Convex Optimization

Lieven Vandenberghe

University of California, Los Angeles

Tutorial lectures, Machine Learning Summer School University of Cambridge, September 3-4, 2009

Sources:

- Boyd & Vandenberghe, *Convex Optimization*, 2004
- Courses EE236B, EE236C (UCLA), EE364A, EE364B (Stephen Boyd, Stanford Univ.)

Convex optimization — MLSS 2009

Introduction

- mathematical optimization, modeling, complexity
- convex optimization
- recent history

Mathematical optimization

minimize $f_0(x_1, \dots, x_n)$ subject to $f_1(x_1, \dots, x_n) \le 0$ \dots $f_m(x_1, \dots, x_n) \le 0$

- $x = (x_1, x_2, \dots, x_n)$ are decision variables
- $f_0(x_1, x_2, \dots, x_n)$ gives the cost of choosing x
- inequalities give constraints that x must satisfy

a mathematical model of a decision, design, or estimation problem

Limits of mathematical optimization

- how realistic is the model, and how certain are we about it?
- is the optimization problem tractable by existing numerical algorithms?

Optimization research

• modeling

generic techniques for formulating tractable optimization problems

• algorithms

expand class of problems that can be efficiently solved

Complexity of nonlinear optimization

- the general optimization problem is intractable
- even simple looking optimization problems can be very hard

Examples

- quadratic optimization problem with many constraints
- minimizing a multivariate polynomial

The famous exception: Linear programming

minimize
$$c^T x = \sum_{i=1}^n c_i x_i$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

- widely used since Dantzig introduced the simplex algorithm in 1948
- since 1950s, many applications in operations research, network optimization, finance, engineering, . .
- extensive theory (optimality conditions, sensitivity, ...)
- there exist very efficient algorithms for solving linear programs

Solving linear programs

- no closed-form expression for solution
- widely available and reliable software
- for some algorithms, can prove polynomial time
- problems with over 10^5 variables or constraints solved routinely

Convex optimization problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0 \\ & \cdots \\ & f_m(x) \leq 0 \end{array}$$

• objective and constraint functions are convex: for $0 \le \theta \le 1$

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

- includes least-squares problems and linear programs as special cases
- can be solved exactly, with similar complexity as LPs
- surprisingly many problems can be solved via convex optimization

History

• 1940s: linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, \dots, m$

- 1950s: quadratic programming
- 1960s: geometric programming
- 1990s: semidefinite programming, second-order cone programming, quadratically constrained quadratic programming, robust optimization, sum-of-squares programming, . . .

New applications since 1990

- linear matrix inequality techniques in control
- circuit design via geometric programming
- support vector machine learning via quadratic programming
- semidefinite programming relaxations in combinatorial optimization
- ℓ_1 -norm optimization for sparse signal reconstruction
- applications in structural optimization, statistics, signal processing, communications, image processing, computer vision, quantum information theory, finance, . . .

Algorithms

Interior-point methods

- 1984 (Karmarkar): first practical polynomial-time algorithm
- 1984-1990: efficient implementations for large-scale LPs
- around 1990 (Nesterov & Nemirovski): polynomial-time interior-point methods for nonlinear convex programming
- since 1990: extensions and high-quality software packages

First-order algorithms

- similar to gradient descent, but with better convergence properties
- based on Nesterov's 'optimal' methods from 1980s
- extend to certain nondifferentiable or constrained problems

Outline

- basic theory
 - convex sets and functions
 - convex optimization problems
 - linear, quadratic, and geometric programming
- cone linear programming and applications
 - second-order cone programming
 - semidefinite programming
- some recent developments in algorithms (since 1990)
 - interior-point methods
 - fast gradient methods

Convex sets and functions

- definition
- basic examples and properties
- operations that preserve convexity

Convex set

contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

Examples: one convex, two nonconvex sets

Examples and properties

- solution set of linear equations Ax = b (affine set)
- solution set of linear inequalities $Ax \leq b$ (polyhedron)
- norm balls $\{x \mid ||x|| \le R\}$ and norm cones $\{(x,t) \mid ||x|| \le t\}$
- set of positive semidefinite matrices $\mathbf{S}^n_+ = \{X \in \mathbf{S}^n \mid X \succeq 0\}$

- image of a convex set under a linear transformation is convex
- inverse image of a convex set under a linear transformation is convex
- intersection of convex sets is convex

Example of intersection property

 $C = \{ x \in \mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_n \cos nt$

C is intersection of infinitely many halfspaces, hence convex

Convex function

domain $\operatorname{dom} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

f is concave if -f is convex

Epigraph and sublevel set

Epigraph: $epi f = \{(x, t) \mid x \in dom f, f(x) \le t\}$

a function is convex if and only its epigraph is a convex set

Sublevel sets: $C_{\alpha} = \{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$

the sublevel sets of a convex function are convex (converse is false)

Examples

- $\exp x$, $-\log x$, $x \log x$ are convex
- x^{α} is convex for x > 0 and $\alpha \ge 1$ or $\alpha \le 0$; $|x|^{\alpha}$ is convex for $\alpha \ge 1$
- quadratic-over-linear function $x^T x/t$ is convex in x, t for t > 0
- geometric mean $(x_1x_2\cdots x_n)^{1/n}$ is concave for $x\succeq 0$
- $\log \det X$ is concave on set of positive definite matrices
- $\log(e^{x_1} + \cdots + e^{x_n})$ is convex
- linear and affine functions are convex and concave
- norms are convex

Differentiable convex functions

differentiable f is convex if and only if $\mathbf{dom} f$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{\mathbf{dom}} f$

twice differentiable f is convex if and only if $\mathbf{dom} f$ is convex and

 $\nabla^2 f(x) \succeq 0$ for all $x \in \operatorname{\mathbf{dom}} f$

Operations that preserve convexity

methods for establishing convexity of a function

- 1. verify definition
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

Nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

Sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

Composition with affine function: f(Ax + b) is convex if f is convex

Examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

$$f(x) = \max\{f_1(x), \dots, f_m(x)\}$$

is convex if f_1, \ldots, f_m are convex

Example: sum of r largest components of $x \in \mathbf{R}^n$

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

 $g(x) = \sup_{y \in \mathcal{A}} f(x, y)$

is convex if f(x,y) is convex in x for each $y \in \mathcal{A}$

Example: maximum eigenvalue of symmetric matrix

$$\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y$$

Composition with scalar functions

composition of
$$g : \mathbf{R}^n \to \mathbf{R}$$
 and $h : \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

$$f$$
 is convex if

g convex, h convex and nondecreasing g concave, h convex and nonincreasing

(if we assign $h(x) = \infty$ for $x \in \operatorname{dom} h$)

Examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

 \boldsymbol{f} is convex if

 g_i convex, h convex and nondecreasing in each argument g_i concave, h convex and nonincreasing in each argument

(if we assign $h(x) = \infty$ for $x \in \operatorname{dom} h$)

Examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex if f(x, y) is convex in x, y and C is a convex set

Examples

- distance to a convex set C: $g(x) = \inf_{y \in C} ||x y||$
- optimal value of linear program as function of righthand side

$$g(x) = \inf_{y:Ay \preceq x} c^T y$$

follows by taking

$$f(x,y) = c^T y,$$
 dom $f = \{(x,y) \mid Ay \leq x\}$

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

$$g(x,t) = tf(x/t)$$

g is convex if f is convex on $\operatorname{dom} g = \{(x,t) \mid x/t \in \operatorname{dom} f, t > 0\}$

Examples

• perspective of $f(x) = x^T x$ is quadratic-over-linear function

$$g(x,t) = \frac{x^T x}{t}$$

• perspective of negative logarithm $f(x) = -\log x$ is relative entropy

$$g(x,t) = t\log t - t\log x$$

Convex optimization problems

- standard form
- linear, quadratic, geometric programming
- modeling languages

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

 f_0 , f_1 , . . . , f_m are convex functions

- feasible set is convex
- locally optimal points are globally optimal
- tractable, both in theory and practice

Linear program (LP)

$$\begin{array}{ll} \text{minimize} & c^T x + d \\ \text{subject to} & G x \preceq h \\ & A x = b \end{array}$$

- inequality is componentwise vector inequality
- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Piecewise-linear minimization

Equivalent linear program

minimize
$$t$$

subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

an LP with variables x, $t \in \mathbf{R}$

Linear discrimination

separate two sets of points $\{x_1, \ldots, x_N\}$, $\{y_1, \ldots, y_M\}$ by a hyperplane

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

$$a^T x_i + b \ge 1, \quad i = 1, \dots, N, \qquad a^T y_i + b \le -1, \quad i = 1, \dots, M$$

Approximate linear separation of non-separable sets

- a piecewise-linear minimization problem in a, b; equivalent to an LP
- can be interpreted as a heuristic for minimizing #misclassified points

 $\ell_1\text{-}\text{Norm}$ and $\ell_\infty\text{-}\text{norm}$ minimization

 ℓ_1 -Norm approximation and equivalent LP $(||y||_1 = \sum_k |y_k|)$

minimize
$$||Ax - b||_1$$
 minimize $\sum_{i=1}^n y_i$
subject to $-y \preceq Ax - b \preceq y$

 ℓ_{∞} -Norm approximation ($\|y\|_{\infty} = \max_k |y_k|$)

 $\begin{array}{ll} \text{minimize} & \|Ax - b\|_{\infty} & \text{minimize} & y \\ & \text{subject to} & -y\mathbf{1} \preceq Ax - b \preceq y\mathbf{1} \end{array}$

(1 is vector of ones)

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Gx \leq h$
 $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Linear program with random cost

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Gx \preceq h \end{array}$

- c is random vector with mean \overline{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$

Expected cost-variance trade-off

minimize
$$\mathbf{E} c^T x + \gamma \operatorname{var}(c^T x) = \overline{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \leq h$

 $\gamma>0$ is risk aversion parameter

Robust linear discrimination

$$\mathcal{H}_{1} = \{ z \mid a^{T}z + b = 1 \}$$

$$\mathcal{H}_{2} = \{ z \mid a^{T}z + b = -1 \}$$

distance between hyperplanes is $2/||a||_2$

to separate two sets of points by maximum margin,

$$\begin{array}{ll} \mbox{minimize} & \|a\|_2^2 = a^T a \\ \mbox{subject to} & a^T x_i + b \geq 1, \quad i = 1, \dots, N \\ & a^T y_i + b \leq -1, \quad i = 1, \dots, M \end{array}$$

a quadratic program in a, b

Support vector classifier

Sparse signal reconstruction

reconstruct signal from m = 100 random noisy measurements

$$b = A\hat{x} + v$$

$$(A_{ij} \sim \mathcal{N}(0,1) \text{ i.i.d. and } v \sim \mathcal{N}(0,\sigma^2 I) \text{ with } \sigma = 0.01)$$

ℓ_2 -Norm regularization

minimize $||Ax - b||_2^2 + \gamma ||x||_2^2$

a least-squares problem

left: exact signal \hat{x} ; right: 2-norm reconstruction

ℓ_1 -Norm regularization

minimize $||Ax - b||_{2}^{2} + \gamma ||x||_{1}$

equivalent to a $\ensuremath{\mathsf{QP}}$

left: exact signal \hat{x} ; right: 1-norm reconstruction

Geometric programming

Posynomial function:

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

with $c_k > 0$

Geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$

with f_i posynomial

Geometric program in convex form

change variables to

$$y_i = \log x_i,$$

and take logarithm of cost, constraints

Geometric program in convex form:

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^{T} y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^{T} y + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$

 $b_{ik} = \log c_{ik}$

Modeling software

Modeling packages for convex optimization

- CVX, Yalmip (Matlab)
- CVXMOD (Python)

assist in formulating convex problems by automating two tasks:

- verifying convexity from convex calculus rules
- transforming problem in input format required by standard solvers

Related packages

general purpose optimization modeling: AMPL, GAMS

CVX example

```
minimize ||Ax - b||_1
subject to -0.5 \le x_k \le 0.3, k = 1, \dots, n
```

Matlab code

```
A = randn(5, 3); b = randn(5, 1);
cvx_begin
    variable x(3);
    minimize(norm(A*x - b, 1))
    subject to
      -0.5 <= x;
      x <= 0.3;
cvx_end
```

- between cvx_begin and cvx_end, x is a CVX variable
- after execution, x is Matlab variable with optimal solution

Convex optimization — MLSS 2009

Cone programming

- generalized inequalities
- second-order cone programming
- semidefinite programming

Cone linear program

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Gx \preceq_K h\\ & Ax = b \end{array}$

• $y \preceq_K z$ means $z - y \in K$, where K is a proper convex cone

- extends linear programming $(K = \mathbf{R}^m_+)$ to nonpolyhedral cones
- popular as standard format for nonlinear convex optimization
- theory and algorithms very similar to linear programming

Second-order cone program (SOCP)

minimize $f^T x$ subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$

- $\|\cdot\|_2$ is Euclidean norm $\|y\|_2 = \sqrt{y_1^2 + \dots + y_n^2}$
- constraints are nonlinear, nondifferentiable, convex

Examples of SOC-representable constraints

Convex quadratic constraint $(A = LL^T \text{ positive definite})$

$$x^{T}Ax + 2b^{T}x + c \le 0 \qquad \iff \qquad \left\|L^{T}x + L^{-1}b\right\|_{2} \le (b^{T}A^{-1}b - c)^{1/2}$$

also extends to positive semidefinite singular A

Hyperbolic constraint

$$x^{T}x \leq yz, \quad y, z \geq 0 \qquad \Longleftrightarrow \qquad \left\| \begin{bmatrix} 2x \\ y-z \end{bmatrix} \right\|_{2} \leq y+z, \quad y, z \geq 0$$

Examples of SOC-representable constraints

Positive powers

 $x^{1.5} \le t, \quad x \ge 0 \qquad \iff \qquad \exists z: \quad x^2 \le tz, \quad z^2 \le x, \quad x, z \ge 0$

- two hyperbolic constraints can be converted to SOC constraints
- extends to powers x^p for rational $p \ge 1$

Negative powers

 $x^{-3} \le t, \quad x > 0 \qquad \iff \qquad \exists z : 1 \le tz, \quad z^2 \le tx, \quad x, z \ge 0$

- two hyperbolic constraints can be converted to SOC constraints
- extends to powers x^p for rational p < 0

Robust linear program (stochastic)

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

- a_i random and normally distributed with mean \bar{a}_i , covariance Σ_i
- we require that x satisfies each constraint with probability exceeding η

SOCP formulation

the 'chance constraint' $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta$ is equivalent to the constraint

$$\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i$$

 Φ is the (unit) normal cumulative density function

robust LP is a second-order cone program for $\eta \geq 0.5$

Robust linear program (deterministic)

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

- a_i uncertain but bounded by ellipsoid $\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \leq 1\}$
- we require that x satisfies each constraint for all possible a_i

SOCP formulation

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

follows from

$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T + \|P_i^T x\|_2$$

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 A_1 + x_2 A_2 + \dots + x_n A_n \preceq B$

- A_1 , A_2 , ..., A_n , B are symmetric matrices
- inequality $X \preceq Y$ means Y X is *positive semidefinite*, *i.e.*,

$$z^{T}(Y-X)z = \sum_{i,j} (Y_{ij} - X_{ij})z_{i}z_{j} \ge 0 \text{ for all } z$$

• includes many nonlinear constraints as special cases

Geometry

- a nonpolyhedral convex cone
- feasible set of a semidefinite program is the intersection of the positive semidefinite cone in high dimension with planes

Examples

$$A(x) = A_0 + x_1 A_1 + \dots + x_m A_m \qquad (A_i \in \mathbf{S}^n)$$

Eigenvalue minimization (and equivalent SDP)

minimize $\lambda_{\max}(A(x))$

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \preceq tI \end{array}$

Matrix-fractional function

minimize $b^T A(x)^{-1} b$ subject to $A(x) \succeq 0$ $\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} A(x) & b \\ b^T & t \end{array} \right] \succeq 0 \\ \end{array}$

Matrix norm minimization

$$A(x) = A_0 + x_1 A_1 + x_2 A_2 + \dots + x_n A_n \qquad (A_i \in \mathbf{R}^{p \times q})$$

Matrix norm approximation ($||X||_2 = \max_k \sigma_k(X)$)

$$\begin{array}{ll} \text{minimize} & \|A(x)\|_2 & \text{minimize} & t \\ & \text{subject to} & \left[\begin{array}{cc} tI & A(x)^T \\ A(x) & tI \end{array} \right] \succeq 0 \end{array}$$

Nuclear norm approximation $(||X||_* = \sum_k \sigma_k(X))$

minimize
$$||A(x)||_*$$
 minimize $(\operatorname{tr} U + \operatorname{tr} V)/2$
subject to $\begin{bmatrix} U & A(x)^T \\ A(x) & V \end{bmatrix} \succeq 0$

Semidefinite relaxations & randomization

semidefinite programming is increasingly used

- to find good bounds for hard (i.e., nonconvex) problems, via relaxation
- as a heuristic for good suboptimal points, often via randomization

Example: Boolean least-squares

minimize
$$\|Ax - b\|_2^2$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

- basic problem in digital communications
- could check all 2^n possible values of $x \in \{-1, 1\}^n \dots$
- an NP-hard problem, and very hard in practice

Semidefinite lifting

with $P = A^T A$, $q = -A^T b$, $r = b^T b$

$$||Ax - b||_2^2 = \sum_{i,j=1}^n P_{ij} x_i x_j + 2 \sum_{i=1}^n q_i x_i + r$$

after introducing new variables $X_{ij} = x_i x_j$

minimize
$$\sum_{i,j=1}^{n} P_{ij}X_{ij} + 2\sum_{i=1}^{n} q_ix_i + r$$
subject to
$$X_{ii} = 1, \quad i = 1, \dots, n$$
$$X_{ij} = x_ix_j, \quad i, j = 1, \dots, n$$

- cost function and first constraints are linear
- last constraint in matrix form is $X = xx^T$, nonlinear and nonconvex,
- . . . still a very hard problem

Cone programming

Semidefinite relaxation

replace $X = xx^T$ with weaker constraint $X \succeq xx^T$, to obtain relaxation

$$\begin{array}{ll} \text{minimize} & \sum_{i,j=1}^{n} P_{ij} X_{ij} + 2 \sum_{i=1}^{n} q_i x_i + r \\ \text{subject to} & X_{ii} = 1, \quad i = 1, \dots, n \\ & X \succ x x^T \end{array}$$

- convex; can be solved as an semidefinite program
- optimal value gives lower bound for BLS
- if $X = xx^T$ at the optimum, we have solved the exact problem
- otherwise, can use *randomized rounding*

generate z from $\mathcal{N}(x, X - xx^T)$ and take $x = \mathbf{sign}(z)$

Example

- feasible set has $2^{100}\approx 10^{30}$ points

• histogram of 1000 randomized solutions from SDP relaxation

Nonnegative polynomial on R

$$f(t) = x_0 + x_1 t + \dots + x_{2m} t^{2m} \ge 0$$
 for all $t \in \mathbf{R}$

- a convex constraint on x
- holds if and only if f is a sum of squares of (two) polynomials:

$$f(t) = \sum_{k} (y_{k0} + y_{k1}t + \dots + y_{km}t^{m})^{2}$$
$$= \begin{bmatrix} 1 \\ \vdots \\ t^{m} \end{bmatrix}^{T} \sum_{k} y_{k}y_{k}^{T} \begin{bmatrix} 1 \\ \vdots \\ t^{m} \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ \vdots \\ t^{m} \end{bmatrix}^{T} Y \begin{bmatrix} 1 \\ \vdots \\ t^{m} \end{bmatrix}$$

where $Y = \sum_{k} y_k y_k^T \succeq 0$

SDP formulation

 $f(t) \ge 0$ if and only if for some $Y \succeq 0$,

$$f(t) = \begin{bmatrix} 1 \\ t \\ \vdots \\ t^{2m} \end{bmatrix}^T \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{2m} \end{bmatrix} = \begin{bmatrix} 1 \\ t \\ \vdots \\ t^m \end{bmatrix}^T Y \begin{bmatrix} 1 \\ t \\ \vdots \\ t^m \end{bmatrix}$$

this is an SDP constraint: there exists $Y \succeq 0$ such that

$$\begin{array}{rclrcl}
x_{0} &=& Y_{11} \\
x_{1} &=& Y_{12} + Y_{21} \\
x_{2} &=& Y_{13} + Y_{22} + Y_{32} \\
& & \vdots \\
x_{2m} &=& Y_{m+1,m+1}
\end{array}$$

General sum-of-squares constraints

 $f(t) = x^T p(t)$ is a sum of squares if

$$x^{T}p(t) = \sum_{k=1}^{s} (y_{k}^{T}q(t))^{2} = q(t)^{T} \left(\sum_{k=1}^{s} y_{k}y_{k}^{T}\right) q(t)$$

- p, q: basis functions (of polynomials, trigonometric polynomials, . . .)
- independent variable t can be one- or multidimensional
- a *sufficient* condition for nonnegativity of $x^T p(t)$, useful in nonconvex polynomial optimization in several variables
- in some nontrivial cases (e.g., polynomial on **R**), necessary and sufficient

Equivalent SDP constraint (on the variables x, X)

$$x^T p(t) = q(t)^T X q(t), \qquad X \succeq 0$$

Example: Cosine polynomials

$$f(\omega) = x_0 + x_1 \cos \omega + \dots + x_{2n} \cos 2n\omega \ge 0$$

Sum of squares theorem: $f(\omega) \ge 0$ for $\alpha \le \omega \le \beta$ if and only if

$$f(\omega) = g_1(\omega)^2 + s(\omega)g_2(\omega)^2$$

- g_1 , g_2 : cosine polynomials of degree n and n-1
- $s(\omega) = (\cos \omega \cos \beta)(\cos \alpha \cos \omega)$ is a given weight function

Equivalent SDP formulation: $f(\omega) \ge 0$ for $\alpha \le \omega \le \beta$ if and only if

$$x^T p(\omega) = q_1(\omega)^T X_1 q_1(\omega) + s(\omega) q_2(\omega)^T X_2 q_2(\omega), \quad X_1 \succeq 0, \quad X_2 \succeq 0$$

p, q_1 , q_2 : basis vectors $(1, \cos \omega, \cos(2\omega), \ldots)$ up to order 2n, n, n-1

Cone programming

Example: Linear-phase Nyquist filter

minimize $\sup_{\omega \ge \omega_s} |h_0 + h_1 \cos \omega + \dots + h_{2n} \cos 2n\omega|$

with $h_0 = 1/M$, $h_{kM} = 0$ for positive integer k

(Example with n = 25, M = 5, $\omega_s = 0.69$)

Cone programming

SDP formulation

$$\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & -t \leq H(\omega) \leq t, \quad \omega_{\rm s} \leq \omega \leq \pi \end{array}$$

where $H(\omega) = h_0 + h_1 \cos \omega + \dots + h_{2n} \cos 2n\omega$

Equivalent SDP

minimize
$$t$$

subject to $t - H(\omega) = q_1(\omega)^T X_1 q_1(\omega) + s(\omega) q_2(\omega)^T X_2 q_2(\omega)$
 $t + H(\omega) = q_1(\omega)^T X_3 q_1(\omega) + s(\omega) q_2(\omega)^T X_3 q_2(\omega)$
 $X_1 \succeq 0, \quad X_2 \succeq 0, \quad X_3 \succeq 0, \quad X_4 \succeq 0$

Variables t, h_i ($i \neq kM$), 4 matrices X_i of size roughly n

Chebyshev inequalities

Classical (two-sided) Chebyshev inequality

 $\operatorname{prob}(|X| < 1) \ge 1 - \sigma^2$

- holds for all random X with $\mathbf{E} X = 0$, $\mathbf{E} X^2 = \sigma^2$
- there exists a distribution that achieves the bound

Generalized Chebyshev inequalities

give lower bound on $\operatorname{prob}(X \in C)$, given moments of X

Chebyshev inequality for quadratic constraints

• C is defined by quadratic inequalities

$$C = \{ x \in \mathbf{R}^n \mid x^T A_i x + 2b_i^T x + c_i \le 0, \ i = 1, \dots, m \}$$

- X is random vector with $\mathbf{E} X = a$, $\mathbf{E} X X^T = S$
- **SDP** formulation (variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r, \tau_1, \ldots, \tau_m \in \mathbf{R}$)

$$\begin{array}{ll} \text{maximize} & 1 - \mathbf{tr}(SP) - 2a^T q - r \\ \text{subject to} & \left[\begin{array}{cc} P & q \\ q^T & r - 1 \end{array} \right] \succeq \tau_i \left[\begin{array}{cc} A_i & b_i \\ b_i^T & c_i \end{array} \right], \quad \tau_i \ge 0 \quad i = 1, \dots, m \\ \left[\begin{array}{cc} P & q \\ q^T & r \end{array} \right] \succeq 0 \end{array}$$

optimal value is tight lower bound on $\operatorname{prob}(X \in S)$

Example

- $a = \mathbf{E} X$; dashed line shows $\{x \mid (x a)^T (S aa^T)^{-1} (x a) = 1\}$
- lower bound on $\operatorname{prob}(X \in C)$ is achieved by distribution shown in red
- ellipse is defined by $x^T P x + 2q^T x + r = 1$

Detection example

$$x = s + v$$

- $x \in \mathbf{R}^n$: received signal
- s: transmitted signal $s \in \{s_1, s_2, \ldots, s_N\}$ (one of N possible symbols)

•
$$v$$
: noise with $\mathbf{E} v = 0$, $\mathbf{E} v v^T = \sigma^2 I$

Detection problem: given observed value of x, estimate s

Example (N = 7): bound on probability of correct detection of s_1 is 0.205

dots: distribution with probability of correct detection 0.205

Cone programming duality

Primal and dual cone program

P: minimize $c^T x$ subject to $Ax \preceq_K b$ D: maximize $-b^T z$ subject to $A^T z + c = 0$ $z \succ_{K^*} 0$

- optimal values are equal (if primal or dual is strictly feasible)
- dual inequality is with respect to the dual cone

$$K^* = \{ z \mid x^T z \ge 0 \text{ for all } x \in K \}$$

• $K = K^*$ for linear, second-order cone, semidefinite programming

Applications: optimality conditions, sensitivity analysis, algorithms, . . .

Interior-point methods

- Newton's method
- barrier method
- primal-dual interior-point methods
- problem structure

Equality-constrained convex optimization

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

f twice continuously differentiable and convex

Optimality (Karush-Kuhn-Tucker or KKT) condition

$$\nabla f(x) + A^T y = 0, \qquad Ax = b$$

Example: $f(x) = (1/2)x^T P x + q^T x + r$ with $P \succeq 0$

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

a symmetric indefinite set of equations, known as a KKT system

Newton step

replace f with second-order approximation f_q at feasible \hat{x} :

$$\begin{array}{ll} \mbox{minimize} & f_{\rm q}(x) \stackrel{\Delta}{=} f(\hat{x}) + \nabla f(\hat{x})^T (x - \hat{x}) + \frac{1}{2} (x - \hat{x})^T \nabla^2 f(\hat{x}) (x - \hat{x}) \\ \mbox{subject to} & Ax = b \end{array}$$

solution is $x = \hat{x} + \Delta x_{\rm nt}$ with $\Delta x_{\rm nt}$ defined by

$$\begin{bmatrix} \nabla^2 f(\hat{x}) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(\hat{x}) \\ 0 \end{bmatrix}$$

 $\Delta x_{\rm nt}$ is called the **Newton step** at \hat{x}

Interpretation (for unconstrained problem)

 $\hat{x} + \Delta x_{nt}$ minimizes 2nd-order approximation f_{q} $(\hat{x}, f(\hat{x}))$ $(\hat{x} + \Delta x_{nt}, f(\hat{x} + \Delta x_{nt}))$

Interior-point methods

Newton's algorithm

given starting point $x^{(0)} \in \operatorname{dom} f$ with $Ax^{(0)} = b$, tolerance ϵ repeat for $k = 0, 1, \ldots$

1. compute Newton step $\Delta x_{\rm nt}$ at $x^{(k)}$ by solving

$$\begin{bmatrix} \nabla^2 f(x^{(k)}) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x^{(k)}) \\ 0 \end{bmatrix}$$

2. terminate if
$$-\nabla f(x^{(k)})^T \Delta x_{nt} \le \epsilon$$

3. $x^{(k+1)} = x^{(k)} + t \Delta x_{nt}$, with t determined by line search

Comments

- $\nabla f(x^{(k)})^T \Delta x_{nt}$ is directional derivative at $x^{(k)}$ in Newton direction
- line search needed to guarantee $f(x^{(k+1)}) < f(x^{(k)})$, global convergence

Example

- high accuracy after small number of iterations
- fast asymptotic convergence

Classical convergence analysis

Assumptions (m, L are positive constants)

- f strongly convex: $\nabla^2 f(x) \succeq mI$
- $\nabla^2 f$ Lipschitz continuous: $\|\nabla^2 f(x) \nabla^2 f(y)\|_2 \le L \|x y\|_2$

Summary: two regimes

• damped phase ($\|\nabla f(x)\|_2$ large): for some constant $\gamma > 0$

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• quadratic convergence ($\|\nabla f(x)\|_2$ small)

 $\|\nabla f(x^{(k)})\|_2$ decreases quadratically

Self-concordant functions

Shortcomings of classical convergence analysis

- depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

Analysis for self-concordant functions (Nesterov and Nemirovski, 1994)

• a convex function of one variable is self-concordant if

$$|f'''(x)| \le 2f''(x)^{3/2}$$
 for all $x \in \operatorname{\mathbf{dom}} f$

a function of several variables is s.c. if its restriction to lines is s.c.

- analysis is affine-invariant, does not depend on unknown constants
- developed for complexity theory of interior-point methods

Interior-point methods

minimize
$$f_0(x)$$

subjec to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

functions f_i , $i = 0, 1, \ldots, m$, are convex

Basic idea: follow 'central path' through interior feasible set to solution

General properties

- path-following mechanism relies on Newton's method
- every iteration requires solving a set of linear equations (KKT system)
- number of iterations small (10–50), fairly independent of problem size
- some versions known to have polynomial worst-case complexity

History

- introduced in 1950s and 1960s
- used in polynomial-time methods for linear programming (1980s)
- polynomial-time algorithms for general convex optimization (ca. 1990)

Reformulation via indicator function

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

Reformulation

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where I_{-} is indicator function of \mathbf{R}_{-} :

 $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise

- reformulated problem has no inequality constraints
- however, objective function is not differentiable

Approximation via logarithmic barrier

minimize
$$f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_-
- approximation improves as $t \to \infty$

Logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$$

with $\operatorname{dom} \phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$

- convex (follows from composition rules and convexity of f_i)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

central path is $\{x^{\star}(t) \mid t > 0\}$, where $x^{\star}(t)$ is the solution of

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

Example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, \dots, 6$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$ repeat:

- 1. Centering step. Compute $x^{\star}(t)$ and set $x := x^{\star}(t)$
- 2. Stopping criterion. Terminate if $m/t < \epsilon$
- 3. Increase t. $t := \mu t$
- stopping criterion $m/t \leq \epsilon$ guarantees

 $f_0(x) - \text{optimal value} \le \epsilon$

(follows from duality)

- typical value of μ is 10--20
- several heuristics for choice of $t^{(0)}$
- centering usually done using Newton's method, starting at current \boldsymbol{x}

Example: Inequality form LP

• starts with x on central path ($t^{(0)} = 1$, duality gap 100)

- terminates when $t = 10^8$ (gap $m/t = 10^{-6}$)
- total number of Newton iterations not very sensitive for $\mu \geq 10$

Family of standard LPs

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, \quad x \succeq 0 \end{array}$

 $A \in \mathbf{R}^{m \times 2m}$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

Second-order cone programming

minimize
$$f^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$

Logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log\left((c_i^T x + d_i)^2 - \|A_i x + b_i\|_2^2\right)$$

- a convex function
- $\log(v^2 u^T u)$ is 'logarithm' for 2nd-order cone $\{(u, v) \mid ||u||_2 \le v\}$

Barrier method: follows central path $x^{\star}(t) = \operatorname{argmin}(tf^T x + \phi(x))$

Example

50 variables, 50 second-order cone constraints in ${\rm I\!R}^6$

Semidefinite programming

minimize
$$c^T x$$

subject to $x_1 A_1 + \dots + x_n A_n \preceq B$

Logarithmic barrier function

$$\phi(x) = -\log \det(B - x_1 A_1 - \dots - x_n A_n)$$

- a convex function
- $\log \det X$ is 'logarithm' for p.s.d. cone

Barrier method: follows central path $x^{\star}(t) = \operatorname{argmin}(tf^Tx + \phi(x))$

Example

100 variables, one linear matrix inequality in \mathbf{S}^{100}

Complexity of barrier method

Iteration complexity

- can be bounded by polynomial function of problem dimensions (with correct formulation, barrier function)
- examples: $O(\sqrt{m})$ iteration bound for LP or SOCP with m inequalities, SDP with constraint of order m
- proofs rely on theory of Newton's method for self-concordant functions
- in practice: #iterations roughly constant as a function of problem size

Linear algebra complexity

dominated by solution of Newton system

Primal-dual interior-point methods

Similarities with barrier method

- follow the same central path
- linear algebra (KKT system) per iteration is similar

Differences

- faster and more robust
- update primal and dual variables in each step
- no distinction between inner (centering) and outer iterations
- include heuristics for adaptive choice of barrier parameter t
- can start at infeasible points
- often exhibit superlinear asymptotic convergence

Software implementations

General-purpose software for nonlinear convex optimization

- several high-quality packages (MOSEK, Sedumi, SDPT3, ...)
- exploit sparsity to achieve scalability

Customized implementations

- can exploit non-sparse types of problem structure
- often orders of magnitude faster than general-purpose solvers

Example: ℓ_1 -regularized least-squares

minimize $||Ax - b||_2^2 + ||x||_1$

A is $m \times n$ (with $m \leq n$) and dense

Quadratic program formulation

minimize
$$||Ax - b||_2^2 + \mathbf{1}^T u$$

subject to $-u \leq x \leq u$

• coefficient of Newton system in interior-point method is

$$\begin{bmatrix} A^T A & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} D_1 + D_2 & D_2 - D_1 \\ D_2 - D_1 & D_1 + D_2 \end{bmatrix} \qquad (D_1, D_2 \text{ positive diagonal})$$

• very expensive
$$(O(n^3))$$
 for large n

Customized implementation

• can reduce Newton equation to solution of a system

$$(AD^{-1}A^T + I)\Delta u = r$$

• cost per iteration is $O(m^2n)$

Comparison (seconds on 3.2Ghz machine)

m	n	custom	general-purpose
50	100	0.02	0.05
50	200	0.03	0.17
100	1000	0.32	10.6
100	2000	0.71	76.9
500	1000	2.5	11.2
500	2000	5.5	79.8

general-purpose solver is MOSEK

First-order methods

- gradient method
- Nesterov's gradient methods
- extensions

Gradient method

to minimize a convex differentiable function f: choose $x^{(0)}$ and repeat

$$x^{(k)} = x^{(k-1)} - t_k \nabla f(x^{(k-1)}), \qquad k = 1, 2, \dots$$

 t_k is step size (fixed or determined by backtracking line search)

Classical convergence result

- assume ∇f Lipschitz continuous $(\|\nabla f(x) \nabla f(y)\|_2 \le L \|x y\|_2)$
- error decreases as 1/k, hence

$$O\left(\frac{1}{\epsilon}\right)$$
 iterations

needed to reach accuracy $f(x^{(k)}) - f^\star \leq \epsilon$

Nesterov's gradient method

choose $x^{(0)};$ take $x^{(1)}=x^{(0)}-t_1\nabla f(x^{(0)})$ and for $k\geq 2$

$$y^{(k)} = x^{(k-1)} + \frac{k-2}{k+1} (x^{(k-1)} - x^{(k-2)})$$
$$x^{(k)} = y^{(k)} - t_k \nabla f(y^{(k)})$$

- gradient method with 'extrapolation'
- if f has Lipschitz continuous gradient, error decreases as $1/k^2$; hence

$$O\left(\frac{1}{\sqrt{\epsilon}}\right)$$
 iterations

needed to reach accuracy $f(x^{(k)}) - f^* \leq \epsilon$

• many variations; first one published in 1983

Example

minimize
$$\log \sum_{i=1}^{m} \exp(a_i^T x + b_i)$$

randomly generated data with m=2000, n=1000, fixed step size

First-order methods

Interpretation of gradient update

$$x^{(k)} = x^{(k-1)} - t_k \nabla f(x^{(k-1)})$$

= $\operatorname{argmin}_{z} \left(\nabla f(x^{(k-1)})^T z + \frac{1}{t_k} \|z - x^{(k-1)}\|_2^2 \right)$

Interpretation

 $x^{(k)}$ minimizes

$$f(x^{(k-1)}) + \nabla f(x^{(k-1)})^T (z - x^{(k-1)}) + \frac{1}{t_k} \|z - x^{(k-1)}\|_2^2$$

a simple quadratic model of f at $\boldsymbol{x}^{(k-1)}$

Projected gradient method

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

f convex, C a closed convex set

$$x^{(k)} = \operatorname{argmin}_{z \in C} \left(\nabla f(x^{(k-1)})^T z + \frac{1}{t_k} \|z - x^{(k-1)}\|_2^2 \right)$$
$$= P_C \left(x^{(k-1)} - t_k \nabla f(x^{(k-1)}) \right)$$

- useful if projection P_C on C is inexpensive (*e.g.*, box constraints)
- similar convergence result as for basic gradient algorithm
- can be used in fast Nesterov-type gradient methods

Nonsmooth components

minimize f(x) + g(x)

 $f,\ g$ convex, with f differentiable, g nondifferentiable

$$\begin{aligned} x^{(k)} &= \arg \min_{z} \left(\nabla f(x^{(k-1)})^{T} z + g(x) + \frac{1}{t_{k}} \|z - x^{(k-1)}\|_{2}^{2} \right) \\ &= \arg \min_{z} \left(\frac{1}{2t_{k}} \left\| z - x^{(k-1)} + t_{k} \nabla f(x^{(k-1)}) \right\|_{2}^{2} + g(z) \right) \\ &\triangleq S_{t_{k}} \left(x^{(k-1)} - t_{k} \nabla f(x^{(k-1)}) \right) \end{aligned}$$

- gradient step for f followed by 'thresholding' operation S_t
- useful if thresholding is inexpensive (e.g., because g is separable)
- similar convergence result as basic gradient method

Example: ℓ_1 -norm regularization

minimize $f(x) + ||x||_1$

 $f\ {\rm convex}\ {\rm and}\ {\rm differentiable}$

Thresholding operator

$$S_t(y) = \operatorname*{argmin}_{z} \left(\frac{1}{2t} \|z - y\|_2^2 + \|z\|_1 \right)$$

ℓ_1 -Norm regularized least-squares

minimize
$$\frac{1}{2} ||Ax - b||_2^2 + ||x||_1$$

randomly generated $A \in \mathbf{R}^{2000 \times 1000}$; fixed step

First-order methods

Summary: Advances in convex optimization

Theory

new problem classes, robust optimization, convex relaxations, . . .

Applications

new applications in different fields; surprisingly many discovered recently

Algorithms and software

- high-quality general-purpose implementations of interior-point methods
- software packages for convex modeling
- new first-order methods