id }}\) al is derivy visited (depth[node] \(\neq \infty\))
 from depth[node]
 parent[adj] \(\leftarrow\) node
 \(\triangleright\) Setting parent as the node arriving to adj
 end if
 end for
 end while
 end procedure
```

An example of the Breadth-first search algorithm
Computing a minimal spanning tree


$71$

An example of the Breadth－first search algorithm
Computing a minimal spanning tree


Q	A	B	D	C	E
depth	0	1	1	2	2
parent	nil	A	A	B	B

Lluís Alsedà Graphs：Definitions and Basic Algorithms
An example of the Breadth－first search algorithm
Computing a minimal spanning tree


Q	A	$B$	$D$	$C$	E
epth	0	1	1	2	2
nil	$A$	$A$	$B$	$B$	

An example of the Breadth－first search algorithm
Computing a minimal spanning tree


Q	A	B	D	C	E
depth	0	1	1	2	2
parent	nil	A	A	B	B

Lluís Alsedà Graphs：Definitions and Basic Algorithms
＠®®®－General TOC
An example of the Breadth－first search algorithm
Computing a minimal spanning tree


Q	A	B	D	C	E	G	I
0	1	1	2	2	3	3	


depth	0	1	1	2	2	3	3
parent	nil	A	A	B	B	E	E



Q	A	B	D	C	E	G	I	F
depth	0	1	1	2	2	3	3	4
parent	nil	A	A	B	B	E	E	G

An example of the Breadth-first search algorithm
Computing a minimal spanning tree


Q	A	B	D	C	E	G	I	F	H
depth	0	1	1	2	2	3	3	4	4
parent	nil	A	A	B	B	E	E	G	I

An example of the Breadth-first search algorithm
Computing a minimal spanning tree


Q	A	B	D	C	E	G	I	F	H
depth	0	1	1	2	2	3	3	4	4
parent	nil	A	A	B	B	E	E	G	I

An example of the Breadth-first search algorithm
Computing a minimal spanning tree


Q A B D C E G I F H

depth	0	1	1	2	2	3	3	4	4
parent									

## An example of the Breadth-first search algorithm

Computing a minimal spanning tree


Q	A	B	D	C	E	G	I	F	H
depth	0	1	1	2	2	3	3	4	4
parent	nil	A	A	B	B	E	E	G	I

## Comments on the depth function for rooted graphs

## All depths

The depth of every node in the rooted graph of the previous example is listed in the table, and included in the graph itself (the number at the left of every node's box).

The depth of the whole graph is 4 .

Example: Why the depth of node $G$ in the above graph is 3
Recall that in a rooted graph the depth of a vertex is defined as the minimum distance from the root to the selected vertex. So, let us write some of the paths from $A$ to $G$ in the above graph.

- $A \longrightarrow B \longrightarrow E \longrightarrow G$
$\triangleright$ a shortest path from $A$ to $G$ - of length 3
$A \longrightarrow D \longrightarrow E \longrightarrow G$
$\triangleright$ another shortest path from $A$ to $G-$ recall the non-unicity
- $A \longrightarrow D \longrightarrow B \longrightarrow E \longrightarrow G$
wrong: $A \rightarrow D \rightarrow B$ is not minimal
- $A \longrightarrow D \longrightarrow B \longrightarrow E \longrightarrow I \longrightarrow H \longrightarrow G$
- $A \longrightarrow D \longrightarrow E \longrightarrow G \longrightarrow I \longrightarrow H \longrightarrow G$
$\square$ non-sense turning around a circuit
- $A \rightarrow D \rightarrow E \rightarrow G \rightarrow I \rightarrow H \rightarrow G \rightarrow I \rightarrow H \rightarrow G \quad \triangleright$ more non-sense circuit turning

Lluís Alsedà Graphs: Definitions and Basic Algorithms
@ロ®® General TOC

## Spanning Tree

## Definition

A spanning tree of a connected graph is a subset of edges of the graph that connects all its vertices, and is a tree

Remarks

- A non-connected graph has no spanning tree (since trees are connected and spanning trees must contain all vertices).
- Non-unicity: A graph can have more than one spanning tree.
- If all edges of a graph are also edges of a spanning tree, then the graph coincides with its spanning tree. Therefore, any tree coincides with its (unique) spanning tree.
- A spanning tree of a connected graph can also be defined both as a maximal set of edges that do not contain cycles, or as a minimal set of edges connecting all vertices.
- In particular, a connected graph always has a spanning tree. Moreover this spanning tree can be obtained by deleting edges so that each deletion breaks a circuit (loop).


## Minimal Spanning Tree

## Definition

A minimal spanning tree of a connected graph is a spanning tree such that every path $\alpha$ in the spanning tree, starting at the root vertex, has minimum length among all paths in the graph starting at the root and ending at the same vertex as $\alpha$.

## Example

See the spanning tree (marked in blue) in the previous example.

## Implementation of the breadth-first search algorithm in C <br> Initializations and queue functions

```
#include <stdio.h>
#include <stdlib.h> // For exit() and malloc()
#include <limits.h> // For USHRT_MAX
#include <string.h> // For memset
typedef struct QueueElementstructure {
 unsigned short vertex;
 unsigned short vertex;
} QueueElement;
typedef struct { QueueElement *start, *end; } Queue;
typedef struct { QueueELement *start, *end; } Queue;
int enqueue(unsigned short vert2Q, Queue *Q){
```

The number of elements nel of the queue is not
used in this application. Hence, it is omitted. Similaty for Similarly, the function to initialise the queue is
not necessary as we use direct assignment not necessary as
declaring the queue: Queue $\mathrm{Q}=\{$ NULL, NULL \};

```
QueueElement *aux = (QueueElement *) malloc(sizeof(QueueElement)); if(aux == NULL) return 0;
 aux->vertex=vert2Q; aux->seg=NULL
 if(Q->start) Q->end->seg=aux; else Q->start=aux;
 if(Q->start) Q->end->seg=aux; else Q->start=aux;
 return 1;
}
unsigned int dequeue(Queue *Q){ if(IsEmpty (*Q)) return UINT_MAX;
 unsigned int v = node_inicial->vertex;
 Q->start = Q->start->seg
 M->start = Q->start->
 return v;
}
```


## Implementation of the breadth-first search algorithm in C

 The main BFS code```
typedef struct { char name; unsigned short nsucc, successors[3]; } graph_node;
void graph_node_print(graph_node *Graph, unsigned short v, unsigned short d, unsigned short p){
    har static head_print = 0;
        fprintf(stdout, "Visit | Depth \\nOrder | found | Parent\n------|-----------------\n"); }
        printf(stdout, "%c(%u) 1%4u |", Graph[v].name, v, d);
        f(p != USHRT_MAX) fprintf(stdout, "%2c (%u)",Graph [p].name, p);
        fprintf(stdout, "\n"); Direct assignment at declaration time as initialization
void BFS( graph_node *Graph, unsigned snort order, unsigned short source ) {
    Queue Q = { NULL, NULL };
    unsigned short depth[order], parent [order]
    memset(depth, USHRT_MAX, order*sizeof(unsigned short))
    enqueue(source, &Q); depth[source]=OU; parent [source] = USHRT_MAX,
    while( !IsEmpty(Q) ){ register unsigned short v, i, s
        v = dequeue(&QQ); graph_node_print(Graph, v, depth[v], parent[v]);
            for(i=0; i < Graph[v].nsucc; i++)
            s = Graph[v].successors[i];
    }}}
    int main (void) {
```



```
        {'E', 3, {2,6,8}},{'F', 2, {3,7}},{'G', 2, {5,8}},} {'H', 1,{6}},{'I', 1, {7}}}}
        BFS(GraphDem, 9U, OU);
Lluís Alsedà Graphs: Definitions and Basic Algorithms

\section*{Implementation of the BFS in C: an exercise}

\section*{Optional Exercise}

By using the parents vector, create a procedure that writes the shortest path found by BFS from the root to each of the nodes.

\section*{Remark}
- It is more compact (but more difficult) to find first the leaves of the spanning tree, and then write the minimum paths from the root to each of these nodes.
- To compute the paths, go backwards (from children to parents - starting at the end of the paths) and then reverse the paths.

\section*{Rooted graphs traversal: Depth-first search}

\section*{Contents}

The Depth-first search algorithm
(2) An example
(3) Comments on graph traversal with depth-first search
(9) A second example (with a different root)An implementation of the depth-first search algorithm in C

\section*{Rooted graphs traversal: Depth-first search}

\section*{The depth-first search algorithm for graphs}
does not work as for trees, and likewise it is not similar to the breadth-first search algorithm for graphs (page 52) with queues replaced by stacks.

\section*{Remarks: on the depth-first search algorithm for graphs}
- It traverses successfully the graph "in depth" (see the example starting on page 74) though the order of visit of the nodes depends on the combinatorics of the graph and the order in which adjacent nodes are expanded.
- It does not compute the depth function correctly.
- It correctly computes a spanning tree, although in this case it is not necessarily minimal (since it does not calculate well the depth function).

\section*{The Depth-first search algorithm}

Pseudocode of Depth-first search with parents memory for graphs
procedure DFS(graph G, order, root, parent[order])
visited[order] \(\leftarrow\) initialized to false \(\triangleright\) To control whether a node has been visited or not. \(\mathrm{s} \leftarrow\) EmptyStack
s.push(root)
\(\triangleright\) The root has no paren
while (not s.IsEmpty) do
node \(\leftarrow\) s.pop
if (visited[node]) then continue \(\left.\triangleright\right|^{A}\) vertex may have been placed several times in
visited[node] \(\leftarrow\) true \(\quad \begin{aligned} & \text { the stack. When processing the first of these } \\ & \text { instances the vertex is visited. After this, the re- }\end{aligned}\)
visit(node) \(\mid\) maining instances of the vertex must be ignored.
for each adj \(\in\) node.successors do \(\left.\triangleright\right|_{l} ^{1 t \text { determines the order in which the nodes are }}\) visited, their parents, and a spanning tree
if (not visited[adj]) then \(\quad\)\begin{tabular}{|c}
\(\left\lvert\, \begin{array}{l}\text { visited, their parents, and a spanning tree. } \\
\triangleright \text { Visited nodes do not need to be revisited }\end{array}\right.\) \\
\hline
\end{tabular} parent[adj] \(\leftarrow\) node
s.push(adj)
end if
end for A node \(v\) can be placed in the stack several times
end while since it can be adjacent to several nodes explored but not end procedure
visited, and each of the stack. Obviously we will only remove one of these copies from the stack: the last one we added

An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity) Finding a spanning tree (not necessarily minimal)


Stack A
\begin{tabular}{|c|c|}
\hline An example of the Depth-first search algorithm & \\
\hline The undirected graph from page 2 (with vertices labeled with capital letters for clarity) Finding a spanning tree (not necessarily minimal) & The undirected graph from page 2 (with vertices labeled with capital letters for clarity) Finding a spanning tree (not necessarily minimal) \\
\hline  &  \\
\hline  &  \\
\hline \begin{tabular}{l}
An example of the Depth-first search algorithm \\
The undirected graph from page 2 (with vertices labeled with capital letters for clarity) Finding a spanning tree (not necessarily minimal)
\end{tabular} & \begin{tabular}{l}
An example of the Depth-first search algorithm \\
The undirected graph from page 2 (with vertices labeled with capital letters for clarity) Finding a spanning tree (not necessarily minimal)
\end{tabular} \\
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}

An example of the Depth-first search algorithm
The undirected graph from page 2 (with vertices labeled with capital letters for clarity) Finding a spanning tree (not necessarily minimal)

\begin{tabular}{|l|ccccc|}
\hline \multicolumn{6}{|c|}{ Visited } \\
\hline ordering & 1 & 2 & 3 & 4 & 5 \\
node & A & E & D & F & C \\
parent & & A & E & D & D \\
\hline
\end{tabular}

\section*{Stack \\ B B B}

Lluís Alsedà Graphs: Definitions and Basic Algorithms
@OQO - General TOC 79/91

\section*{Comments on graph traversal with depth-first search}

The depth-first search algorithm
traverses the whole graph "in depth" visiting all graph's nodes but it does not compute the depth function correctly.

In fact the DFS algorithm returns a spanning tree (which is not necessarily minimal).

A second example of the Depth-first search algorithm
The same graph as before (the undirected graph from page 2) with a diffrent root

\section*{Example}

The spanning tree of the previous example is the one (whose arrows are) marked in blue.



Stack

Lluís Alsedà Graphs: Definitions and Basic Algorithms
\[
\begin{array}{l|cccccc}
\text { ardering } & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { node } & \mathbf{A} & \mathbf{E} & \mathbf{D} & \mathbf{F} & \mathbf{C} & \mathbf{B}
\end{array}
\]
parent

> Visited nodes
> ordering 1 \begin{tabular}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}
> node
> parent \begin{tabular}{lllll} 
& \(F\) & \(D\) & \(E\) & \(B\) \\
\hline
\end{tabular}

Lluís Alsedà Graphs: Definitions and Basic Algorithms
@ல®® \(\quad\) General TOC
32/91

Implementation of the depth-first search algorithm in C
The main DFS code
typedef struct \{ char name; u_short nsucc, successors [3]; \} graph_node;
\(\underset{\text { void graph_node_print (graph_node }}{\text { if }(\mathrm{v}==\text { s }) \text {, } \mathbf{u}_{\text {_short }} \text { v, u_short p, u_short s) \{ }}\)
if( \(\mathrm{v}==\mathrm{s}\) ) \{ fprintf(stdout,
); \} else fprintf(stdout, "\% \(\% \mathrm{c}(\%)\) | \(\% c(\%) \backslash \mathrm{n} ", \mathrm{G}[\mathrm{v}]\).name, \(\mathrm{v}, \mathrm{G}[\mathrm{p}]\).name, p\()\);

vid DFS( graph_node *Graph, u_short order, u_short source ) Output:Traversal and
the spanning tree
register u_short i;
Stack St = NULL;
char visited[order]; memset(visited, 0, order)
-
while(!IsEmpty(St))\{ u_short node \(=\) pop(\&St);
if (visited[node]) continue;
visited[node] \(=1\);
graph_node_print (Graph, node, parent [node], source) ;
for (i=0; \(i<\operatorname{Graph}[\) node \(]\) nsucc;
or ( \(\mathrm{i}=0\); i < Graph[node]. nsucc; i++) \{


\}\}\}
t main (void) \{
graph_node GrafNo[6] \(=\left\{\right.\) \{ \(\left.^{\prime} A^{\prime}, 2,\{1,4\}\right\},\left\{B^{\prime}, 3,\{0,2,4\}\right\},\left\{C^{\prime}, 2,\{1,3\}\right\}\) DFS(GrafNo, \(6 \mathrm{U}, \mathrm{oU}\) ) ; \(\left.\left.{ }^{\prime} \mathrm{D}^{\prime}, 3,\{2,4,5\}\right\},\left\{{ }^{\prime}{ }^{\prime}, 3,\{0,1,3\}\right\},\{1,\{3\}\}\right\}\) DFS(GrafNo, 60, 00 )
DFS(GrafNo, \(6 \mathrm{U}, 5 \mathrm{~s})\)

\section*{Implementation of the depth-first search algorithm in C}

Initializations and queue functions
\#include <stdio.h>
\#include <stdlib.h> // For exit() and malloc()
\#include <limits.h> // For USHRT_MAX
\#include <string.h> // For memset
typedef struct StackElementstructure
unsigned short vertex,
struct StackElementstructure *lower;
\} StackElement;
typedef StackElement * Stack;
int IsEmpty (Stack S ) \{ return ( \(\mathrm{S}==\) NULL ) ; \}
unsigned short pop( Stack \(* S\) )
Stack aux \(=* S\)
unsigned short \(v=(* S)->\) vertex ,
*S \(=(* S)\)->lower;
free (aux);
\} return v;
int push( unsigned short vert2S, Stack *S ) \{
StackElement *aux = (StackElement *) malloc(sizeof(StackElement)); if(aux == NULL ) return 0;
aux->vertex \(=\) vert2S;
aux->lower \(=*\);
\(*\) S \(=\) aux;
return 1;

Lluís Alsedà Graphs: Definitions and Basic Algorithms

\section*{Algorithms for checking the graph connection, and counting the number of connected components}

\section*{Contents}
(1) Undirected graphs: how to detect the connectedness and count the number of connected components
(2) Directed graphs: weak connection
© Directed graphs: strong connection

Undirected graphs: how to detect the connectedness and count the number of connected components

Algorithm: checking the connectedness on undirected graphs
(1) Select a random vertex \(s\) that will be used as root.
(2) Traverse the graph using BFS or DFS, taking the vertex \(s\) as root.
(3) At the end of the traversal, check whether we have visited all the vertices of the graph.

The graph is connected if and only if the traversal visits all of its vertices. The graph, when connected, has a unique connected component.

\section*{Algorithm: counting connected components in undirected graphs}

The number of connected components of an undirected graph coincides with the number of times that the previous algorithm must be iterated (i.e. the algorithm that checks the connection in undirected graphs), taking as a root a vertex not visited in the previous iterations, until we have visited all vertices.

Note: As we said before, if the first time we apply the algorithm that checks the connection in undirected graphs we visit all the vertices of the graph, the graph is connected and therefore it has exactly one connected component.

\section*{Directed graphs: weak connection}

\section*{Obvious observation}

To detect if a directed graph is weakly connected, and count its number of weak connected components, the algorithms from the previous page must be used after converting the graph from directed to non-directed.

\section*{Exercise}

Justify how a directed graph can be converted to undirected for each one of the four memory models of graph representation (explained in page 17 and subsequent pages).

\section*{Directed graphs: strong connection}

Algorithm: inefficiently checking strong connection in directed graphs Iterate the following for each vertex \(s\) in the graph

\section*{Procedure}

Scroll the graph using BFS or DFS taking \(s\) as root, and check if all vertices of the graph have been visited.
In this case we know that there is a (oriented) path that goes from \(s\) to every vertex of the graph.
Otherwise the graph cannot be strongly connected as it exists inaccessible vertices from \(s\).

In summary: a graph is strongly connected if the procedure above can be performed for each vertex of the graph, visiting all other vertices at every repetition of the procedure.
Alternatively, the first time that the previous procedure fails (i.e. inaccessible vertices are found), we know that the graph is not strongly connected.

\section*{Directed graphs: strong connection}

The above observation gives rise to the following
Algorithm: checking strong connection on directed graphs
Select a random vertex \(s\), that we will use as root.
(2) Perform a graph traversal by using BFS or DFS, taking the vertex \(s\) as root.
(3) At the end of the traversal, check whether we have visited all the vertices of the graph.
In the negative, the graph is not strongly connected
In the affirmative:
- Reverse all edges of the graph.
(b) Perform a new graph traversal by using BFS or DFS, taking the vertex \(s\) as root
c At the end of the traversal, check whether we have visited all the vertices of the graph.
The graph is strongly connected if and only if all the vertices of the graph are visited with the reversed edges.

The graph, when strongly connected, has exactly one strongly connected component.

\section*{Directed graphs: strong connection}

\section*{Algorithm:}
counting the number of strongly connected components in directed graphs
The number of strongly connected components of an undirected graph is the number of times the previous algorithm must be iterated (that is, the algorithm that checks the strong connection in directed graphs), taking as a root a vertex not visited in the previous iterations, until we have visited all vertices.

Note: If the first time we apply the algorithm that checks the strong connection in undirected graphs we visit all the vertices of the graph, the graph is connected and therefore it has a single strongly connected component.```


[^0]:    ${ }^{2}$ Figure extracted from Wikipedia

