Deterministic Scheduling

Dr inż. Krzysztof Giaro
Gdańsk University of Technology

Lecture Plan

Introduction to deterministic scheduling
Critical path metod
Some discrete optimization problems
Scheduling to minimize $C_{\text {max }}$
Scheduling to minimize ΣC_{i}
Scheduling to minimize $L_{\text {max }}$
Scheduling to minimize number of tardy tasks
Scheduling on dedicated processors

Introduction to Deterministic Scheduling

Our aim is to schedule the given set of tasks (programs etc.) on machines (or processors).
We have to construct a schedule that fulfils given constraints and minimizes optimality criterion (objective function).

Deterministic model: all the parameters of the system and of the tasks are known in advance.

Genesis and practical motivations:

- scheduling manufacturing processes,
- project planning,
- school or conference timetabling,
- scheduling tasks in multitask operating systems,
- distributed computing.

Introduction to Deterministic Scheduling

Example 1. Five tasks with processing times $p_{1}, \ldots, p_{5}=6,9,4,1,4$ have to be scheduled on three processors to minimize schedule length.

Graphical representation of a schedule - Gantt chart

Why the above schedule is feasible?

General constriants in classical scheduling theory:

- each task is processed by at most one processor at a time,
- each processor is capable of processing at most one task at a time,
- other constraints - to be discussed ...

Introduction to Deterministic Scheduling

Processors characterization

Parallel processors (each processor is capable to process each task):

- identical processors - every processor is of the same speed,
- uniform processors - processors differ in speed, but the speed does not depend on the task,
- unrelated processors - the speed of the processor depend on the particular task processed.

Schedule on three parallel processors

Introduction to Deterministic Scheduling

Processors characterization

Dedicated processors

- Each job consists of the set of tasks preassigned to processors (job J_{j} consists of tasks $T_{i j}$ preassigned to M_{i}, of processing time $p_{i j}$). The job is completed at the time the latest task is completed,
- some jobs may not need all the processors (empty operations),
- no two tasks of the same job can be scheduled in parallel,
- a processor is capable to process at most one task at a time.

There are three models of scheduling on dedicated processors:

- flow shop - all jobs have the same processing order through the machines coincident with machine numbering,
- open shop - the sequenice of tasks within each job is arbitrary,
- job shop - the machine sequence of each job is given and may differ between jobs.

Introduction to Deterministic Scheduling

Processors characterization

Dedicated processors - open shop
(processor sequence is arbitrary for each job).
Example. One day school timetable.

Classes		Teachers			M_{1}	J_{2}		J_{1}		J_{3}
	J_{1}	3	2	1	M_{2}	J_{1}		J_{2}	J_{3}	
	J_{2}	3	2	2						
	J_{3}	1	1	2	M_{3}	J_{3}	J_{1}		J	

Introduction to Deterministic Scheduling

Processors characterization

Dedicated processors - flow shop (processor sequence is the same for each job - task $T_{i j}$ must precede $T_{k j}$ for $i<k$).

Example. Conveyor belt.

Introduction to Deterministic Scheduling

Processors characterization

Dedicated processors - flow shop (processor sequence is the same for each job - task $T_{i j}$ must precede $T_{k j}$ for $i<k$).

Flow shop allow the job order to differ between machines...

Permutation flow shop does not.

Dedicated processors will be considered later ...

Introduction to Deterministic Scheduling

Tasks characterization

There are given: the set of n tasks $T=\left\{T_{1}, \ldots, T_{n}\right\}$ and m machines

 (processors) $M=\left\{M_{1}, \ldots, M_{m}\right\}$.
Task \boldsymbol{T}_{j} :

- Processing time. It is independent of processor in case of identical processors and is denoted p_{j}. In the case of uniform processors, processor M_{i} speed is denoted b_{i}, and the processing time of T_{j} on M_{i} is p_{j} / b_{i}. In the case of unrelated processors the processing time of T_{j} on M_{i} is $p_{i j}$.
- Release (or arrival) time r_{j}. The time at which the task is ready for processing. By default all release times are zero.
- Due date d_{j}. Specifies the time limit by which should be completed. Usually, penalty functions are defined in accordance with due dates, or d_{j} denotes the 'hard' time limit (deadline) by which T_{j} must be completed (exact meaning comes from the context).
- Weight w_{j} - expresses the relative urgency of T_{j}, by default $w_{j}=1$.

Introduction to Deterministic Scheduling

Tasks characterization

Dependent tasks:

- In the task set there are some precedence constraints defined by a precedence relation. $T_{i} \prec T_{j}$ means that task T_{j} cannot be started until T_{i} is completed (e.g. T_{j} needs the results of T_{i}).
- In the case there are no precedence constraints, we say that the tasks are independent (by default). In the other case we say the tasks are dependent.
- The precedence relation is usually represented as a directed graph in shich nodes correspond to tasks and arcs represent precedence constraints (task-on-node graph). Transitive arcs are usually removed from precedence graph.

Introduction to Deterministic Scheduling

Tasks characterization
Example. A schedule for 10 dependent tasks (p_{j} given in the nodes).

Introduction to Deterministic Scheduling

Tasks characterization

A schedule can be:

- non-preemptive - preempting of any task is not allowed (default),
- preemptive - each task may be preempted at any time and restarted later (even on a different processor) with no cost.

Preemptive schedule on parallel processors

Introduction to Deterministic Scheduling

Feasible schedule conditions (gathered):

- each processor is assigned to at most one task at a time,
- each task is processed by at most one machine at a time,
- task T_{j} is processed completly in the time interval $\left[r_{j}, \infty\right.$) (or within $\left[r_{j}, d_{j}\right.$), when deadlines are present),
- precedence constraints are satisfied,
- in the case of non-preemptive scheduling no task is preempted, otherwise the number of preemptions is finite.

Introduction to Deterministic Scheduling

Optimization criteria

A location of the task T_{i} within the schedule:

- completion time C_{i},
- flow time $F_{i}=C_{i}-r_{i}$,
- lateness $L_{i}=C_{i}-d_{i}$,
- tardiness $T_{i}=\max \left\{C_{i}-d_{i}, 0\right\}$,
- "tardiness flag" $U_{i}=\mathrm{w}\left(C_{i}>d_{i}\right)$, i.e. the answer ($0 / 1$ logical yes/no) to the question whether the task is late or not.

Introduction to Deterministic Scheduling

Optimization criteria

Most common optimization criteria:

- schedule length (makespan) $C_{\max }=\max \left\{C_{j}: j=1, \ldots, n\right\}$,
- sum of completion times (total completion time) $\Sigma C_{j}=\Sigma_{i=1, \ldots, n} C_{i}$,
- mean flow time $\bar{F}=\left(\Sigma_{i=1, \ldots, n} F_{i}\right) / n$.

$$
\begin{aligned}
& C_{\max }=9 \\
& \Sigma C_{j}=6+9+4+7+8=34
\end{aligned}
$$

A schedule of three parallel processors. $p_{1}, \ldots, p_{5}=6,9,4,1,4$.
In the case there are tasks weights we can consider:

- sum of weighted completion times $\Sigma w_{j} C_{j}=\Sigma_{i=1, \ldots, n} w_{i} C_{i}$,

$$
w_{1}, \ldots, w_{5}=1,2,3,1,1 \quad \Sigma w_{j} C_{j}=\mathbf{6}+\mathbf{1 8}+\mathbf{1 2 + 7 + 8}=\mathbf{5 1}
$$

Introduction to Deterministic Scheduling

Optimization criteria

Related to due times:

- maximum lateness $L_{\max }=\max \left\{L_{j}: j=1, \ldots, n\right\}$,
- maximum tardiness $T_{\max }=\max \left\{T_{j}: j=1, \ldots, n\right\}$,
- total tardiness $\Sigma T_{j}=\Sigma_{i=1, \ldots, n} T_{i}$,
- number of tardy tasks $\Sigma U_{j}=\Sigma_{i=1, \ldots, n} U_{i}$,
- weighted criteria may be considered, e.g. total weighted tardiness

Some criteria are pair-wise equivalent

$$
\Sigma L_{i}=\Sigma C_{i}-\Sigma d_{i}, \bar{F}=\left(\Sigma C_{i}\right) / n-\left(\Sigma r_{i}\right) / n . \quad \Sigma T_{j}=4, \Sigma U_{j}=2
$$

Task: \quad| | T_{1} | T_{2} | T_{3} | T_{4} | T_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- |

| $d_{i}=$ | 7 | 7 | 5 | 5 | 8 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| $L_{i}=$ | -1 | 2 | -1 | 2 | 0 |
| $T_{i}=$ | 0 | 2 | 0 | 2 | 0 |
| $L_{\max }=T_{\max }=2$ | | | | | |

Introduction to Deterministic Scheduling

Classification of deterministic scheduling problems.

α is of the form:

- P - identical processors
- Q - uniform processors
- R - unrelated processors
- O - open shop
- F - flow shop
- $P F$ - „permutation" flow shop
- J - job shop

Moreover:

- there may be specified the number
of processors e.g. O4,
- in the case of single processors we just put 1,
- we put '-' in the case of processorfree environment.

Introduction to Deterministic Scheduling

Classification of deterministic scheduling problems.

In the case β is empty all tasks characteristics are default: the tasks are non-preemptive, not dependent $r_{j}=0$, processing times and due dates are arbitrary.
β possible values:

- pmtn - preemptive tasks,
- res - additional resources required (omitted),
- prec - there are precedence constraints,
- r_{j} - arrival times differ per task,
- $p_{j}=1$ or $U E T$ - all processing times equal to 1 unit,
- $p_{i j} \in\{0,1\}$ or ZUET - all tasks are of unit time or empty (dedicated processors),
- $C_{j} \leq d_{j}$ or d_{j} denote deadlines,

Introduction to Deterministic Scheduling

Classification of deterministic scheduling problems.
β possible values:

- in-tree, out-tree, chains ... - reflects the precedence constraints (prec).

in-tree

out-tree

Introduction to Deterministic Scheduling

Classification of deterministic scheduling problems.

Examples.

P3|precl $C_{\text {max }}$ - scheduling non-preemptive tasks with precedence constraints on three parallel identical processors to minimize schedule length.

Rlpmtn,prec, $r_{i} \mid \Sigma U_{i}-$ scheduling preemptive dependent tasks with arbitrary ready times and arbitrary due dates on parallel unrelated processors to minimize the number ot tardy tasks.
$1\left|r_{i}, C_{i} \leq d_{i}\right|-$ - decision problem of existence (no optimization criterion) of schedule of independent tasks with arbitrary ready times and deadlines on a single processor, such that no task is tardy.

Introduction to Deterministic Scheduling Propertiels of computer algorithm evaluating its quality.

Computational (time) complexity - function that estimates (upper bound) the worst-case operation number performed during execution in terms of input data size.

Polynomial (time) algorithm - when time complexity may be bounded by some polynomial of data size. In computing theory polynomial algorithms are considered as efficient.

Introduction to Deterministic Scheduling Propertiels of computer algorithm evaluating its quality.

NP-hard problems - are commonly believed not to have polynomial time algorithms solving them. For these problems we can only use fast but not accurate procedures or (for small instances) long time heuristics. NP-hardness is treated as computational intractability.

How to prove that problem A is NP-hard?

Sketch: Find any NP-hard problem B and show the efficient (polynomial) procedure that reduces (translates) B into A. Then A is not less general problem than B , therefore if B was hard, so is A .

Introduction to Deterministic Scheduling Reductions of scheduling problems

Introduction to Deterministic Scheduling

Computational complexity of scheduling problems

In we restrict the number of processors to $1,2,3, \bullet$, there are 4536 problems:

- 416 - polynomial-time solvable,
- 3817 - NP-hard,
- 303 - open.

How do we cope with NP-hardness?

- exact pseudo-polynomial time algorithms,
- exact algorithms, efficient only in the mean-case,
- heuristics (tabu-search, genetic algorithms etc.),
- in the case of small input data - exponential exchaustive search (e.g. branch-bound).

Introduction to Deterministic Scheduling

General problem analysis schema

Construct pseudopolynomial time algorithm for X

Polynomial-time:

- approximate algorithms
- approximation schemas

凹Do not exist
Restrict problem X

[^0]
Critical path method.

$-|p r e c| C_{\text {max }}$ model consists of a set of dependent tasks of arbitrary lengths, which do not need processors. Our aim is to construct a schedule of minimum length.

Precedence relation \prec is a quasi order in the set of tasks, i.e. it is:

- anti-reflective: $\forall_{T_{i}} \neg T_{i} \prec T_{i}$
- transistive: $\forall_{T_{i}, T_{j}, T_{k}}\left(T_{i} \prec T_{j} \wedge T_{j} \prec T_{k}\right) \Rightarrow T_{i} \prec T_{k}$

Critical path method.

Precence relation \prec is represented with an acyclic digraph .
AN (activity on node) network:

- nodes correspond to tasks, nodes weights equal to processing times,
- $T_{i} \prec T_{j} \Leftrightarrow$ there exists a directed path connecting node T_{i} and node T_{j},
- transitive arcs are removed.

AA (activity on arc) network:

- arcs correspond to tasks, their length is equal to processing times,
- for each node v there exists a path starting at S (source) and terminating at T (sink) passing through v,
- $T_{i} \prec T_{j} \Leftrightarrow$ arc T_{i} end-node is the starting-node of T_{j}, or there exists a directed path starting at T_{i} end-node and terminating at T_{j} start-node.,
- to construct the network one may need to add apparent tasks - zero-length tasks.

Critical path method.

Example. Precedence relation for 19 tasks.

Example. Translating AN to AA we may need to add (zero-length) apparent tasks.

Critical path method.

${ }^{-|p r e c|} \mid C_{\text {max }}$ model consists of a set of dependent tasks of arbitrary lengths, which do not need processors. Our aim is to construct a schedule of minimum length.
The idea: for every task T_{i} we find the earliest possible start time $l\left(T_{i}\right)$, i.e. the length of the longest path terminating at that task.

How to find these start times?

AN network Algorithm:

1. find a topological node ordering (the start of any arc precedes its end),
2. assign $l\left(T_{a}\right)=0$ for every task T_{a} without predecessor,
3. assing $l\left(T_{a}\right)=\max \left\{l\left(T_{j}\right)+p_{j}\right.$: exists an $\left.\operatorname{arc}\left(T_{j}, T_{i}\right)\right\}$ to all other tasks in topological order.

AA network Algorithm:

1. find a topological node ordering,
2. $l(S)=0$, assign $l(v)=\max \left\{l(u)+p_{j}:\right.$ arc T_{j} connects u and $\left.v\right\}$ to each node v,

Result: $l\left(T_{j}\right)$ is equal to $l(v)$ of the starting node v of $T_{j} . l(T)$ is the length of an optimal schedule.

Critical path method.

Example: construction of a schedule for 19 tasks.

Critical path method.

Critical path method.

- Critical path method does not only minimize $C_{\text {max }}$, but also optimizes all previously defined criteria.
- We can introduce to the model arbitrary release times by adding for each task T_{j} extra task of length r_{j} preceding T_{j}.

Some Discrete Optimization Problems

- maximum flow problem. There is given a loop-free multidigraph $D(V, E)$ where each arc is assigned a capacity $w: E \rightarrow N$. There are two specified nodes - the source s and the sink t. The aim is to find a flow $f: E \rightarrow N \cup\{0\}$ of maximum value.

What is a flow of value F ?

- $\forall_{e \in E} f(e) \leq c(e), \quad$ (flows may not exceed capacities)
- $\forall_{v \in V-\{z, u\}} \Sigma_{e \text { terminates at } v} f(e)-\Sigma_{e \text { starts at } v} f(e)=0$,
(the same flows in and flows out for every 'ordinary' node)
- $\Sigma_{e \text { terminates at } t} f(e)-\Sigma_{e \text { starts at } t} f(e)=F$,
(F units flow out of the network through the sink)
- $\Sigma_{e \text { terminates at } s} f(e)-\Sigma_{e \text { starts at } s} f(e)=-F$.
(F units flow into the network through the source)

Some Discrete Optimization Problems

- maximum flow problem. There is given a loop-free multidigraph $D(V, E)$ where each arc is assigned a capacity $w: E \rightarrow N$. There are two specified nodes - the source s and the sink t. The aim is to find a flow $f: E \rightarrow N \cup\{0\}$ of maximum value.

Network, arcs capacity

Some Discrete Optimization Problems

- maximum flow problem. There is given a loop-free multidigraph $D(V, E)$ where each arc is assigned a capacity $w: E \rightarrow N$. There are two specified nodes - the source s and the sink t. The aim is to find a flow $f: E \rightarrow N \cup\{0\}$ of maximum value.

... and maximum flow Complexity $\boldsymbol{O}\left(|\boldsymbol{V}| \mathbf{E} \mid \mathbf{l o g}\left(|\mathbf{V}|^{2}|\mathbf{E}|\right) \leq \boldsymbol{O}\left(|\boldsymbol{V}|^{3}\right)\right.$. $F=5$

Some Discrete Optimization Problems

- Many graph coloring models.
- Longest (shortest) path problems.
- Linear programming - polynomial-time algorithm known.
- The problem of graph matching. There is given graph $G(V, E)$ with a weight function $w: E \rightarrow N \cup\{0\}$. A matching is a subset $A \subset E$ of pair-wise non-neighbouring edges.
- Maximum matching: find a matching of the maximum possible cardinality $(\alpha(L(G)))$. The complexity $\boldsymbol{O}\left(|\boldsymbol{E}||\boldsymbol{V}|^{\mathbf{1 / 2}}\right)$.
- Heaviest (lightest) matching of a given cardinality. For a given $k \leq \alpha(L(G))$ find a matching of cardinality k and maximum (minmum) possible weight sum.
- Heaviest matching. Find a matching of maximum possible weight sum. The complexity $\boldsymbol{O}\left(|V|^{3}\right)$ for bipartite graphs and $\boldsymbol{O}\left(|\boldsymbol{V}|^{4}\right)$ in general case.

Some Discrete Optimization Problems

Cardinality: 4
Weight: 4

Cardinality: 3
Weight: 12

Maximum matching needs not to be the heaviest one and vice-versa.

Scheduling on Parallel Processors to Minimize the

 Schedule Length.
Identical processors, independent tasks

Preemptive scheduling Plpmtni $C_{\text {max }}$.
McNaughton Algorithm (complexity $\boldsymbol{O}(\boldsymbol{n})$)

1. Derive optimal length $C_{\max }{ }^{*}=\max \left\{\Sigma_{j=1, \ldots, n} p_{j} / m, \max _{j=1, \ldots, n} p_{j}\right\}$,
2. Schedule the consecutive tasks on the first machine until $C_{\max } *$ is reached. Then interrupt the processed task (if it is not completed) and continue processing it on the next machine starting at the moment 0 .
Example. $m=3, n=5, p_{1}, \ldots, p_{5}=4,5,2,1,2$.
$\Sigma_{i=1, \ldots, 5} p_{i}=14, \max p_{i}=5$,
$C_{\text {max }} *=\max \{14 / 3,5\}=5$.

5

Scheduling on Parallel Processors to Minimize the Schedule Length.

Identical processors, independent tasks

Non-preemptive scheduling $P \| C_{\max }$.

The problem is NP-hard even in the case of two processors ($P 2 \| C_{\text {max }}$).
Proof. Partition Problem: there is given a sequence of positive integers $a_{1}, \ldots a_{n}$ such that $S=\sum_{i=1, \ldots, n} a_{i}$. Determine if there exists a sub-sequence of sum $S / 2$?
$P P \rightarrow P 2 \| C_{\text {max }}$ reduction: put n tasks of lengths $p_{j}=a_{j}(j=1, \ldots, n)$, and two processors. Determine if $C_{\max } \leq S / 2$.

There exists an exact pseudo-polynomial dynamic programming algorithm of complexity $O\left(n C^{m}\right)$, for some $C \geq C_{\max }{ }^{*}$.

Scheduling on Parallel Processors to Minimize the

 Schedule Length.
Identical processors, independent tasks

Non-preemptive scheduling $P \| C_{\text {max }}$.

Polynomial-time approximation algorithms.
List Scheduling LS - an algorithm used in numerous problems:

- fix an ordering of the tasks on the list,
- any time a processor gets free (a task processed by that processor has been completed), schedule the first available task from the list on that processor.

Example. $m=3, n=5, p_{1}, \ldots, p_{5}=2,2,1,1,3$.

List scheduling

Scheduling on Parallel Processors to Minimize the

 Schedule Length.
Identical processors, independent tasks

Non-preemptive scheduling $P \| C_{\text {max }}$.

Polynomial-time approximation algorithms.
List Scheduling LS - an algorithm used in numerous problems:

- fix an ordering of the tasks on the list,
- any time a processor gets free (a task processed by that processor has been completed), schedule the first available task from the list on that processor.
Approximation ratio. LS is 2-approximate: $C_{\max }(\mathrm{LS}) \leq\left(2-m^{-1}\right) C_{\max }{ }^{*}$.
Proof (includes dependent tasks model $\boldsymbol{P} \mid$ precl $\boldsymbol{C}_{\text {max }}$). Consider a sequence of tasks $T_{\pi(1)}, \ldots T_{\pi(k)}$ in a LS schedule, such that $T_{\pi(1)}$ - the last completed task, $T_{\pi(2)}$ - the last completed predecessor of $T_{\pi(1)}$ etc.
$C_{\max }{ }^{(p m m n)} \leq C_{\max } * \leq C_{\max }(\mathrm{LS}) \leq \sum_{i=l, \ldots, k} p_{\pi(k)}+\sum_{i \neq \pi} p_{i} / \mathrm{m}$
$=(1-1 / \mathrm{m}) \sum_{i=1, \ldots, k} p_{\pi(k)}+\sum_{i} p_{\mathrm{i}} / \mathrm{m} \leq\left(2-m^{-1}\right) C_{\max }{ }^{p m m n)} \leq\left(2-m^{-1}\right) C_{\max } *$

Scheduling on Parallel Processors to Minimize the

 Schedule Length.
Identical processors, independent tasks

Non-preemptive scheduling $P \| C_{\text {max }}$.

Polynomial-time approximation algorithms.
Approximation ratio. LS is 2-approximate: $C_{\max }(\mathrm{LS}) \leq\left(2-m^{-1}\right) C_{\max }{ }^{*}$.
Proof

$$
\begin{array}{lc}
C_{\max }{ }^{(p m m n)} \leq C_{\max }^{*} & \text { (preemptions may help) } \\
C_{\max }^{*} * C_{\max }(\mathrm{LS}) & \text { (optimal vs non-optimal) } \\
C_{\max }(\mathrm{LS}) \leq \sum_{i=1, \ldots, k} p_{\pi(k)}+\sum_{i \notin \pi} p_{\mathrm{i}} / \mathrm{m} & \left(p_{\pi(l)}\right. \text { is the last completed job) } \\
\sum_{i=1, \ldots, k} p_{\pi(k)}+\sum_{i \notin \pi} p_{\mathrm{i}} / \mathrm{m}=(1-1 / \mathrm{m}) \sum_{i=1, \ldots, k} p_{\pi(k)}+\sum_{i} p_{\mathrm{i}} / \mathrm{m}
\end{array}
$$

$$
(1-1 / \mathrm{m}) \sum_{i=1, \ldots, k} p_{\pi(k)}+\sum_{i} p_{\mathrm{i}} / \mathrm{m} \leq\left(2-m^{-1}\right) C_{\max }^{(p m t n)}
$$

$$
\text { because }\left(1-m^{-1}\right) \sum_{i=l, \ldots, k} p_{\pi(k)} \leq\left(1-m^{-1}\right) C_{\max }^{(p m t n)} \text { (prec. constraints) }
$$

$\left(2-m^{-1}\right) C_{\max }{ }^{(p m t n)} \leq\left(2-m^{-1}\right) C_{\max } * \quad$ (see first step)

Scheduling on Parallel Processors to Minimize the

 Schedule Length.
Identical processors, independent tasks

Non-preemptive scheuling $P \| C_{\text {max }}$.

Polynomial-time approximation algorithms.
LPT (Longest Processing Time) scheduling:

- List scheduling, where the tasks are sorted in non-increasing processing times p_{i} order.
Approximation ratio.LS is 4/3-approximate:

$$
C_{\max }(\mathrm{LPT}) \leq\left(4 / 3-(3 m)^{-1}\right) C_{\max }{ }^{*} .
$$

Unrelated processors, not dependent tasks

Preemptive scheduling $R|p m t n| C_{\max }$

Polynomial time algorithm - to be discussed later ...

Non-preemptive scheduling $R \| C_{\max }$

- The problem is NP-hard (generalization of $P \| C_{\text {max }}$).
- Subproblem $Q\left|p_{i}=1\right| C_{\text {max }}$ is solvable in polynomial time.
- LPT is used in practice.

Scheduling on Parallel Processors to Minimize the

 Schedule Length.
Identical processors, dependent tasks

Preemptive scheduling Plpmtn,prec| $C_{\text {max }}$.

- The problem is NP-hard.
- P2lpmtn,prec| $C_{\max }$ i Plpmtn,forest $\mid C_{\text {max }}$ are solvable in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time.
- The following inequality estimating preemptive, non-preemptive and LS schedule holds:

$$
C^{*}{ }_{\text {max }} \leq\left(2-m^{-1}\right) C^{*}{ }_{\text {max }}{ }^{(p m t n)}
$$

Proof. The same as in the case of not dependent tasks.

Scheduling on Parallel Processors to Minimize the Schedule Length.

Identical processors, dependent tasks

Non-preemptive scheduling $P \mid$ prec $\mid C_{\max }$.

- Obviously the problem is NP-hard.
- Many unit-time processing time cases are known to be solvable in polynomial time:
- $P \mid p_{i}=1$, in-forest $\mid C_{\max }$ and $P \mid p_{i}=1$, out-forest $\mid C_{\max }$ (Hu algorithm, complexity $\boldsymbol{O}(\boldsymbol{n})$),
- $P 2 \mid p_{i}=1$, prec $\mid C_{\text {max }}\left(\right.$ Coffman-Graham algorithm, complexity $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$),
- Even $P \mid p_{i}=1$, opositing-forest $\mid C_{\text {max }}$ and $P\left|p_{i}=\{1,2\}, p r e c\right| C_{\text {max }}$ is NP-hard.

Hu algorithm:

- out-forest \rightarrow in-forest reduction: reverse the precedence relation. Solve the problem and reverse the obtained schedule.
- in-forest \rightarrow in-tree: add extra task dependent of all the roots. After obtaining the solution, remove this task from the schedule.
- Hu algorithm sketch: list scheduling for dependent tasks + descending distance from the root order.

Scheduling on Parallel Processors to Minimize the Schedule Length.

Identical processors, dependent tasks

Non-preemptive scheduling

Hu algorithm ($P \mid p_{i}=1$, in-tree $\left.\mid C_{\text {max }}\right)$:

- Level of a task - number of nodes in the path to the root.
- The task is avaliable at the moment t if all the tasks dependent of that task have been completed until t.

Compute the levels of the tasks;
$t:=1$;
repeat
Find the list L_{t} of all tasks avalable at the moment t;
Sort L_{t} in non-increasing levels order;
Assign m (or less) forst tasks from L_{t} to the processors;
Remove the scheduled tasks from the graph;
$t:=t+1$;
until all the tasks are scheduled;

Scheduling on Parallel Processors to Minimize the

 Schedule Length.
Identical processors, dependent tasks

Non-preemptive scheduling
Example. Hu algorithm. $n=12, m=3$.

3

Scheduling on Parallel Processors to Minimize the

 Schedule Length.Identical processors, dependent tasks
Non-preemptive scheduling
Example. Hu algorithm. $n=12, m=3$.

3

Scheduling on Parallel Processors to Minimize the

 Schedule Length.Identical processors, dependent tasks
Non-preemptive scheduling
Example. Hu algorithm. $n=12, m=3$.

3

Scheduling on Parallel Processors to Minimize the

 Schedule Length.Identical processors, dependent tasks
Non-preemptive scheduling
Example. Hu algorithm. $n=12, m=3$.

3

Scheduling on Parallel Processors to Minimize the

 Schedule Length.Identical processors, dependent tasks
Non-preemptive scheduling
Example. Hu algorithm. $n=12, m=3$.

3

T_{1}	T_{4}	T_{7}		
T_{2}	T_{5}	T_{8}		
T_{3}	T_{6}	T_{9}		

Scheduling on Parallel Processors to Minimize the

 Schedule Length.Identical processors, dependent tasks
Non-preemptive scheduling
Example. Hu algorithm. $n=12, m=3$.

3

T_{1}	T_{4}	T_{7}	T_{10}	T_{12}
T_{2}	T_{5}	T_{8}	T_{11}	
T_{3}	T_{6}	T_{9}		

Scheduling on Parallel Processors to Minimize the Schedule Length.
 Identical processors, dependent tasks

Non-preemptive scheduling

Coffman-Graham algorithm ($P 2|p r e c| C_{\text {max }}$):

1. label the tasks with integers l from range $[1, \ldots, n]$
2. list scheduling, with desscening labels order.

Phase 1 - task labeling;
no task has any label or list at the beginning;
for $i:=1$ to n do begin
$A:=$ the set of tasks without label, for which all dependent tasks are labeled;
for each $T \in A$ do assign the descending sequence of the labels of tasks dependent of T to $\operatorname{list}(T)$;
choose $\mathrm{T} \in \mathrm{A}$ with the lexicographic minimum $\operatorname{list}(T)$; $l(T):=i$;
end;

Scheduling on Parallel Processors to Minimize the Schedule Length.

Identical processors, dependent tasks

Non-preemptive scheduling
Example. Coffman-Graham algorithm, $n=17$

Scheduling on Parallel Processors to Minimize the Schedule Length.
Identical processors, dependent tasks

Non-preemptive scheduling

Example. Coffman-Graham algorithm, $n=17$

The ordering in the list:

$$
T_{2}, T_{1}, T_{7}, T_{3}, T_{6}, T_{5}, T_{12}, T_{4}, T_{10}
$$

$$
T_{11}, T_{16}, T_{9}, T_{8}, T_{17}, T_{14}, T_{15}, T_{13}
$$

Scheduling on Parallel Processors to Minimize the Schedule Length.
 Identical processors, dependent tasks

Non-preemptive scheduling

LS heuristic can be applied to $P|p r e c| C_{\max }$. The solution is 2 approximate: $C^{*}{ }_{\text {max }}(\mathrm{LS}) \leq\left(2-m^{-1}\right) C^{*}{ }_{\text {max }}$

Proof: It has been proved already...
The order on the list (priority) can be chosen in many different ways. However, some anomalies may occur, i.e. the schedule may lenghten while:

- increasing the number of processors,
- decreasing the processing times,
- releasing some precedence constraints,
- changing the list order.

Scheduling on Parallel Processors to Minimize the Mean Flow Time

Identical processors, independent tasks

Proposal: task Z_{j} scheduled in the k-th position on machine M_{i} increments the value of ΣC_{j} by $k p_{j}$ (or $k p_{i j}$ in the case of $R l_{1 . .}$).

Z_{a}	Z_{b}	Z_{c}
$\times 3$	$\times 2$	$\times 1$

Corollaries.

- the processing time of the first task is multiplied by the greatest coefficient; the coefficients of the following tasks are decreasing,
- to minimize ΣC_{j} we should schedule short tasks first (as they are multiplied by the greatest coefficients),
- list scheduling with the SPT rule (Shortest Processing Times) leads to an optimal solution on a single processor,
- how to assign the tasks to the processors?

Scheduling on Parallel Processors to Minimize the Mean Flow Time

Identical processors, independent tasks
Both preemptive and non-preemptive cases
The problems $P \mid \Sigma C_{i}$ and $P|p m t n| \Sigma C_{i}$ can be considered together (preemptions do not improve the criterion).
Optimal algorithm $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$:

1. Suppose the number of tasks is a multiplicity of m (introduce empty tasks if needed),
2. Sort the tasks according to SPT,
3. Assing the following m-tuples of tasks to the processors arbitrarily.

Example. $m=2, n=5, p_{1}, \ldots, p_{5}=2,5,3,1,3$.

Scheduling on Parallel Processors to Minimize the Mean Flow Time

Identical processors, independent tasks
Both preemptive and non-preemptive cases
The problems $P \mid I \Sigma C_{i}$ and $P|p m t n| \Sigma C_{i}$ can be considered together (preemptions do not improve the criterion).
Optimal algorithm $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$:

1. Suppose the number of tasks is a multiplicity of m (introduce empty tasks if needed),
2. Sort the tasks according to SPT,
3. Assing the following m-tuples of tasks to the processors arbitrarily.

Proof (the case of non-preemptive scheduling):
Lemma. Suppose a_{1}, \ldots, a_{n} i $\mathrm{b}_{1}, \ldots, b_{n}$ are sequences of positive integers.
How to permutate them in order to make the dot product

$$
a_{\pi(1)} b_{\pi(1)}+a_{\pi(2)} b_{\pi(2)}+\ldots+a_{\pi(n-1)} b_{\pi(n-1)}+a_{\pi(n)} b_{\pi(n)}
$$

- the greatest possible? - both should be sorted in ascending order,
- the smallest possible? - sort one ascending, the second descending

Scheduling on Parallel Processors to Minimize the Mean Flow Time

Identical processors, independent tasks
Both preemptive and non-preemptive cases
The problems $P \mid I \Sigma C_{i}$ and $P|p m t n| \Sigma C_{i}$ can be considered together (preemptions do not improve the criterion).
Optimal algorithm $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$:

1. Suppose the number of tasks is a multiplicity of m (introduce empty tasks if needed),
2. Sort the tasks according to SPT,
3. Assing the following m-tuples of tasks to the processors arbitrarily.

Proof (the case of non-preemptive scheduling). Consider an optimal scheduling. One may assume that there are k tasks scheduled on each processors (introducing empty tasks if needed).

$$
\begin{aligned}
& \Sigma C_{i}=k p_{\pi(1)}+\ldots+k p_{\pi(m)}+ \\
& +(k-1) p_{\pi(m+1)}+\ldots+(k-1) p_{\pi(2 m)}+ \\
& +1 p_{\pi k m \cdot m+1)}+\ldots+1 p_{\pi k m)}
\end{aligned}
$$

Reordering the tasks according to the SPT rule does not increase ΣC_{i}

Scheduling on Parallel Processors to Minimize the Mean Flow Time

Identical processors, independent tasks

Non-preemptive scheduling

In the case the weights are introduced, even $P 2 \| \Sigma w_{j} C_{j}$ is NP-hard.
Proof (sketch). Similar to $\boldsymbol{P 2}\left\|\boldsymbol{C}_{\text {max }} P P \boldsymbol{P} \boldsymbol{P}\right\| \Sigma w_{i} \boldsymbol{C}_{\boldsymbol{i}}$ reduction: take n tasks with $p_{j}=w_{j}=a_{j}(j=1, \ldots, n)$, two processors. There exists a number $C\left(a_{1}, \ldots, a_{n}\right)$ such that $\Sigma w_{j} C_{j} \leq C\left(a_{1}, \ldots, a_{n}\right) \Leftrightarrow C_{\max }{ }^{*}=\Sigma_{i=1, \ldots, n} a_{i} / 2$ (exercise).

Following Smith rule in the case of single processor scheduling $1 \| \Sigma w_{j} C_{j}$ leads to an optimal solution in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time:

- sort the tasks in ascending p_{j} / w_{j} order.

Proof. Consider the improvement of the criterion caused by changing two consecutive tasks.

$$
\begin{aligned}
& w_{j} p_{j}+w_{j}\left(p_{j}+p_{j}\right)-p_{i} w_{i}-w_{j}\left(p_{j}+p_{j}\right)= \\
& =w_{i} p_{j}-p_{j} w_{i} \geq 0 \Leftrightarrow p_{j} / w_{j} \geq p_{i} / w_{i}
\end{aligned}
$$

 violating Smith rule increases $\Sigma w_{j} \boldsymbol{C}_{\boldsymbol{j}}$

Scheduling on Parallel Processors to Minimize the Mean Flow Time

Non-preemptive scheduling

$R P T$ rule can be used in order to minimize both $C_{\text {max }}$ and ΣC_{i} :

1. Use the LPT algorithm.
2. Reorder the tasks within each processor due to the SPT rule. Approximation ratio: $1 \leq \Sigma C_{i}{ }^{(R P T)} / \Sigma C_{i}{ }^{*} \leq m$ (commonly better)

Identical processors, dependent tasks

- Even $P \mid$ prec,$p_{j}=1\left|\Sigma C_{i}, P 2\right|$ prec,$p_{i} \in\{1,2\}\left|\Sigma C_{i}, P 2\right|$ chains $\mid \Sigma C_{i}$ and P2|chains,pmtn| ΣC_{i} are NP-hard.
- Polynomial-time algorithms solving $P\left|p r e c, p_{j}=1\right| \Sigma C_{i}$ (Coffman-Graham) and Plout-tree, $p_{j}=1 \mid \Sigma C_{i}$ (adaptation of Hu algorithm) are known.
- In the case of weighted tasks even single machine scheduling of unit time tasks $1 \mid$ prec,$p_{j}=1 \mid \Sigma w_{i} C_{i}$ is NP-hard.

Scheduling on Parallel Processors to Minimize the Mean Flow Time

Unrelated processors, independent tasks $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ algorithm for $R \| \Sigma C_{i}$ is based on the problem of graph matching.
Bipartite weighted graph:

- Partition V_{1} corresponding to the tasks Z_{1}, \ldots, Z_{n}.
- Partition V_{2} - each processor n times: ${ }_{k} M_{i}, i=1 \ldots m, k=1 . . . n$.
- The edge connecting Z_{j} and ${ }_{k} M_{i}$ is weighted with $k p_{i j}$ (it corresponds to scheduling task Z_{j} on M_{i}, in the k-th position from the end).

We construct the lightest matching of n edges, which corresponds to optimal scheduling.

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Properties:

- $L_{\text {max }}$ criterion is a generalization of $C_{\text {max }}$, the problems that are NP-hard in the case of minimizing $C_{\max }$ remain NP-hard in the case of $L_{\max }$,

- if we have several tasks of different due times we should start with the most urgent one to minimize maximum lateness,
- this leads to EDD rule (Earliest Due Date) - choose tasks in the ordering of ascending due dates d_{j},
- the problem of scheduling on a single processor $\left(1 \| L_{\text {max }}\right)$ is solved by using the $\boldsymbol{E D D}$ rule.

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Identical processors, independent tasks

Preemptive scheduling

Single machine: Liu algorithm $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$, based on the $E D D$ rule, solves $1\left|r_{i}, p m t n\right| L_{\text {max }}$:

1. Choose the task of the smallest due date among available ones,
2. Every time a task has been completed or a new task has arrived go
to 1 . (in the latter case we preempt currently processed task).
Arbitrary number of processors $\left(P\left|r_{i} p m t n\right| L_{\text {max }}\right)$. A polynomial-time algorithm is known:
We use sub-routine solving the problem with deadlines
$P\left|r_{i}, C_{i} \leq d_{i}, p m t n\right|-$, We find the optimal value of $L_{\text {max }}$ using binary search algorithm.

Scheduling on Parallel Processors to Minimize the Maximum Lateness

$P\left|r_{i}, C_{i} \leq d_{i}, p m t n\right|-$ to the problem of maximum flow. First we put the values r_{i} and d_{i} into the ascending sequence $e_{0}<e_{1}<\ldots<e_{k}$.

We construct a network:

- The source is connected by k arc of capacity $m\left(e_{i}-e_{i-1}\right)$ to nodes $w_{i}, i=1, \ldots, k$.
- The arcs of capacity p_{i} connect nodes-tasks Z_{i}, to the sink; $i=1, \ldots, n$.
- We connect w_{i} and Z_{j} by an arc of capacity $e_{i}-e_{i-1}$, iff
$\left[e_{i-1}, e_{i}\right] \subset\left[r_{j}, d_{j}\right]$.

A schedule exists \Leftrightarrow there exists a flow of value $\Sigma_{i=1, \ldots, n} p_{i}$ (one can distribute the processors among tasks in the time intervals $\left[e_{i-1}, e_{i}\right]$ to complete all the tasks).

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling

Some NP-hard cases: $P 2 \| L_{\text {max }}, 1\left|r_{j}\right| L_{\text {max }}$.
Polynomial-time solvable cases:

- unit processing times $P\left|p_{j}=1, r_{j}\right| L_{\text {max }}$.
- similarly for uniform processors $Q\left|p_{j}=1\right| L_{\text {max }}$ (the problem can be reduced to linear programming),
- single processor scheduling $1 \| L_{\text {max }}-$ solvable using the EDD rule (has been discussed already...).

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Preemptive scheduling

Single processor scheduling $1\left|p m t n, p r e c, r_{j}\right| L_{\text {max }}$ can be solved by a modified Liu algorithm $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$:

1. Determine modified due dates for each task:

$$
d_{j}^{*}=\min \left\{d_{j}, \min \left\{d_{i}: Z_{j} \prec Z_{i}\right\}\right\}
$$

2. Apply the EDD rule using d_{j}^{*} values, preempting current task in the case a task with smaller modified due-date gets available, 3. Repeat 2 until all the tasks are completed.

- Some other polynomial-time cases:

Plpmtn,in-treel $L_{\text {max }}, Q 2\left|p m t n, p r e c, r_{j}\right| L_{\text {max }}$.

- Moreover, some pseudo-polynomial time algorithms are known.

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling

- Even $P \mid p_{j}=1$, out-tree $\mid L_{\text {max }}$ is NP-hard.

A polynomial-time algorithm for $P 2 \mid$ prec,$p_{j}=1 \mid L_{\text {max }}$ is known.

- $P \mid p_{j}=1$,in-treel $L_{\text {max }}$ can be solved by Brucker algorithm $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$:
$\operatorname{next}(j)=$ immediate successor of task T_{j}.

1. Derive modified due dates: $d_{\mathrm{root}}{ }^{*}=1-d_{\mathrm{root}}$ for the root and $d_{k}{ }^{*}=\max \left\{1+d_{\text {next }(k)}{ }^{*}, 1-d_{k}\right\}$ for other tasks,
2. Schedule the tasks in a similar way as in Hu algorithm, choosing every time the tasks of the largest modified due date instead of the largest distance from the root.

Scheduling on Parallel Processors

 to Minimize the Maximum Lateness
Dependent tasks

Non-preemptive scheduling

Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes.

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling

Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling

Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling

Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling
Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling
Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling
Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling
Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes

Scheduling on Parallel Processors to Minimize the Maximum Lateness

Dependent tasks

Non-preemptive scheduling
Example. Brucker algorithm, $\mathrm{n}=12, \mathrm{~m}=3$, due dates in the nodes
Lateness:

Minimizing the Number of Tardy Tasks on a Single Machine

Independent non-preemptive tasks

Obviously even $P \mathbf{P 2} \| \boldsymbol{\Sigma} U_{i}$ and $P \mathbf{P 2} \| \Sigma T_{i}$ are NP-hard.
Proof. Similar to $\boldsymbol{P} \boldsymbol{2} \| \boldsymbol{C}_{\text {max }}$.
Further we consider single processor scheduling only.

Minimizing the Number of Tardy Tasks on a Single Machine

Independent non-preemptive tasks

Obviously even $P 2 \| \Sigma U_{i}$ and $P 2 \| \Sigma T_{i}$ are NP-hard.
Proof. Similar to $\boldsymbol{P 2} \| \boldsymbol{C}_{\text {max }}$.
Further we consider single processor scheduling only.
Minimizing number of tardy tasks $1\left|\mid \Sigma U_{i}\right.$ is polynomial-time solvable Hodgson algorithm $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$:

Sort the tasks with the EDD rule: $T_{\pi(1)}, T_{\pi(2), \ldots,}, T_{\pi(n)}$;
$A:=\varnothing$;
for $i:=1$ to n do begin

$$
A:=A \cup\left\{T_{\pi(i)}\right\} ;
$$ if $\Sigma_{Z j \in A} p_{j}>d_{\pi(i)}$ then remove the longest task from $A ;$

end; A-maximum cardinality set of tasks that can be scheduled on time.

Minimizing the Number of Tardy Tasks on a Single Machine

Independent non-preemptive tasks

Obviously even $\boldsymbol{P 2} \mid \Sigma \Sigma U_{i}$ and $\boldsymbol{P 2} \mid \Sigma \Sigma T_{i}$ are NP-hard.
Proof. Similar to $\boldsymbol{P 2} \| \boldsymbol{C}_{\text {max }}$.
Further we consider single processor scheduling only.
Minimizing number of tardy tasks $1\left|\mid \Sigma U_{i}\right.$ is polynomial-time solvable Hodgson algorithm $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$:

Sort the tasks with the EDD rule: $T_{\pi(1)}, T_{\pi(2)} \ldots, T_{\pi(n)}$;
$A:=\varnothing$;
for $i:=1$ to n do begin if $\Sigma_{Z j \in A} p_{j}>d_{\pi(i)}$ then remove the longest task from A;
end; A-maximum cardinality set of tasks that can be scheduled on time.
Schedule A in the EDD order, then the rest of the tasks in any order;

Minimizing the Number of Tardy Tasks on a Single Machine

Independent non-preemptive tasks

- Weighted tasks scheduling $1 \| \Sigma w_{i} U_{i}$ is NP-hard as a generalization of knapsack problem (the same for $1\left|\mid \Sigma w_{i} T_{i}\right.$).
- Assuming unit execution times makes these problems easier:
$1\left|p_{j}=1\right| \Sigma w_{i} U_{i}$ i $1\left|p_{j}=1\right| \Sigma w_{i} T_{i}$ are polynomial time solvable - a natural reduction to the problem of lightest matching in a bipartite graph.

Minimizing the Number of Tardy Tasks on a Single Machine

Dependent and non-preemptive tasks

NP-hardness even with unit processing times for the problems
$1 \mid p_{j}=1$,prec $\mid \Sigma U_{i}$ and $1 \mid p_{j}=1$, prec $\mid \Sigma T_{i}$.
Proof. Clique problem: for a given graph $G(V, E)$ and a positive integer k determine if G contains a complete subgraph of k vertices.
$C P \rightarrow \mathbf{1} \mid p_{j}=\mathbf{1}$, prec $\mid \Sigma U_{i}$ reduction: We put unit processing time tasks T_{v} with $d_{\nu}=|V \cup E|$ for every vertex $v \in V$ and T_{e} with $d_{e}=k+k(k-1) / 2$ for every edge $e \in E$. Precedence constraints: $T_{v} \prec T_{e} \Leftrightarrow v$ is incident to. e. Limit $L=|E|-k(k-1) / 2$.

Example. $k=3$

Minimizing the Number of Tardy Tasks on a Single Machine

Dependent and non-preemptive tasks

NP-hardness even with unit processing times for the problems
$1 \mid p_{j}=1$,prec $\mid \Sigma U_{i}$ and $1 \mid p_{j}=1$, prec $\mid \Sigma T_{i}$.
Proof. Clique problem: for a given graph $G(V, E)$ and a positive integer k determine if G contains a complete subgraph of k vertices.
$C P \rightarrow \mathbf{1} \mid \boldsymbol{p}_{j}=\mathbf{1}$, prec $\mid \boldsymbol{\Sigma} U_{\boldsymbol{i}}$ reduction: We put unit processing time tasks T_{v} with $d_{\nu}=|\zeta \cup E|$ for every vertex $v \in V$ and T_{e} with $d_{e}=k+k(k-1) / 2$ for every edge $e \in E$. Precedence constraints: $T_{v} \prec T_{e} \Leftrightarrow v$ is incident to e. Limit $L=|E|-k(k-1) / 2$.

All the tasks are completed until $|V \cup E|$ in any optimal solution. Thus, whenever $\Sigma U_{i} \leq L$, at least $k(k-1) / 2$ tasks T_{e} are completed until $k+k(k-1) / 2$. Therefore the corresponding edges are incident with at least k vertices (for which the tasks T_{v} precede T_{e}). That is possible only in the case these k vertices form a clique.

In a similar way $C P \rightarrow \mathbf{1}\left|p_{j}=\mathbf{1}, \boldsymbol{p r e c}\right| \boldsymbol{\Sigma} \boldsymbol{T}_{i}$ reduction.

Minimizing the Number of Tardy Tasks on a Single Machine

Parallel processors, minimizing $C_{\text {max }}$ again

We have constructed a reduction $P K \rightarrow \mathbf{1} \mid \boldsymbol{p}_{j}=\mathbf{1}$, prec $\mid \boldsymbol{\Sigma} U_{i}$. In a similar way NP-hardness of $P \mid p_{j}=1$,prec $\mid C_{\text {max }}$ can be proved.
Proof. Clique Problem: for a given graph $G(V, E)$ and a positive integer k determine if G contains a complete subgraph of k vertices.
$C P \rightarrow P\left|p_{j}=1, p r e c\right| C_{\text {max }}$ reduction: unit time tasks T_{v} for each $\nu \in V$ and T_{e} for each $e \in E$. Precedence constraints: $T_{v} \prec T_{e} \Leftrightarrow v$ is incident to e. Limit $L=3$.
Moreover, 3 'levels' of unit tasks $T_{A 1}, T_{A 2}, \ldots \prec T_{B 1}, T_{B 2}, \ldots$ $\prec T_{C 1}, T_{C 2}, \ldots$ The number of processors m big enough to make $C_{\text {max }}=3$ possible:
If $C_{\max }{ }^{*}=3$ then:

- All the gray-colored parts are fulfilled with T_{v} and T_{e},
- In the $1^{\text {st }}$ time unit only T_{v} are scheduled, in the $3^{\text {rd }}$ time unit only T_{e} are scheduled,
- In the $2^{\text {nd }}$ time unit $k(k-1) / 2$ tasks T_{e} are processed and the corresponding edges are incident to k vertices, which form a clique (corresponding tasks are processed in the first time unit).

Scheduling on Dedicated Processors

Remainder

- jobs consist of operations preassigned to processors ($T_{i j}$ is an operation of J_{j} that is preassigned to M_{i}, its processing time is $p_{i j}$). A job is completed when the last its operation is completed,
- some jobs may not need all the processors (empty operations),
- no two operations of the same job can be scheduled in parallel, - processors are capable to process at most one operation at a time.

Models of scheduling on dedicated processors:

- flow shop - all jobs have the same processing order through the machines coincident with machines numbering,
- open shop - no predefined machine sequence exists for any job,
- other, not discussed ...

Scheduling on Dedicated Processors

Flow shop

Even 3-processor scheduling ($F 3 \| C_{\max }$) is NP-hard.
Proof. Partition problem: for a given sequence of positive integers $a_{1}, \ldots a_{n}$, $S=\Sigma_{i=1, \ldots, n} a_{i}$ determine if there exists a sub-sequence of sum $S / 2$? $P P \rightarrow \boldsymbol{F} 3 \| \boldsymbol{C}_{\text {max }}$ reduction: put n jobs with processing times $\left(0, a_{i}, 0\right) i=1, \ldots, n$ and a job ($S / 2,1, S / 2$). Determine of these jobs can be scheduled with $C_{\text {max }} \leq S+1$.

Permutation Flow Shop (PF): flow shop + each machine processes jobs in the same order (some permutation of the jobs).

Scheduling on Dedicated Processors

Flow shop

In a classical flow shop the jobs visit the processors in the same order (coincident with processors numbers), however the sequeneces of jobs within processors may differ (which may occur even in an optimal schedule).
Example. $m=4, n=2$. Processing times $(1,4,4,1)$ for Z_{1} and $(4,1,1,4)$ for Z_{2}.

Permutation schedules ...

Scheduling on Dedicated Processors

Flow shop

Suppose $p_{i j}>0$. There exists an optimal schedule, such that the sequence of jobs for the first two processors is the same and for the last two processors is the same.
Corollary. An optimum schedule $P F m \| C_{\text {max }}$ is an optimum solution $F m \| C_{\text {max }}$ for $m \leq 3$ and $p_{i j}>0$ (only permutation schedules are to be checked - smaller space of solutions to search!).

Proof. The sequence of jobs on M_{1} can be rearranged to be coincident with the sequence on M_{2}.

Scheduling on Dedicated Processors

Flow shop

Two processors scheduling $F 2 \| C_{\text {max }}$ (includes the case of preemptive scheduling $\left(F 2|p m t n| C_{\text {max }}\right)$, Johnson algorithm $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$:

1. Partition the set of jobs into two subsets $N_{1}=\left\{Z_{j:}: p_{1 j}<p_{2 j}\right\}, N_{2}=\left\{Z_{j}: p_{1 j} \geq p_{2 j}\right\}$,
2. Sort N_{1} in non-decreasing $p_{1 j}$ order and N_{2} in non-increasing $p_{2 j}$ order,
3. Schedule all the jobs on both machines in order of the concatenation sequence N_{1}, N_{2}.
Example. Johnson algorithm, $m=2, n=5$.

Scheduling on Dedicated Processors

Flow shop

- $F 2 \| \Sigma C_{j}$ is NP-hard,
- $F 3 \| C_{\text {max }}$, in the case M_{2} is dominated by $M_{1}\left(\forall_{i, j} p_{1 i} \geq p_{2 j}\right)$ or by M_{3} $\left(\forall_{i, j} p_{3 i} \geq p_{2 j}\right)$ one can use Johnson algorithm for n jobs with processing times $\left(p_{1 i}+p_{2 i}, p_{2 i}+p_{3 i}\right), i=1, \ldots, n$.
$F \| C_{\text {max }}$: polynomial-time ,graphical" algorithm for $n=2$ jobs and arbitrary number of machines. Sketch:

1. We put intervals of the length $p_{11}, p_{21}, \ldots, p_{m 1}$ (processing times of J_{1}) on the OX axis and we put invervals of the length $p_{12}, p_{22}, \ldots, p_{m 2}$ on the OY axis.
2. We create rectangular obstacles - Cartesian products of corresponding intervals (a processor cannot process two tasks at a time).
3. We construct the shortest path consisting of segments parallel to one of the axis (single processor is working) or diagonal in the plane (both processors are working), avoiding passing through any obstacles, from (0,0) to $\left(\Sigma_{i} p_{i 1}, \Sigma_{i} p_{i 2}\right)-$ the distance function is defined by $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$. The length of the path is qeual to the length of the optimim schedule.

Scheduling on Dedicated Processors

Flow shop
Example. Graphical algorithm.
$m=4, n=2$ and
Z_{1} processing times
(1,4,4,1);
Z_{2} processing times (4,1,1,4).

Scheduling on Dedicated Processors

Open shop

The three processors case $\left(O 3 \| C_{\max }\right)$ is NP-hard.
Proof. $P P \rightarrow$ O3\|I $\boldsymbol{C}_{\text {max }}$ reduction: put n tasks with processing times $\left(0, a_{i}, 0\right)$ $i=1, \ldots, n$ and three tasks of processing times $(S / 2,1, S / 2),(S / 2+1,0,0)$, $(0,0, S / 2+1)$. Determine if there exisits a schedule with $C_{\max } \leq S+1$.

- The problem $02 \| \Sigma C_{j}$ is NP-hard.

Scheduling on Dedicated Processors

Open shop

The case of two processors $O 2 \| C_{\text {max }}$ (and $O 2|p m t n| C_{\max }$), GonzalezSahni algorithm O(n):

1. Partition the set of tasks into $N_{1}=\left\{J_{j}: p_{1 j}<p_{2 j}\right\}, N_{2}=\left\{J_{j}: p_{1 \geq} \geq p_{2 j}\right\}$,
2. Let J_{r}, J_{l}, be two jobs such that: $p_{1 r} \geq \max _{J j \in N_{2}} p_{2 j} ; p_{2 l} \geq \max _{J j \in N 1} p_{1 j}$;
3. $p_{1}:=\Sigma_{i} p_{1 i} ; p_{2}:=\sum_{i} p_{2 i} ; N_{1}{ }^{\prime}:=N_{1} \backslash\left\{J_{r} J_{l}\right\} ; N_{2}{ }^{\prime}:=N_{2} \backslash\left\{J_{r}, J_{l}\right\}$;
4. Construct two schedules: jobs $N_{1}{ }^{\prime} \cup\left\{J_{l}\right\}, Z_{l}$ as the first; $N_{2}{ }^{\prime} \cup\left\{J_{r}\right\}, J_{r}$ as the last (permutation and no-idle schedules) :

5. Merge these schedules. if $p_{1}-p_{1 l} \geq p_{2}-p_{2 r}\left(p_{1}-p_{1 l}<p_{2}-p_{2 r}\right)$ then 'shift' the tasks of $N_{1}{ }^{\prime} \cup\left\{J_{l}\right\}$ to the right on M_{2} else 'shift' the tasks of N_{2} ' $\cup\left\{J_{r}\right\}$ to the left on M_{1};

M_{1}	J_{l}	$N_{1}{ }^{\prime}$	N_{2}		Z_{r}		
M_{2}		J_{l}	$N_{1}{ }^{\prime}$		$N_{2}{ }^{\prime}$		Z_{r}

Scheduling on Dedicated Processors

Open shop

The case of two processors $O 2 \| C_{\max }$ (and $02|p m t n| C_{\max }$), Gonzalez-
Sahni algorithm $\boldsymbol{O}(\boldsymbol{n})$:

5. Merge these schedules. if $p_{1}-p_{1 l} \geq p_{2}-p_{2 r}\left(p_{1}-p_{1 l}<p_{2}-p_{2 r}\right)$ then 'shift' the tasks of $N_{1}{ }^{\prime} \cup\left\{J_{l}\right\}$ to the right on M_{2} else 'shift' the tasks of $N_{2}{ }^{\prime} \cup\left\{J_{r}\right\}$ to the right on $M_{1} ;\left[{ }^{*}\right]$

6. Move the operation of J_{r} on M_{2} ([*] J_{l} on M_{1}) to the beginning ([*] the end) and then to the right ($[*]$ to the left).

J_{l}	$N_{\mathrm{1}}{ }^{\prime}$		$N_{2}{ }^{\prime}$	J_{r}
J_{r}	J_{l}	$N_{\mathrm{1}}{ }^{\prime}$	$N_{2}{ }^{\prime}$	or $C_{\max }=$ $=\max \left\{p_{1} p_{2}\right\}$

Scheduling on Dedicated Processors

Open shop

Example. Gonzalez-Sahni algorithm, $m=2, n=5$.

Scheduling on Dedicated Processors

Open shop

Zero or unit processint times (O|ZUETIC ${ }_{\text {max }}$): polynomial-time algorithm based on edge-coloring of bipartite graphs.

1. Bipartite graph G :
a) one partition correspond to the job set; the other represents the processors,
b) each non-empty operation $O_{i j}$ corresponds to an edge $\left\{Z_{j}, M_{i}\right\}$.

2. We edge-color this graph using $\Delta(G)$ colors. The colors are interpreted as the time units in which the corresponding tasks are scheduled, (proposal: feasible schedule \Leftrightarrow proper coloring).
3. Then $C_{\max }^{*}=\Delta(G)=\max \left\{\max _{i} \Sigma_{j=1, \ldots, n} p_{i j}, \max _{j} \Sigma_{i=1, \ldots, m} p_{i j}\right\}$. Obviously, no shorter schedule exists.

Scheduling on Dedicated Processors

Open shop

Preemptive scheduling (O|pmtn| $C_{\text {max }}$): pseudo-polynomial algorithm similar to the algorithm for $O|Z U E T| C_{\text {max }}$. We construct a bipartite multigraph G, i.e. each non-empty task $T_{i j}$ corresponds to $p_{i j}$ parallel edges. Again $C_{\max }{ }^{*}=\max \left\{\max _{i} \Sigma_{j=1, \ldots, n} p_{i j}, \max _{j} \Sigma_{i=1, \ldots, m} p_{i j}\right\}$.

Why ,pseudo"? The number of edges may be non-polynomial ($=\Sigma_{i=1, \ldots, m ; j=1, \ldots, n} p_{i j}$), the schedule may contain non-polynomial number of interrupts.

Example. Preemptive scheduling $m=3, \quad n=5, \quad p_{1}=(2,3,0), \quad p_{2}=(1,1,1)$, $p_{3}=(2,2,2), p_{4}=(0,1,3), p_{5}=(1,0,1)$.

Scheduling on Dedicated Processors

Open shop

Preemptive scheduling (O|pmtn| $C_{\text {max }}$): pseudo-polynomial algorithm similar to the algorithm for $O|Z U E T| C_{\text {max }}$. We construct a bipartite multigraph G, i.e. each non-empty task $T_{i j}$ corresponds to $p_{i j}$ parallel edges. Again $C_{\max }{ }^{*}=\max \left\{\max _{i} \Sigma_{j=1, \ldots, n} p_{i j}, \max _{j} \Sigma_{i=1, \ldots, m} p_{i j}\right\}$.

Why „pseudo"? The number of edges may be non-polynomial ($=\Sigma_{i=1, \ldots, m ; j=1, \ldots, n} p_{i j}$), the schedule may contain non-polynomial number of interrupts.

Example. Preemptive scheduling $m=3, n=5, \quad p_{1}=(2,3,0), \quad p_{2}=(1,1,1)$, $p_{3}=(2,2,2), p_{4}=(0,1,3), p_{5}=(1,0,1)$.

Scheduling on Dedicated Processors

Open shop

Preemptive scheduling (O|pmtn| $C_{\text {max }}$):

- polynomial time algorithm is known; it is based on fractional edge-coloring of weighted graph (each task $T_{i j}$ corresponds to an edge $\left\{J_{j}, M_{i}\right\}$ of weight $p_{i j}$ in graph G),

Minimizing $C_{\text {max }}$ on parallel processors ... again

Polynomial-time algorithm for $R|p m t n| C_{\text {max }}$.
$\boldsymbol{R | p m t n}\left|\boldsymbol{C}_{\text {max }} \rightarrow \boldsymbol{O}\right| p m t n \mid \boldsymbol{C}_{\text {max. }}$ reduction: Let $x_{i j}$ be the part of T_{j} processed by M_{i} (in the time $t_{i j}=p_{i j} x_{i j}$). If we knew optimal values $x_{i j}$, we could use the above algorithm treating these tasks' parts as tasks of preemptive jobs (constraints for the schedule are the same!).
How to derive these values? We transform the scheduling problem to linear programming:

$$
\begin{gathered}
\text { minimize } C \text { such that: } \\
\sum_{i=1, \ldots, m} x_{i j}=1, j=1, \ldots, n \\
C \geq \Sigma_{j=1, \ldots, n} p_{i j} x_{i j}, i=1, \ldots, m, \quad C \geq \Sigma_{i=1, \ldots, m} p_{i j} x_{i j}, j=1, \ldots, n .
\end{gathered}
$$

[^0]: - Small data: exhaistive search (branch \& bound)
 - Heuristicss: tabu search, genetic algorithms, ...

