Convex Optimization

Lieven Vandenberghe
University of California, Los Angeles

Tutorial lectures, Machine Learning Summer School
University of Cambridge, September 3-4, 2009

Sources:

- Boyd \& Vandenberghe, Convex Optimization, 2004
- Courses EE236B, EE236C (UCLA), EE364A, EE364B (Stephen Boyd, Stanford Univ.)

Introduction

- mathematical optimization, modeling, complexity
- convex optimization
- recent history

Mathematical optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & f_{1}\left(x_{1}, \ldots, x_{n}\right) \leq 0 \\
& \ldots \\
& f_{m}\left(x_{1}, \ldots, x_{n}\right) \leq 0
\end{array}
$$

- $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are decision variables
- $f_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ gives the cost of choosing x
- inequalities give constraints that x must satisfy
a mathematical model of a decision, design, or estimation problem

Limits of mathematical optimization

- how realistic is the model, and how certain are we about it?
- is the optimization problem tractable by existing numerical algorithms?

Optimization research

- modeling
generic techniques for formulating tractable optimization problems
- algorithms
expand class of problems that can be efficiently solved

Complexity of nonlinear optimization

- the general optimization problem is intractable
- even simple looking optimization problems can be very hard

Examples

- quadratic optimization problem with many constraints
- minimizing a multivariate polynomial

The famous exception: Linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x=\sum_{i=1}^{n} c_{i} x_{i} \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- widely used since Dantzig introduced the simplex algorithm in 1948
- since 1950s, many applications in operations research, network optimization, finance, engineering,. . .
- extensive theory (optimality conditions, sensitivity, . . .)
- there exist very efficient algorithms for solving linear programs

Solving linear programs

- no closed-form expression for solution
- widely available and reliable software
- for some algorithms, can prove polynomial time
- problems with over 10^{5} variables or constraints solved routinely

Convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0 \\
& \cdots \\
& f_{m}(x) \leq 0
\end{array}
$$

- objective and constraint functions are convex: for $0 \leq \theta \leq 1$

$$
f_{i}(\theta x+(1-\theta) y) \leq \theta f_{i}(x)+(1-\theta) f_{i}(y)
$$

- includes least-squares problems and linear programs as special cases
- can be solved exactly, with similar complexity as LPs
- surprisingly many problems can be solved via convex optimization

History

- 1940s: linear programming

```
minimize }\quad\mp@subsup{c}{}{T}
subject to }\mp@subsup{a}{i}{T}x\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- 1950s: quadratic programming
- 1960s: geometric programming
- 1990s: semidefinite programming, second-order cone programming, quadratically constrained quadratic programming, robust optimization, sum-of-squares programming, ...

New applications since 1990

- linear matrix inequality techniques in control
- circuit design via geometric programming
- support vector machine learning via quadratic programming
- semidefinite programming relaxations in combinatorial optimization
- ℓ_{1}-norm optimization for sparse signal reconstruction
- applications in structural optimization, statistics, signal processing, communications, image processing, computer vision, quantum information theory, finance, . . .

Algorithms

Interior-point methods

- 1984 (Karmarkar): first practical polynomial-time algorithm
- 1984-1990: efficient implementations for large-scale LPs
- around 1990 (Nesterov \& Nemirovski): polynomial-time interior-point methods for nonlinear convex programming
- since 1990: extensions and high-quality software packages

First-order algorithms

- similar to gradient descent, but with better convergence properties
- based on Nesterov's ‘optimal' methods from 1980s
- extend to certain nondifferentiable or constrained problems

Outline

- basic theory
- convex sets and functions
- convex optimization problems
- linear, quadratic, and geometric programming
- cone linear programming and applications
- second-order cone programming
- semidefinite programming
- some recent developments in algorithms (since 1990)
- interior-point methods
- fast gradient methods

Convex sets and functions

- definition
- basic examples and properties
- operations that preserve convexity

Convex set

contains line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

Examples: one convex, two nonconvex sets

Examples and properties

- solution set of linear equations $A x=b$ (affine set)
- solution set of linear inequalities $A x \preceq b$ (polyhedron)
- norm balls $\{x \mid\|x\| \leq R\}$ and norm cones $\{(x, t) \mid\|x\| \leq t\}$
- set of positive semidefinite matrices $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$
- image of a convex set under a linear transformation is convex
- inverse image of a convex set under a linear transformation is convex
- intersection of convex sets is convex

Example of intersection property

$$
C=\left\{x \in \mathbf{R}^{n}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{n} \cos n t$

C is intersection of infinitely many halfspaces, hence convex

Convex function

domain $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

f is concave if $-f$ is convex

Epigraph and sublevel set

Epigraph: epi $f=\{(x, t) \mid x \in \operatorname{dom} f, f(x) \leq t\}$
a function is convex if and only its epigraph is a convex set

Sublevel sets: $C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$
the sublevel sets of a convex function are convex (converse is false)

Examples

- $\exp x,-\log x, x \log x$ are convex
- x^{α} is convex for $x>0$ and $\alpha \geq 1$ or $\alpha \leq 0 ;|x|^{\alpha}$ is convex for $\alpha \geq 1$
- quadratic-over-linear function $x^{T} x / t$ is convex in x, t for $t>0$
- geometric mean $\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}$ is concave for $x \succeq 0$
- $\log \operatorname{det} X$ is concave on set of positive definite matrices
- $\log \left(e^{x_{1}}+\cdots e^{x_{n}}\right)$ is convex
- linear and affine functions are convex and concave
- norms are convex

Differentiable convex functions

differentiable f is convex if and only if $\operatorname{dom} f$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

twice differentiable f is convex if and only if $\operatorname{dom} f$ is convex and

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

Operations that preserve convexity

methods for establishing convexity of a function

1. verify definition
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive weighted sum \& composition with affine function

Nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

Sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals)

Composition with affine function: $f(A x+b)$ is convex if f is convex

Examples

- log barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

$$
f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}
$$

is convex if f_{1}, \ldots, f_{m} are convex

Example: sum of r largest components of $x \in \mathbf{R}^{n}$

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex $\left(x_{[i]}\right.$ is i th largest component of $\left.x\right)$
proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Pointwise supremum

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$

Example: maximum eigenvalue of symmetric matrix

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

Composition with scalar functions

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if
g convex, h convex and nondecreasing
g concave, h convex and nonincreasing
(if we assign $h(x)=\infty$ for $x \in \operatorname{dom} h$)

Examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}:$

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if
g_{i} convex, h convex and nondecreasing in each argument
g_{i} concave, h convex and nonincreasing in each argument
(if we assign $h(x)=\infty$ for $x \in \operatorname{dom} h$)

Examples

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Minimization

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex if $f(x, y)$ is convex in x, y and C is a convex set

Examples

- distance to a convex set $C: g(x)=\inf _{y \in C}\|x-y\|$
- optimal value of linear program as function of righthand side

$$
g(x)=\inf _{y: A y \preceq x} c^{T} y
$$

follows by taking

$$
f(x, y)=c^{T} y, \quad \operatorname{dom} f=\{(x, y) \mid A y \preceq x\}
$$

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t)
$$

g is convex if f is convex on $\operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}$

Examples

- perspective of $f(x)=x^{T} x$ is quadratic-over-linear function

$$
g(x, t)=\frac{x^{T} x}{t}
$$

- perspective of negative logarithm $f(x)=-\log x$ is relative entropy

$$
g(x, t)=t \log t-t \log x
$$

Convex optimization problems

- standard form
- linear, quadratic, geometric programming
- modeling languages

Convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

$f_{0}, f_{1}, \ldots, f_{m}$ are convex functions

- feasible set is convex
- locally optimal points are globally optimal
- tractable, both in theory and practice

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- inequality is componentwise vector inequality
- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Piecewise-linear minimization

$$
\operatorname{minimize} \quad f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

\qquad

Equivalent linear program

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

an LP with variables $x, t \in \mathbf{R}$

Linear discrimination

separate two sets of points $\left\{x_{1}, \ldots, x_{N}\right\},\left\{y_{1}, \ldots, y_{M}\right\}$ by a hyperplane

$$
\begin{array}{ll}
a^{T} x_{i}+b>0, & i=1, \ldots, N \\
a^{T} y_{i}+b<0, & i=1, \ldots, M
\end{array}
$$

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

$$
a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
$$

Approximate linear separation of non-separable sets

$$
\operatorname{minimize} \sum_{i=1}^{N} \max \left\{0,1-a^{T} x_{i}-b\right\}+\sum_{i=1}^{M} \max \left\{0,1+a^{T} y_{i}+b\right\}
$$

- a piecewise-linear minimization problem in a, b; equivalent to an LP
- can be interpreted as a heuristic for minimizing \#misclassified points

ℓ_{1}-Norm and ℓ_{∞}-norm minimization

ℓ_{1}-Norm approximation and equivalent LP $\left(\|y\|_{1}=\sum_{k}\left|y_{k}\right|\right)$

$$
\begin{array}{lll}
\text { minimize } & \|A x-b\|_{1} \quad & \text { minimize }
\end{array} \begin{aligned}
& \sum_{i=1}^{n} y_{i} \\
& \\
& \\
& \text { subject to }
\end{aligned} \begin{aligned}
& -y \preceq A x-b \preceq y
\end{aligned}
$$

ℓ_{∞} - Norm approximation $\left(\|y\|_{\infty}=\max _{k}\left|y_{k}\right|\right)$

$$
\begin{array}{ll}
\text { minimize }
\end{array}\|A x-b\|_{\infty} \quad \begin{array}{ll}
\text { minimize } & y \\
& \text { subject to }-y \mathbf{1} \preceq A x-b \preceq y \mathbf{1}
\end{array}
$$

(1 is vector of ones)

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Linear program with random cost

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \preceq h
\end{array}
$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$

Expected cost-variance trade-off

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right)=\bar{c}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & G x \preceq h
\end{array}
$$

$\gamma>0$ is risk aversion parameter

Robust linear discrimination

$$
\begin{aligned}
& \mathcal{H}_{1}=\left\{z \mid a^{T} z+b=1\right\} \\
& \mathcal{H}_{2}=\left\{z \mid a^{T} z+b=-1\right\}
\end{aligned}
$$

distance between hyperplanes is $2 /\|a\|_{2}$
to separate two sets of points by maximum margin,

$$
\begin{array}{ll}
\operatorname{minimize} & \|a\|_{2}^{2}=a^{T} a \\
\text { subject to } & a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
\end{array}
$$

a quadratic program in a, b

Support vector classifier

$\min . \quad \gamma\|a\|_{2}^{2}+\sum_{i=1}^{N} \max \left\{0,1-a^{T} x_{i}-b\right\}+\sum_{i=1}^{M} \max \left\{0,1+a^{T} y_{i}+b\right\}$

equivalent to a QP

Sparse signal reconstruction

- signal \hat{x} of length 1000
- ten nonzero components

reconstruct signal from $m=100$ random noisy measurements

$$
b=A \hat{x}+v
$$

$\left(A_{i j} \sim \mathcal{N}(0,1)\right.$ i.i.d. and $v \sim \mathcal{N}\left(0, \sigma^{2} I\right)$ with $\left.\sigma=0.01\right)$

ℓ_{2}-Norm regularization

$$
\text { minimize } \quad\|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}
$$

a least-squares problem

left: exact signal \hat{x}; right: 2-norm reconstruction

ℓ_{1}-Norm regularization

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}+\gamma\|x\|_{1}
$$

equivalent to a QP

left: exact signal \hat{x}; right: 1-norm reconstruction

Geometric programming

Posynomial function:

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}, \quad \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

with $c_{k}>0$

Geometric program (GP)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m
\end{array}
$$

with f_{i} posynomial

Geometric program in convex form

change variables to

$$
y_{i}=\log x_{i}
$$

and take logarithm of cost, constraints

Geometric program in convex form:

$$
\begin{array}{ll}
\text { minimize } & \log \left(\sum_{k=1}^{K} \exp \left(a_{0 k}^{T} y+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{K} \exp \left(a_{i k}^{T} y+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

$b_{i k}=\log c_{i k}$

Modeling software

Modeling packages for convex optimization

- CVX, Yalmip (Matlab)
- CVXMOD (Python)
assist in formulating convex problems by automating two tasks:
- verifying convexity from convex calculus rules
- transforming problem in input format required by standard solvers

Related packages

general purpose optimization modeling: AMPL, GAMS

CVX example

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{1} \\
\text { subject to } & -0.5 \leq x_{k} \leq 0.3, \quad k=1, \ldots, n
\end{array}
$$

Matlab code

```
A = randn(5, 3); b = randn(5, 1);
cvx_begin
    variable x(3);
    minimize(norm(A*x - b, 1))
    subject to
            -0.5 <= x;
            x <= 0.3;
cvx_end
```

- between cvx_begin and cvx_end, x is a CVX variable
- after execution, x is Matlab variable with optimal solution

Cone programming

- generalized inequalities
- second-order cone programming
- semidefinite programming

Cone linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \preceq_{K} h \\
& A x=b
\end{array}
$$

- $y \preceq_{K} z$ means $z-y \in K$, where K is a proper convex cone
- extends linear programming $\left(K=\mathbf{R}_{+}^{m}\right)$ to nonpolyhedral cones
- popular as standard format for nonlinear convex optimization
- theory and algorithms very similar to linear programming

Second-order cone program (SOCP)

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

- $\|\cdot\|_{2}$ is Euclidean norm $\|y\|_{2}=\sqrt{y_{1}^{2}+\cdots+y_{n}^{2}}$
- constraints are nonlinear, nondifferentiable, convex constraints are inequalities w.r.t. second-order cone:

$$
\left\{y \mid \sqrt{y_{1}^{2}+\cdots+y_{p-1}^{2}} \leq y_{p}\right\}
$$

Examples of SOC-representable constraints

Convex quadratic constraint ($A=L L^{T}$ positive definite)

$$
x^{T} A x+2 b^{T} x+c \leq 0 \quad \Longleftrightarrow \quad\left\|L^{T} x+L^{-1} b\right\|_{2} \leq\left(b^{T} A^{-1} b-c\right)^{1 / 2}
$$

also extends to positive semidefinite singular A

Hyperbolic constraint

$$
x^{T} x \leq y z, \quad y, z \geq 0 \quad \Longleftrightarrow \quad\left\|\left[\begin{array}{c}
2 x \\
y-z
\end{array}\right]\right\|_{2} \leq y+z, \quad y, z \geq 0
$$

Examples of SOC-representable constraints

Positive powers

$$
x^{1.5} \leq t, \quad x \geq 0 \quad \Longleftrightarrow \quad \exists z: \quad x^{2} \leq t z, \quad z^{2} \leq x, \quad x, z \geq 0
$$

- two hyperbolic constraints can be converted to SOC constraints
- extends to powers x^{p} for rational $p \geq 1$

Negative powers

$$
x^{-3} \leq t, \quad x>0 \quad \Longleftrightarrow \quad \exists z: \quad 1 \leq t z, \quad z^{2} \leq t x, \quad x, z \geq 0
$$

- two hyperbolic constraints can be converted to SOC constraints
- extends to powers x^{p} for rational $p<0$

Robust linear program (stochastic)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

- a_{i} random and normally distributed with mean \bar{a}_{i}, covariance Σ_{i}
- we require that x satisfies each constraint with probability exceeding η

$$
\eta=50 \%
$$

$$
\eta=90 \%
$$

SOCP formulation

the 'chance constraint' $\operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta$ is equivalent to the constraint

$$
\bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq b_{i}
$$

Φ is the (unit) normal cumulative density function

robust LP is a second-order cone program for $\eta \geq 0.5$

Robust linear program (deterministic)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

- a_{i} uncertain but bounded by ellipsoid $\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}$
- we require that x satisfies each constraint for all possible a_{i}

SOCP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

follows from

$$
\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T}+\left\|P_{i}^{T} x\right\|_{2}
$$

Semidefinite program (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n} \preceq B
\end{array}
$$

- $A_{1}, A_{2}, \ldots, A_{n}, B$ are symmetric matrices
- inequality $X \preceq Y$ means $Y-X$ is positive semidefinite, i.e.,

$$
z^{T}(Y-X) z=\sum_{i, j}\left(Y_{i j}-X_{i j}\right) z_{i} z_{j} \geq 0 \text { for all } z
$$

- includes many nonlinear constraints as special cases

Geometry

$$
\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \succeq 0
$$

- a nonpolyhedral convex cone
- feasible set of a semidefinite program is the intersection of the positive semidefinite cone in high dimension with planes

Examples

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m} \quad\left(A_{i} \in \mathbf{S}^{n}\right)
$$

Eigenvalue minimization (and equivalent SDP)

$$
\operatorname{minimize} \quad \lambda_{\max }(A(x))
$$

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A(x) \preceq t I
\end{array}
$$

Matrix-fractional function

$$
\begin{array}{lll}
\operatorname{minimize} & b^{T} A(x)^{-1} b & \text { minimize }
\end{array} t \begin{array}{cc}
t & \\
\text { subject to } & A(x) \succeq 0
\end{array} \quad \text { subject to }\left[\begin{array}{cc}
A(x) & b \\
b^{T} & t
\end{array}\right] \succeq 0
$$

Matrix norm minimization

$$
A(x)=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n} \quad\left(A_{i} \in \mathbf{R}^{p \times q}\right)
$$

Matrix norm approximation $\left(\|X\|_{2}=\max _{k} \sigma_{k}(X)\right)$

$$
\left.\begin{array}{ll}
\operatorname{minimize} & \text { minimize } t \\
& \text { subject to }
\end{array} \begin{array}{cc}
t I & A(x) \|_{2} \\
A(x) & t I
\end{array}\right] \succeq 0
$$

Nuclear norm approximation $\left(\|X\|_{*}=\sum_{k} \sigma_{k}(X)\right)$

$$
\begin{array}{lll}
\operatorname{minimize} & \|A(x)\|_{*} & \text { minimize } \\
& (\operatorname{tr} U+\operatorname{tr} V) / 2 \\
\text { subject to } & {\left[\begin{array}{cc}
U & A(x)^{T} \\
A(x) & V
\end{array}\right] \succeq 0}
\end{array}
$$

Semidefinite relaxations \& randomization

semidefinite programming is increasingly used

- to find good bounds for hard (i.e., nonconvex) problems, via relaxation
- as a heuristic for good suboptimal points, often via randomization

Example: Boolean least-squares

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2} \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- basic problem in digital communications
- could check all 2^{n} possible values of $x \in\{-1,1\}^{n} \ldots$
- an NP-hard problem, and very hard in practice

Semidefinite lifting

with $P=A^{T} A, q=-A^{T} b, r=b^{T} b$

$$
\|A x-b\|_{2}^{2}=\sum_{i, j=1}^{n} P_{i j} x_{i} x_{j}+2 \sum_{i=1}^{n} q_{i} x_{i}+r
$$

after introducing new variables $X_{i j}=x_{i} x_{j}$

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i, j=1}^{n} P_{i j} X_{i j}+2 \sum_{i=1}^{n} q_{i} x_{i}+r \\
\text { subject to } & X_{i i}=1, \quad i=1, \ldots, n \\
& X_{i j}=x_{i} x_{j}, \quad i, j=1, \ldots, n
\end{array}
$$

- cost function and first constraints are linear
- last constraint in matrix form is $X=x x^{T}$, nonlinear and nonconvex,
. . . still a very hard problem

Semidefinite relaxation

replace $X=x x^{T}$ with weaker constraint $X \succeq x x^{T}$, to obtain relaxation

$$
\begin{array}{ll}
\text { minimize } & \sum_{i, j=1}^{n} P_{i j} X_{i j}+2 \sum_{i=1}^{n} q_{i} x_{i}+r \\
\text { subject to } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq x x^{T}
\end{array}
$$

- convex; can be solved as an semidefinite program
- optimal value gives lower bound for BLS
- if $X=x x^{T}$ at the optimum, we have solved the exact problem
- otherwise, can use randomized rounding
generate z from $\mathcal{N}\left(x, X-x x^{T}\right)$ and take $x=\operatorname{sign}(z)$

Example

- feasible set has $2^{100} \approx 10^{30}$ points
- histogram of 1000 randomized solutions from SDP relaxation

Nonnegative polynomial on R

$$
f(t)=x_{0}+x_{1} t+\cdots+x_{2 m} t^{2 m} \geq 0 \quad \text { for all } t \in \mathbf{R}
$$

- a convex constraint on x
- holds if and only if f is a sum of squares of (two) polynomials:

$$
\begin{aligned}
f(t) & =\sum_{k}\left(y_{k 0}+y_{k 1} t+\cdots+y_{k m} t^{m}\right)^{2} \\
& =\left[\begin{array}{c}
1 \\
\vdots \\
t^{m}
\end{array}\right]^{T} \sum_{k} y_{k} y_{k}^{T}\left[\begin{array}{c}
1 \\
\vdots \\
t^{m}
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
\vdots \\
t^{m}
\end{array}\right]^{T} Y\left[\begin{array}{c}
1 \\
\vdots \\
t^{m}
\end{array}\right]
\end{aligned}
$$

where $Y=\sum_{k} y_{k} y_{k}^{T} \succeq 0$

SDP formulation

$f(t) \geq 0$ if and only if for some $Y \succeq 0$,

$$
f(t)=\left[\begin{array}{c}
1 \\
t \\
\vdots \\
t^{2 m}
\end{array}\right]^{T}\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{2 m}
\end{array}\right]=\left[\begin{array}{c}
1 \\
t \\
\vdots \\
t^{m}
\end{array}\right]^{T} Y\left[\begin{array}{c}
1 \\
t \\
\vdots \\
t^{m}
\end{array}\right]
$$

this is an SDP constraint: there exists $Y \succeq 0$ such that

$$
\begin{aligned}
x_{0} & =Y_{11} \\
x_{1} & =Y_{12}+Y_{21} \\
x_{2} & =Y_{13}+Y_{22}+Y_{32} \\
& : \\
x_{2 m} & =Y_{m+1, m+1}
\end{aligned}
$$

General sum-of-squares constraints

$f(t)=x^{T} p(t)$ is a sum of squares if

$$
x^{T} p(t)=\sum_{k=1}^{s}\left(y_{k}^{T} q(t)\right)^{2}=q(t)^{T}\left(\sum_{k=1}^{s} y_{k} y_{k}^{T}\right) q(t)
$$

- p, q : basis functions (of polynomials, trigonometric polynomials, . . .)
- independent variable t can be one- or multidimensional
- a sufficient condition for nonnegativity of $x^{T} p(t)$, useful in nonconvex polynomial optimization in several variables
- in some nontrivial cases (e.g., polynomial on \mathbf{R}), necessary and sufficient

Equivalent SDP constraint (on the variables x, X)

$$
x^{T} p(t)=q(t)^{T} X q(t), \quad X \succeq 0
$$

Example: Cosine polynomials

$$
f(\omega)=x_{0}+x_{1} \cos \omega+\cdots+x_{2 n} \cos 2 n \omega \geq 0
$$

Sum of squares theorem: $f(\omega) \geq 0$ for $\alpha \leq \omega \leq \beta$ if and only if

$$
f(\omega)=g_{1}(\omega)^{2}+s(\omega) g_{2}(\omega)^{2}
$$

- g_{1}, g_{2} : cosine polynomials of degree n and $n-1$
- $s(\omega)=(\cos \omega-\cos \beta)(\cos \alpha-\cos \omega)$ is a given weight function

Equivalent SDP formulation: $f(\omega) \geq 0$ for $\alpha \leq \omega \leq \beta$ if and only if

$$
x^{T} p(\omega)=q_{1}(\omega)^{T} X_{1} q_{1}(\omega)+s(\omega) q_{2}(\omega)^{T} X_{2} q_{2}(\omega), \quad X_{1} \succeq 0, \quad X_{2} \succeq 0
$$

p, q_{1}, q_{2} : basis vectors $(1, \cos \omega, \cos (2 \omega), \ldots)$ up to order $2 n, n, n-1$

Example: Linear-phase Nyquist filter

minimize $\sup _{\omega \geq \omega_{\mathrm{s}}}\left|h_{0}+h_{1} \cos \omega+\cdots+h_{2 n} \cos 2 n \omega\right|$
with $h_{0}=1 / M, h_{k M}=0$ for positive integer k

(Example with $n=25, M=5, \omega_{\mathrm{s}}=0.69$)

SDP formulation

```
minimize t
subject to }-t\leqH(\omega)\leqt,\quad\mp@subsup{\omega}{\textrm{s}}{}\leq\omega\leq
```

where $H(\omega)=h_{0}+h_{1} \cos \omega+\cdots+h_{2 n} \cos 2 n \omega$

Equivalent SDP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & t-H(\omega)=q_{1}(\omega)^{T} X_{1} q_{1}(\omega)+s(\omega) q_{2}(\omega)^{T} X_{2} q_{2}(\omega) \\
& t+H(\omega)=q_{1}(\omega)^{T} X_{3} q_{1}(\omega)+s(\omega) q_{2}(\omega)^{T} X_{3} q_{2}(\omega) \\
& X_{1} \succeq 0, \quad X_{2} \succeq 0, \quad X_{3} \succeq 0, \quad X_{4} \succeq 0
\end{array}
$$

Variables $t, h_{i}(i \neq k M), 4$ matrices X_{i} of size roughly n

Chebyshev inequalities

Classical (two-sided) Chebyshev inequality

$$
\operatorname{prob}(|X|<1) \geq 1-\sigma^{2}
$$

- holds for all random X with $\mathbf{E} X=0, \mathbf{E} X^{2}=\sigma^{2}$
- there exists a distribution that achieves the bound

Generalized Chebyshev inequalities
give lower bound on $\operatorname{prob}(X \in C)$, given moments of X

Chebyshev inequality for quadratic constraints

- C is defined by quadratic inequalities

$$
C=\left\{x \in \mathbf{R}^{n} \mid x^{T} A_{i} x+2 b_{i}^{T} x+c_{i} \leq 0, i=1, \ldots, m\right\}
$$

- X is random vector with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$

SDP formulation (variables $P \in \mathbf{S}^{n}, q \in \mathbf{R}^{n}, r, \tau_{1}, \ldots, \tau_{m} \in \mathbf{R}$)

$$
\left.\begin{array}{ll}
\text { maximize } & 1-\operatorname{tr}(S P)-2 a^{T} q-r \\
\text { subject to } & {\left[\begin{array}{cc}
P & q \\
q^{T} & r-1
\end{array}\right] \succeq \tau_{i}\left[\begin{array}{cc}
A_{i} & b_{i} \\
b_{i}^{T} & c_{i}
\end{array}\right], \quad \tau_{i} \geq 0 \quad i=1, \ldots, m} \\
P & q \\
q^{T} & r
\end{array}\right] \succeq 0 \text {, }
$$

optimal value is tight lower bound on $\operatorname{prob}(X \in S)$

Example

- $a=\mathbf{E} X$; dashed line shows $\left\{x \mid(x-a)^{T}\left(S-a a^{T}\right)^{-1}(x-a)=1\right\}$
- lower bound on $\operatorname{prob}(X \in C)$ is achieved by distribution shown in red
- ellipse is defined by $x^{T} P x+2 q^{T} x+r=1$

Detection example

$$
x=s+v
$$

- $x \in \mathbf{R}^{n}$: received signal
- s : transmitted signal $s \in\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$ (one of N possible symbols)
- v : noise with $\mathbf{E} v=0, \mathbf{E} v v^{T}=\sigma^{2} I$

Detection problem: given observed value of x, estimate s

Example ($N=7$): bound on probability of correct detection of s_{1} is 0.205

dots: distribution with probability of correct detection 0.205

Cone programming duality

Primal and dual cone program

$$
\begin{array}{llll}
\mathrm{P}: \quad \begin{array}{ll}
\text { minimize } & c^{T} x \\
\text { subject to } & A x \preceq_{K} b
\end{array} & \mathrm{D}: \quad \begin{array}{l}
\text { maximize }
\end{array}-b^{T} z \\
& & & \\
& & \\
& & \succeq_{K^{*}} 0
\end{array}
$$

- optimal values are equal (if primal or dual is strictly feasible)
- dual inequality is with respect to the dual cone

$$
K^{*}=\left\{z \mid x^{T} z \geq 0 \text { for all } x \in K\right\}
$$

- $K=K^{*}$ for linear, second-order cone, semidefinite programming

Applications: optimality conditions, sensitivity analysis, algorithms, . . .

Interior-point methods

- Newton's method
- barrier method
- primal-dual interior-point methods
- problem structure

Equality-constrained convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

f twice continuously differentiable and convex

Optimality (Karush-Kuhn-Tucker or KKT) condition

$$
\nabla f(x)+A^{T} y=0, \quad A x=b
$$

Example: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r$ with $P \succeq 0$

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

a symmetric indefinite set of equations, known as a KKT system

Newton step

replace f with second-order approximation f_{q} at feasible \hat{x} :
$\operatorname{minimize} \quad f_{\mathrm{q}}(x) \triangleq f(\hat{x})+\nabla f(\hat{x})^{T}(x-\hat{x})+\frac{1}{2}(x-\hat{x})^{T} \nabla^{2} f(\hat{x})(x-\hat{x})$
subject to $A x=b$
solution is $x=\hat{x}+\Delta x_{n t}$ with Δx_{nt} defined by

$$
\left[\begin{array}{cc}
\nabla^{2} f(\hat{x}) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(\hat{x}) \\
0
\end{array}\right]
$$

Δx_{nt} is called the Newton step at \hat{x}

Interpretation (for unconstrained problem)

$\hat{x}+\Delta x_{\mathrm{nt}}$ minimizes 2 nd-order approximation $f_{\text {q }}$

$\hat{x}+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
\begin{aligned}
& \nabla f_{\mathrm{q}}(x) \\
& \quad=\quad \nabla f(\hat{x})+\nabla^{2} f(\hat{x})(x-\hat{x}) \\
& \quad=0
\end{aligned}
$$

Newton's algorithm

given starting point $x^{(0)} \in \operatorname{dom} f$ with $A x^{(0)}=b$, tolerance ϵ repeat for $k=0,1, \ldots$

1. compute Newton step Δx_{nt} at $x^{(k)}$ by solving

$$
\left[\begin{array}{cc}
\nabla^{2} f\left(x^{(k)}\right) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left(x^{(k)}\right) \\
0
\end{array}\right]
$$

2. terminate if $-\nabla f\left(x^{(k)}\right)^{T} \Delta x_{\mathrm{nt}} \leq \epsilon$
3. $x^{(k+1)}=x^{(k)}+t \Delta x_{\mathrm{nt}}$, with t determined by line search

Comments

- $\nabla f\left(x^{(k)}\right)^{T} \Delta x_{\mathrm{nt}}$ is directional derivative at $x^{(k)}$ in Newton direction
- line search needed to guarantee $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$, global convergence

Example

$f(x)=-\sum_{i=1}^{n} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right) \quad\left(\right.$ with $\left.n=10^{4}, m=10^{5}\right)$

- high accuracy after small number of iterations
- fast asymptotic convergence

Classical convergence analysis

Assumptions (m, L are positive constants)

- f strongly convex: $\nabla^{2} f(x) \succeq m I$
- $\nabla^{2} f$ Lipschitz continuous: $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}$

Summary: two regimes

- damped phase $\left(\|\nabla f(x)\|_{2}\right.$ large): for some constant $\gamma>0$

$$
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma
$$

- quadratic convergence $\left(\|\nabla f(x)\|_{2}\right.$ small)

$$
\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \text { decreases quadratically }
$$

Self-concordant functions

Shortcomings of classical convergence analysis

- depends on unknown constants (m, L, \ldots)
- bound is not affinely invariant, although Newton's method is

Analysis for self-concordant functions (Nesterov and Nemirovski, 1994)

- a convex function of one variable is self-concordant if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2} \quad \text { for all } x \in \operatorname{dom} f
$$

a function of several variables is s.c. if its restriction to lines is s.c.

- analysis is affine-invariant, does not depend on unknown constants
- developed for complexity theory of interior-point methods

Interior-point methods

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subjec to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

functions $f_{i}, i=0,1, \ldots, m$, are convex

Basic idea: follow 'central path' through interior feasible set to solution

General properties

- path-following mechanism relies on Newton's method
- every iteration requires solving a set of linear equations (KKT system)
- number of iterations small (10-50), fairly independent of problem size
- some versions known to have polynomial worst-case complexity

History

- introduced in 1950s and 1960s
- used in polynomial-time methods for linear programming (1980s)
- polynomial-time algorithms for general convex optimization (ca. 1990)

Reformulation via indicator function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

Reformulation

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

where I_{-}is indicator function of \mathbf{R}_{-}:

$$
I_{-}(u)=0 \quad \text { if } u \leq 0, \quad I_{-}(u)=\infty \quad \text { otherwise }
$$

- reformulated problem has no inequality constraints
- however, objective function is not differentiable

Approximation via logarithmic barrier

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)-\frac{1}{t} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

- for $t>0,-(1 / t) \log (-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \rightarrow \infty$

Logarithmic barrier function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

with $\operatorname{dom} \phi=\left\{x \mid f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}$

- convex (follows from composition rules and convexity of f_{i})
- twice continuously differentiable, with derivatives

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Central path

central path is $\left\{x^{\star}(t) \mid t>0\right\}$, where $x^{\star}(t)$ is the solution of

$$
\begin{array}{ll}
\operatorname{minimize} & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{array}
$$

Example: central path for an LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6
\end{array}
$$

hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$ repeat:

1. Centering step. Compute $x^{\star}(t)$ and set $x:=x^{\star}(t)$
2. Stopping criterion. Terminate if $m / t<\epsilon$
3. Increase t. $t:=\mu t$

- stopping criterion $m / t \leq \epsilon$ guarantees

$$
f_{0}(x)-\text { optimal value } \leq \epsilon
$$

(follows from duality)

- typical value of μ is $10-20$
- several heuristics for choice of $t^{(0)}$
- centering usually done using Newton's method, starting at current x

Example: Inequality form LP

$m=100$ inequalities, $n=50$ variables

- starts with x on central path $\left(t^{(0)}=1\right.$, duality gap 100)
- terminates when $t=10^{8}$ (gap $m / t=10^{-6}$)
- total number of Newton iterations not very sensitive for $\mu \geq 10$

Family of standard LPs

$\begin{array}{ll}\text { minimize } & c^{T} x \\ \text { subject to } & A x=b, \quad x \succeq 0\end{array}$
$A \in \mathbf{R}^{m \times 2 m}$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

Second-order cone programming

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

Logarithmic barrier function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(\left(c_{i}^{T} x+d_{i}\right)^{2}-\left\|A_{i} x+b_{i}\right\|_{2}^{2}\right)
$$

- a convex function
- $\log \left(v^{2}-u^{T} u\right)$ is 'logarithm' for 2 nd-order cone $\left\{(u, v) \mid\|u\|_{2} \leq v\right\}$

Barrier method: follows central path $x^{\star}(t)=\operatorname{argmin}\left(t f^{T} x+\phi(x)\right)$

Example

50 variables, 50 second-order cone constraints in \mathbf{R}^{6}

Semidefinite programming

```
minimize }\mp@subsup{c}{}{T}
subject to }\mp@subsup{x}{1}{}\mp@subsup{A}{1}{}+\cdots+\mp@subsup{x}{n}{}\mp@subsup{A}{n}{}\preceq
```

Logarithmic barrier function

$$
\phi(x)=-\log \operatorname{det}\left(B-x_{1} A_{1}-\cdots-x_{n} A_{n}\right)
$$

- a convex function
- $\log \operatorname{det} X$ is 'logarithm' for p.s.d. cone

Barrier method: follows central path $x^{\star}(t)=\operatorname{argmin}\left(t f^{T} x+\phi(x)\right)$

Example

100 variables, one linear matrix inequality in \mathbf{S}^{100}

Complexity of barrier method

Iteration complexity

- can be bounded by polynomial function of problem dimensions (with correct formulation, barrier function)
- examples: $O(\sqrt{m})$ iteration bound for LP or SOCP with m inequalities, SDP with constraint of order m
- proofs rely on theory of Newton's method for self-concordant functions
- in practice: \#iterations roughly constant as a function of problem size

Linear algebra complexity

dominated by solution of Newton system

Primal-dual interior-point methods

Similarities with barrier method

- follow the same central path
- linear algebra (KKT system) per iteration is similar

Differences

- faster and more robust
- update primal and dual variables in each step
- no distinction between inner (centering) and outer iterations
- include heuristics for adaptive choice of barrier parameter t
- can start at infeasible points
- often exhibit superlinear asymptotic convergence

Software implementations

General-purpose software for nonlinear convex optimization

- several high-quality packages (MOSEK, Sedumi, SDPT3, . . .)
- exploit sparsity to achieve scalability

Customized implementations

- can exploit non-sparse types of problem structure
- often orders of magnitude faster than general-purpose solvers

Example: ℓ_{1}-regularized least-squares

$$
\text { minimize }\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

A is $m \times n$ (with $m \leq n$) and dense
Quadratic program formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2}+\mathbf{1}^{T} u \\
\text { subject to } & -u \preceq x \preceq u
\end{array}
$$

- coefficient of Newton system in interior-point method is

$$
\left[\begin{array}{cc}
A^{T} A & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
D_{1}+D_{2} & D_{2}-D_{1} \\
D_{2}-D_{1} & D_{1}+D_{2}
\end{array}\right] \quad\left(D_{1}, D_{2} \text { positive diagonal }\right)
$$

- very expensive $\left(O\left(n^{3}\right)\right)$ for large n

Customized implementation

- can reduce Newton equation to solution of a system

$$
\left(A D^{-1} A^{T}+I\right) \Delta u=r
$$

- cost per iteration is $O\left(m^{2} n\right)$

Comparison (seconds on 3.2Ghz machine)

m	n	custom	general-purpose
50	100	0.02	0.05
50	200	0.03	0.17
100	1000	0.32	10.6
100	2000	0.71	76.9
500	1000	2.5	11.2
500	2000	5.5	79.8

general-purpose solver is MOSEK

First-order methods

- gradient method
- Nesterov's gradient methods
- extensions

Gradient method

to minimize a convex differentiable function f : choose $x^{(0)}$ and repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right), \quad k=1,2, \ldots
$$

t_{k} is step size (fixed or determined by backtracking line search)

Classical convergence result

- assume ∇f Lipschitz continuous $\left(\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}\right)$
- error decreases as $1 / k$, hence

$$
O\left(\frac{1}{\epsilon}\right) \text { iterations }
$$

needed to reach accuracy $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$

Nesterov's gradient method

choose $x^{(0)}$; take $x^{(1)}=x^{(0)}-t_{1} \nabla f\left(x^{(0)}\right)$ and for $k \geq 2$

$$
\begin{aligned}
y^{(k)} & =x^{(k-1)}+\frac{k-2}{k+1}\left(x^{(k-1)}-x^{(k-2)}\right) \\
x^{(k)} & =y^{(k)}-t_{k} \nabla f\left(y^{(k)}\right)
\end{aligned}
$$

- gradient method with 'extrapolation'
- if f has Lipschitz continuous gradient, error decreases as $1 / k^{2}$; hence

$$
O\left(\frac{1}{\sqrt{\epsilon}}\right) \text { iterations }
$$

needed to reach accuracy $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$

- many variations; first one published in 1983

Example

$$
\operatorname{minimize} \log \sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)
$$

randomly generated data with $m=2000, n=1000$, fixed step size

Interpretation of gradient update

$$
\begin{aligned}
x^{(k)} & =x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right) \\
& =\underset{z}{\operatorname{argmin}}\left(\nabla f\left(x^{(k-1)}\right)^{T} z+\frac{1}{t_{k}}\left\|z-x^{(k-1)}\right\|_{2}^{2}\right)
\end{aligned}
$$

Interpretation

$x^{(k)}$ minimizes

$$
f\left(x^{(k-1)}\right)+\nabla f\left(x^{(k-1)}\right)^{T}\left(z-x^{(k-1)}\right)+\frac{1}{t_{k}}\left\|z-x^{(k-1)}\right\|_{2}^{2}
$$

a simple quadratic model of f at $x^{(k-1)}$

Projected gradient method

minimize $\quad f(x)$
subject to $\quad x \in C$

f convex, C a closed convex set

$$
\begin{aligned}
x^{(k)} & =\underset{z \in C}{\operatorname{argmin}}\left(\nabla f\left(x^{(k-1)}\right)^{T} z+\frac{1}{t_{k}}\left\|z-x^{(k-1)}\right\|_{2}^{2}\right) \\
& =P_{C}\left(x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right)\right)
\end{aligned}
$$

- useful if projection P_{C} on C is inexpensive (e.g., box constraints)
- similar convergence result as for basic gradient algorithm
- can be used in fast Nesterov-type gradient methods

Nonsmooth components

$$
\operatorname{minimize} \quad f(x)+g(x)
$$

f, g convex, with f differentiable, g nondifferentiable

$$
\begin{aligned}
x^{(k)} & =\underset{z}{\operatorname{argmin}}\left(\nabla f\left(x^{(k-1)}\right)^{T} z+g(x)+\frac{1}{t_{k}}\left\|z-x^{(k-1)}\right\|_{2}^{2}\right) \\
& =\underset{z}{\operatorname{argmin}}\left(\frac{1}{2 t_{k}}\left\|z-x^{(k-1)}+t_{k} \nabla f\left(x^{(k-1)}\right)\right\|_{2}^{2}+g(z)\right) \\
& \triangleq S_{t_{k}}\left(x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right)\right)
\end{aligned}
$$

- gradient step for f followed by 'thresholding' operation S_{t}
- useful if thresholding is inexpensive (e.g., because g is separable)
- similar convergence result as basic gradient method

Example: ℓ_{1}-norm regularization

$$
\operatorname{minimize} \quad f(x)+\|x\|_{1}
$$

f convex and differentiable
Thresholding operator

$$
\begin{gathered}
S_{t}(y)=\underset{z}{\operatorname{argmin}}\left(\frac{1}{2 t}\|z-y\|_{2}^{2}+\|z\|_{1}\right) \\
S_{t}(y)_{k}= \begin{cases}y_{k}-t & y_{k} \geq t \\
0 & -t \leq y_{k} \leq t \\
y_{k}+t & y_{k} \leq-t\end{cases}
\end{gathered}
$$

ℓ_{1}-Norm regularized least-squares

$$
\operatorname{minimize} \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

randomly generated $A \in \mathbf{R}^{2000 \times 1000}$; fixed step

Summary: Advances in convex optimization

Theory

new problem classes, robust optimization, convex relaxations, . . .

Applications

new applications in different fields; surprisingly many discovered recently

Algorithms and software

- high-quality general-purpose implementations of interior-point methods
- software packages for convex modeling
- new first-order methods

