
Standard Particle Swarm Optimisation

Maurice Clerc

To cite this version:

Maurice Clerc. Standard Particle Swarm Optimisation. 15 pages. 2012. <hal-00764996>

HAL Id: hal-00764996

https://hal.archives-ouvertes.fr/hal-00764996

Submitted on 13 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00764996


Standard Particle Swarm Optimisation
From 2006 to 2011

Maurice.Clerc@WriteMe.com

2012-09-23 version

1 Introduction

Since 2006, three successive standard PSO versions have been put on line on
the Particle Swarm Central [10], namely SPSO 2006, 2007, and 2011. The basic
principles of all three versions can be informally described the same way, and in
general, this statement holds for almost all PSO variants. However, the exact
formulae are slightly di�erent, because they took advantage of latest theoretical
analysis available at the time they were designed.

2 Informal description

You have a search space. On each point of this search space, you know how to
evaluate a �tness, which is a numerical value. Now, you are looking for the best
point, i.e. the one that has the best �tness (say the smallest one). This point is
called the global optimum point (or simply optimum point, in short). In order to
do that, SPSO makes use of �agents� called particles, which move step by step. A
step is called an iteration (or sometimes a time step). A particle is made of

• a position inside the search space

• the �tness value at this position

• a velocity (in fact a displacement), which will be used to compute the next
position

• a memory, that contains the best position (called the previous best ) found
so far by the particle.

• the �tness value of this previous best

The set of particles is called the swarm. Inside the swarm a topology is de�ned:
it is a set of links between particles, saying �who informs whom�. When a particle
is informed by another one, it means that the particle knows the previous best

1



2 2 Informal description

(position and �tness) of the "informing" particle. The set of particles that informs
a particle is called its neighbourhood. In SPSO, the neighbourhood contains the
particle itself, but is not necessarily symmetrical. The search is performed in two
phases: initialisation of the swarm, and then a cycle of iterations.

2.1 Initialisation of the swarm

For each particle:

• pick a random position inside the search space. Compute the �tness. Begin
with the previous best set to this initial position.

• pick a random velocity

2.2 Iteration

• compute the new velocity (displacement), by combining the following ele-
ments:

� the current position

� the current velocity

� the previous best

� the best previous best in the neighbourhood

• move, by applying this new velocity to the current position

• apply a con�nement method, to ensure that the new position is still inside
the search space, and compute the new �tness. One may use the �let them
�y� method: no con�nement, and if the new position is outside the search
space, no re-evaluation

• if the new �tness is better than that of the previous best position, replace
the previous best by a copy of the new position, and its �tness by a copy of
the new �tness

For the iterations, there are two stop criteria:

• when the �tness value on the optimum point is known, a maximum admis-
sible error. As soon as the absolute di�erence between this known �tness on
the optimum point and the best one that has been found is smaller than this
error, the algorithm stops

• a maximum number of �tness evaluations, given in advance. As in standard
PSO the swarm size is constant, it is equivalent to a maximum number of
iterations



3

3 Formal description

Let us de�ne some notations

D is the dimension of the search space

E is the search space, a hyperparallelepid de�ned as the Euclidean product of
D real intervals (for a discrete search space, see section 4).

E =

D⊗
d=1

[mind,maxd] (3.1)

f is the �tness function de�ned on E. We suppose here that we are looking for
its minimum

t is the number of the current time step

xi(t) is the position of the particle i at time t. It has D coordinates.

vi(t) is the velocity at time t. It has D components.

pi(t) is the previous best position, at time t. It has D coordinates.

li(t) is the best previous best position found in the neighbourhood. It has D
coordinates.

3.1 The swarm size

The swarm size is S and the particles are numbered from 0 to S-1. However S is
de�ned di�erently in the three SPSO versions:

• SPSO 2006. Automatically computed by a formula depending on the dimen-
sion D

S = 10 +
[
2
√
D
]

(3.2)

in which [u] is the integer part of the real number u.

• SPSO 2007. The same as above

• SPSO 2011. User de�ned. The suggested value is 40. Optionally, for a
sequence of runs, the swarm size can be randomly chosen �around� a given
value. The reason for this �regression� is that quite often, formula 3.2 gives
result that is far from the best swarm size (see �gure 3.1). Clearly, there is
still a lack of theoretical analysis about how an adaptive swarm size could
be de�ned.



4 3 Formal description

Fig. 3.1: On a set of 12 problems of di�erent dimensions, the formula for the swarm
size is far from optimal



3.2 The neighbourhood (information links) 5

3.2 The neighbourhood (information links)

3.2.1 The ring topology

This topology has been used for years in di�erent PSO variants because of its
simplicity. For that reason, we give a brief description of this topology here.
However, a more robust one, partly random, has been used for SPSO since 2006.
The neighbourhood of the particle i is

i− 1mod(S), i, i+ 1mod(S)

For instance, if S = 20 the neighbourhood of the particle 0 is {19, 0, 1}, and
the neighbourhood of the particle 19 is {18, 19, 0}. .

3.2.2 The adaptive random topology

This topology has been de�ned in [2], and is used in the three SPSO versions we
are considering. Note that it is a particular case of the �stochastic star� proposed
later in [8]. At the very beginning, and after each unsuccessful iteration (no
improvement of the best known �tness value), the graph of the information links
is modi�ed: each particle informs at random K particles (the same particle may
be chosen several times), and informs itself. The parameter K is usually set to
3. It means that each particle informs at less one particle (itself), and at most
K+1 particles (including itself). It also means that each particle can be informed
by any number of particles between 1 and S. However, the distribution of the
possible number of �informants� is not uniform. On average, a particle is often
informed by about K others, but it may be informed by a much larger number of
particles with a small probability, as we can see from �gure 3.2.

3.3 Initialisations

3.3.1 SPSO 2006 and 2007

Let Ni (t) be the set of neighbours of the particle i at time t. A �rst random graph
of links is generated, as explained above, so that all Ni (0) are de�ned. Then we
initialise the other elements as follows:


xi (0) = U (mindmaxd)

vi (0) = U(mind,maxd)−xi(0)
2

pi (0) = xi (0)
li (0) = argminj∈Ni(0) (f (pj (0)))

(3.3)

where U (mind,maxd) is a random number in [mind,maxd] drawn according
to the uniform distribution.



6 3 Formal description

Fig. 3.2: Adaptive random topology. Distribution of the number of informants of
a particle.



3.4 The velocity update equations 7

3.3.2 SPSO 2011

The initialisation is the same except for the velocity. Indeed, it has been proved in
2008 [5] that with the above formula most particles immediately leave the search
space when the dimension D is high. In the new formula each component d is
computed as follows

vi (0) = U (mind − xi,d (0) ,maxd − xi,d (0)) (3.4)

There is an option that normalises the search space to transform it into a hyper-
cube if necessary. This may be useful because the speci�c velocity update method
(see 3.4.2) makes use of hyperspheres and seems to work better in a hypercube.
Of course, in that case, the �tness is evaluated in the real search space.

3.4 The velocity update equations

The fundamental velocity update equation is a combination of three vectors

vi(t+ 1) = C (vi(t), pi (t)− xi (t) , li (t)− xi (t)) (3.5)

which is immediately followed by the move itself

xi (t+ 1) = xi (t) + vi (t+ 1) (3.6)

The combination C is de�ned di�erently in the successive SPSO versions, but
is always partly random.

3.4.1 SPSO 2006 and 2007

The velocity update equation is applied dimension by dimension, as follows:

{
vi,d (t+ 1) = wvi,d (t)+

U (0, c) (pi (t)− xi (t)) + U (0, c) (li (t)− xi (t))
(3.7)

The parameter values are{
w = 1

2 ln(2) ' 0.721

c = 1
2 + ln (2) ' 1.193

(3.8)

These values are coming from [3].
The next position is given by equation 3.6, which applies the new velocity to

the current position. Equivalently we can also de�ne two intermediate points (t is
omitted for simplicity):



8 3 Formal description

Fig. 3.3: SPSO 2006 and 2007. Construction of the next position. The points x′i
and x

′′

i are chosen at random inside two hyperparallelepids parallel to the
axis's

x′i, chosen at random (uniform distribution) inside the hyperparallelepid

D⊗
d=1

[xi,d, xi,d + c (pi,d − xi,d)]

x′′i , chosen at random (uniform distribution) inside the hyperparallelepid

D⊗
d=1

[xi,d, xi,d + c (li,d − xi,d)]

and say that the new position is

xi (t+ 1) = wvi + (x′i − xi) + (x′′i − xi) (3.9)

This construction is illustrated in �gure 3.3. It is clear that the new position
depends on the system of coordinates. If we consider the distribution of all possible
next positions (DNPP), its support is a D-rectangle, and it is not uniform (more
dense near to the centre). In 2D, it looks like a �Maya pyramid�.



3.4 The velocity update equations 9

3.4.2 SPSO 2011

It was well known for years ([9]) that the above dimension by dimension method
is biased: when the optimum point lies on a axis, or on a diagonal, or worse, on
the centre of the system of coordinates, it is �too easy� for PSO to �nd it. A more
complete analysis of this phenomenon has been presented in 2010 [11]. That is
why in SPSO 2011 the velocity is modi�ed in a �geometrical� way that does not
depend on the system of coordinates.

Let Gi (t) be the centre of gravity of three points: the current position, a point
a bit �beyond� the best previous position (relative to xi (t)), and a point a bit
�beyond� the best previous position in the neighbourhood. Formally, it is de�ned
by the following formula, in which t has been removed for simplicity

Gi = xi+(xi+c(pi−xi))+(xi+c(li−xi))
3 = xi + cpi+li−2xi

3
(3.10)

We de�ne a random point x′i (not necessarily according to an uniform distri-
bution) in the hypersphere

Hi (Gi, ‖Gi − xi‖)

of centre Gi and of radius ‖Gi − xi‖. Then the velocity update equation is

vi (t+ 1) = wvi (t) + x′i (t)− xi (t) (3.11)

It means that the new position is simply

xi (t+ 1) = wvi (t) + x′i (t)

Note that with this method it is easy to rigorously de�ne �exploitation� and �ex-
ploration�. There is exploitation when xi (t+ 1) is inside at least one hypersphere
Hj , and exploration otherwise.

The source code contains some options (like hyperspherical Gaussian distri-
bution) that are not described here. The default method is �uniform random
direction, and uniform radius, i.e. r = U (0, rmax). The support of the resulting
DNPP is a D-sphere, and the distribution itself is not uniform. It would be only

withr = (U (0, rmax))
1/D

. It is more dense near to the centre, like with SPSO
2006 and 2007.

3.4.3 When local best=previous best

We may sometimes have li (t) = pi (t) when the particle i is precisely the one that
has the best previous best in its neighbourhood. Depending on the SPSO versions,
the rule that is applied is slightly di�erent:

• SPSO 2006. Nothing special.



10 3 Formal description

Fig. 3.4: SPSO 2011. Construction of the next position. The point x′i is chosen at
random inside the hypersphere Hi (Gi, ‖Gi − xi‖)



3.5 Con�nement 11

• SPSO 2007. The last term of equation 3.7 is removed

vi,d (t+ 1) = wvi,d (t) + U (0, c) (pi (t)− xi (t)) (3.12)

• SPSO 2011. Same idea, li (t) is ignored. Equation 3.10 that de�nes the
gravity centre Gi becomes

Gi =
xi + (xi + c (pi − xi))

2
= xi + c

pi − xi

2
(3.13)

3.5 Con�nement

The default method is the same for SPSO 2006 and 2007: for each dimension d
the particle must stay inside [mind,maxd], and each edge is seen as a �wall�. So
the position and the velocity computed by 3.6, 3.7, and 3.11 may be modi�ed


if (xi,d (t+ 1) < mind) then

{
xi,d (t+ 1) = mind

vi,d (t+ 1) = 0

if (xi,d (t+ 1) > maxd) then

{
xi,d (t+ 1) = maxd

vi,d (t+ 1) = 0

(3.14)

For SPSO 2011, the formulae are quite similar, except that the velocity is not set
to zero:

vi,d (t+ 1) = −0.5vi,d (t+ 1) (3.15)

The source codes of the three SPSO contain some other options (like the �random
back� or the �let them �y� methods) that are not described here. For a detailed
comparison of various con�nement methods, see [4], or [1].

3.6 Sequential versus parallel

According to the informal description given in section 2, it is clear that the moves
can be computed in a parallel (synchronous) way.

• SPSO 2006. A pure simple loop �for i=1 to S do ...� inside each iteration. It
means that for a given t the behaviour of particle j may depends on one of
the particles i if i < j. It happens when the particle i improves its previous
best and becomes the best neighbour of the particle j.

• SPSO 2007. To prevent any premature convergence that may be induced
by moving the particles always in the same order, their numbering is ran-
domly permuted before each iteration (time step). The Matlab version is
synchronous: there is a separate loop to update all the previous best posi-
tions, after the moves.

• SPSO 2011. The same.



12 6 Conclusion

Note that the sequential/asynchronous method seems to be slightly better, ex-
perimentally. On the other hand, for big problems, it may be necessary to run
the algorithm on parallel machines, and so, of course, the synchronous method
has to be used. Also, the synchronous method would be more consistent with the
informal description.

4 SPSO and discrete or heterogeneous search space

Along any dimension d the search space may be discrete, according to a �granular-
ity� qd. In that case, the corresponding coordinate of the new position is clamped
to the nearest acceptable one

xi,d (t+ 1) ⇐ qd [0.5 + xi,d (t+ 1) /qd] (4.1)

5 SPSO and random number generation

Theoretically, SPSO should use pure random numbers. In practice, the three
versions make use of pseudo-random number generators (RNG):

• SPSO 2006. The RNG is the one provided by the implementation language
(C in the version available on the Particle Swarm Central)

• SPSO 2007. The RNG is KISS [7], a pretty good one, at least far better
than the C one. However the Matlab version available on the PSC does not
explicitly use it

• SPSO 2011. The same. For fair comparisons and reproducible results, the
suggestion is to always use the same seed (1294404794) before any sequence
of runs. Also, the RNG is �warmed up� before to be really used in the
algorithm, as suggested in [6]. Again, this is not implemented in the Matlab
version.

It is worth noting that on some problems the performance is very sensitive to the
RNG. Moreover, the number of runs needed for a correct estimation of an average
performance may be far bigger than what is usually done in practice, which is
typically about 30. See �gure 5.1 for an example.

6 Conclusion

From SPSO 2006 to SPSO 2011, the tendency is clear: to design an algorithm
whose behaviour is more and more consistent with the informal basic principles
which remain the same since 1995, and less and less dependent on the way they are
coded. From this point of view, replacing the �dimension by dimension� coding
by a geometrical one (in SPSO 2011), which is non-sensitive to the system of



13

Fig. 5.1: On the classical Gear train problem, you need at least 200 runs for a
correct estimation of the performance (runs with SPSO 2011). Also,
depending on the seed of the RNG, over just 30 runs the success rate
may be very di�erent.



14 References

coordinates, can be seen as an improvement. However, from this point of view,
some further improvements are still possible:

• the asynchronous method could be replaced by the synchronous one

• the swarm size does not need to be constant. An adaptive swarm size would
still be consistent with the informal description

• the topology may be modi�ed in a di�erent way

Note that the purpose of a well de�ned version of SPSO is to be a kind of milestone.
As written in the comments of all versions

This PSO version does not intend to be the best one on the market

It means that if your brand new algorithm does not signi�cantly �beat� SPSO (on
a di�cult enough non-biased benchmark) you have to improve it.

References

[1] Maurice Clerc. Con�nements and biases in particle swarm optimisation.
Technical report, Open archive HAL http://hal.archives-ouvertes.fr/, ref. hal-
00122799, 2006.

[2] Maurice Clerc. Particle Swarm Optimization. ISTE (International Scienti�c
and Technical Encyclopedia), 2006.

[3] Maurice Clerc. Stagnation analysis in particle swarm optimization or
what happens when nothing happens, http://hal.archives-ouvertes.fr/hal-
00122031. Technical report, 2006.

[4] Sabine Helwig and Rolf Wanka. Particle Swarm Optimization in High-
Dimensional Bounded Search Spaces. In Proceedings of the 2007 IEEE Swarm
Intelligence Symposium, pages 198�205, Honolulu, Hawaii, USA, April 2007.
IEEE Press.

[5] Sabine Helwig and Rolf Wanka. Theoretical analysis of initial particle swarm
behavior. In 10th International Conference on Parallel Problem Solving from
Nature (PPSN 2008)., pages 889�898, Dortmund, Germany, September 13-17
2008. PPSN X, Springer.

[6] David Jones. Good practice in (pseudo) random number generation for bioin-
formatics applications. Technical report, UCL Bioinformatics Group, 2010.

[7] G. Marsaglia and A. Zaman. The KISS generator. Technical report, Dept. of
Statistics, U. of Florida, 1993.



References 15

[8] Vladimiro Miranda, Hrvoje Keko, and Alvaro Jaramillo Duque. Stochastic
Star Communication Topology in Evolutionary Particle Swarms (EPSO). In-
ternational Journal of Computational Intelligent Research, 2008.

[9] Christopher K. Monson and Kevin D. Seppi. Exposing Origin-Seeking Bias
in PSO. In GECCO'05, pages 241�248, Washington, DC, USA, 2005.

[10] PSC. Particle Swarm Central, http://www.particleswarm.info.

[11] William M. Spears, Derek T. Green, and Diana F. Spears. Biases in particle
swarm optimization. International Journal of Swarm Intelligence Research,
1(2):34�57, 2010.


