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Reminder of basic graph definitions

1 A (combinatorial) graph is a pair G = (V ,E ) consisting of a set
of vertices or nodes V , and a subset E ⊂ V × V of the Cartesian
product V × V .

In the case of an undirected graph the elements of E are called
edges and the pairs (a, b) ∈ E are considered unordered (that is,
there is an edge between a ∈ V and b ∈ V when (a, b) ∈ E or
(b, a) ∈ E — i.e., the pairs (a, b) and (b, a) are identified).

In the case of a directed or oriented graph the elements of E are
called arrows and the pairs (a, b) ∈ E are considered with order
(that is, there is an arrow from a ∈ V to b ∈ V if and only if
(a, b) ∈ E , and the pairs (a, b) and (b, a) are not identified).

1http://en.wikipedia.org/wiki/Graph_theory
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Reminder of basic graph definitions (II)

The order of a graph is the number of vertices, i.e. the
cardinal of the set V : |V |.
The size of a graph is the number of edges or arrows, i.e. the
cardinal of the set E : |E |.
The degree or valence of a vertex is the number of edges
reaching or leaving the vertex (if an edge connects a vertex
with itself it counts twice).

The in-degree of a vertex is the number of edges that arrive to
the vertex.
The out-degree of a vertex is the number of edges coming out
of the vertex.

The vertices that belong to a single edge (i.e. the vertices of
valence 1) are called terminal or extreme vertices.
A vertex with valence larger than 2 is called a branching
vertex.
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Reminder of basic graph definitions: paths and loops

A path is a linear sequence of connecting edges. When the
graph is oriented, the end of an arrow must be the beginning
of the next one.

The length of a path is the number of its edges or arrows.

A loop or circuit is a closed path. That is, the end of the last
edge coincides with the beginning of the first one.

A path is called acyclic if it does not contain any circuit or
loop. Observe that a path is cyclic if and only if it has
repeated vertices. Equivalently, a path is acyclic if and only if
every vertex appears only once in the path.
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Basic graph definitions: Concatenation
Given two paths

α =
(
a0 −→ a1 −→ · · · −→ an

)
of length n, and

β =
(
b0 −→ b1 −→ · · · −→ bm

)
of length m,

such that an = b0, we define the concatenation of α and β, denoted by
αβ, as the path

αβ :=
(
a0 → a1 → · · · → an → b1 → · · · → bm

)
.

Observation: The length of αβ is n + m, i.e. the addition of lengths of
α and β.
Assume that α is a loop (i.e. an = a0). In what follows we will use the
following notation:

α1 := α,

α2 := αα,

α3 := α2α = ααα,

· · · · · · ,

αn :=
(
αn−1

)
α =

n times︷ ︸︸ ︷
αα · · · α for every n ≥ 2.
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Basic definitions on weighted graphs

A weighted graph2 or a network is a graph in which a number (the
weight) is assigned to each edge (see the examples in Page 7).
Such weights might represent for example costs, lengths or
capacities, depending on the problem at hand.

Notationally the weight associated to and edge or arrow is usually
written above the edge or the arrow.

Also, we can encompass all the weights of a graph in a single
edge-weight function:

ω : E −−−−−−−−−→ R
a 7−−−−−−−−−→ ω(a)

(x , y) 7−−−−−−−−−→ ω
(
(x , y)

)

2A weighted graph can be both directed and undirected.
Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 6/60



Basic definitions on weighted graphs
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Basic definitions on weighted graphs
In a weighted graph, the weight of path
α = v0 −→ v1 −→ · · · −→ vn is defined to be

ω(α) :=
n∑

i=1
ω
(
(vi−1, vi)

)
.

Example (on the weighted graph at the right of Page 7)
Consider the following (weighted) path in the graph:

α = A 10−−−−−→ B 1−−−−→ C 4−−−−→ B 2−−−−→ D 7−−−−→ E .

Then ω(α) = 10 + 1 + 4 + 2 + 7 = 24.

Observation
If αβ is a concatenated path then, clearly,

ω(αβ) = ω(α) + ω(β).

Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 8/60

Basic definitions on weighted graphs: shortest paths
The minimum or optimum weight of a path from a to b is defined
as

σ
(
u, v

)
:= min{ω(α) : α is a path from u to v}.

Convention: σ
(
u, v

)
=∞ if no path from u to v exists.

Important observation (see the example in the next page)
The minimum weight σ

(
u, v

)
of a path may not exist. However,

when it exists it is uniquely defined.

A minimal path from u ∈ V to v ∈ V is any path from u to v with
weight σ

(
u, v

)
(i.e. with minimum weight), whenever the

minimum weight σ
(
u, v

)
exists.

Observation: non-unicity of minimal paths
In general, there might be several minimal paths between a given
pair of vertices.
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Basic definitions on weighted graphs: an example
The minimum weight may not be well defined when there is a negative weight cycle

Consider the weighted graph at the right of Page 7 with ω
(
(C ,B)

)
= 4

replaced by ω
(
(C ,B)

)
= −4. Consider also a family of paths

αn =
(
A −→ B

)(
B −→ C −→ B

)n(B −→ D −→ E
)

with n ≥ 1, similar to the ones from the previous example. Then,
ω
(
αn
)

= ω
(
A −→ B

)
+ ω
((

B −→ C −→ B
)n)+ ω

(
B −→ D −→ E

)

= ω
(
A −→ B −→ D −→ E

)
+ nω

(
B −→ C −→ B

)

= 19− 3n.

The minimum weight σ
(
A,E

)
of a path from A to E is not defined since in the

graph there are such paths of arbitrarily small (negative) weight, because

lim
n→∞

ω
(
αn
)

= lim
n→∞

19− 3n = −∞.

Conclusion
All edge weights must be non-negative or, equivalently, the edge-weight
function ω is a function from E to R+: ω : E −−−−−−−→ R+.
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Basic definitions on weighted graphs

In the spirit of the previous page, a weighted graph (V ,E , ω) will
be called

non-negative whenever ω(a) ≥ 0;
positive if ω(a) > 0; and
strongly positive if there exists τ > 0 such that ω(a) ≥ τ

for every edge a ∈ E .

The conclusion of the previous page is that the minimum weight
(and hence the notion of optimal path) is only defined for
non-negative weighted graphs. However, to assure the convergence
of routing algorithms, for the single-source shortest paths problem,
we will require that the graph is strongly positive.
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Basic properties of shortest paths: Optimal substructure

Theorem (Optimality principle)
Any sub-path of a minimal path is minimal.

Proof
Let αδβ be a minimal (concatenated) path from u to v , where δ is a
sub-path from x to y .
Assume by way of contradiction that δ is not a minimal path from x to y .
Then there exists a path µx ,y from x to y , such that ω

(
µx ,y

)
< ω(δ) (in

particular, µx ,y 6= δ). So, αµx ,yβ is another path from u to v such that
ω
(
αµx ,yβ

)
= ω(α) + ω

(
µx ,y

)
+ ω(β) < ω(α) + ω(δ) + ω(β) = ω(αδβ);

which contradicts the assumption that αδβ is a path from u to v of
minimal weight.

u x y vα β
δ

µx ,y
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Basic properties of shortest paths: triangle inequality
Theorem (Triangle Inequality)
For all u, v , x ∈ V , we have σ

(
u, v

) ≤ σ(u, x)+ σ
(
x , v

)
.

Proof
Observe that if either does not exist path from u to x or from x to v ,
then σ

(
u, x
)

+ σ
(
x , v
)

=∞, and the lemma holds. Otherwise, let µu,x
be a minimal path from u to x (i.e. ω

(
µu,x

)
= σ

(
u, x
)
), and let µx ,v be

a minimal path from x to v (i.e. ω
(
µx ,v

)
= σ

(
x , v
)
).

The concatenated path µu,xµx ,v is clearly a path from u to v , and
ω
(
µu,xµx ,v

)
= ω

(
µu,x

)
+ ω

(
µx ,v

)
= σ

(
u, x
)

+ σ
(
x , v
)
.

Hence (by the definition of minimum weight)
σ
(
u, v
)
≤ ω

(
µu,xµx ,v

)
= σ

(
u, x
)

+ σ
(
x , v
)
.

u

x

v
µu,v

µu,x µx ,v
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Statement of the routing problem:
Single-source shortest paths

The single-source shortest paths problem
Let (V ,E , ω) be a strongly positive weighted graph. Given a
source vertex ξ ∈ V , find a minimal path and the optimum path
weight from ξ to every node from V .

The routing problem
Let (V ,E , ω) be a strongly positive weighted graph. Given a
source vertex ξ ∈ V and a goal node3 γ ∈ V , find a minimal path
and the optimum path weight from ξ to γ.

The single-source shortest paths problem for standard
(unweighted) graphs is usually formulated in a rooted graph, being
the root the source vertex.

3The notation ξ ∈ V to denote the source vertex, and γ ∈ V for the goal
node will be kept throughout the rest of the presentation.
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The single-source shortest paths problem
for unweighted graphs: Breadth-first search

The single-source shortest paths problem for unweighted graphs

Let (V ,E ) be an unweighted graph or, equivalently, let (V ,E , ω)
be a weighted graph with constant weight function ω;
i.e. ω(a) = 1 for every a ∈ E .
Given a source vertex ξ ∈ V , find a minimal path and the optimum
path weight from ξ to every node from V .
As it is well known, this is equivalent to the computation of the
depths of all nodes from a graph with the source node as root.

This problem can be solved in time O(|V |+ |E |) by the
Breadth-first search algorithm (by means of a FIFO queue). The
BFS algorithm computes a minimal spanning tree of the graph.

Grafs: Definicions i Algorismes Bàsics, Pages 45 to 70,
http://mat.uab.cat/~alseda/MatDoc/GrafsDefimovs.pdf
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Dijkstra’s Algorithm
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Introduction to Dijkstra’s Algorithm

Dijkstra’s algorithm is designed to solve the single-source shortest
paths problem by computing a minimal spanning tree.

It can also solve the routing problem by stopping the algorithm
once the shortest path to the destination node has been
determined.

Dijkstra’s algorithm is based on a (controlled) greedy strategy ;
that is, it makes a local optimal choice at every stage4.

4A greedy strategy does not usually produce an optimal solution by itself.
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Dijkstra’s Algorithm
Dijkstra’s Algorithm for graphs, using an efficient priority queue

procedure Dijkstra(graph G, source)
Pq ← EmptyPriorityQueue
expanded[G.order]← initialized to false
dist[G.order] ← initialized to ∞
parent[G.order] ← uninitialized



 .

Declaration and initial assignment:
expanded[v] = true ⇐⇒ v is extract min-
taken-out from the list and expanded
dist: distances vector from source to every node
parent: previous vertices in an optimal path

dist[source] ← 0
parent[source] ←∞
Pq.add with priority(source, dist[source])

}
.

Initialization: source has distance 0 to
itself, has no parent and is enqueued

while (not Pq.IsEmpty) do . The main loop
node ← Pq.extract min() . extract min removes a node with minimal dist from Pq
expanded[node] ← true . node has been removed from the priority queue and will be expanded
for each adj ∈ node.neighbours and not expanded[adj] do

dist aux ← dist[node] + ω(node, adj) .
New cost from source to
adj through node

if (dist[adj] > dist aux) then
if (dist[adj] = ∞) then Pq.add with priority(adj, dist aux)
else Pq.decrease priority(adj, dist aux)
end if . Relaxation step
dist[adj] ← dist aux
parent[adj] ← node

end if
end for

end while
return dist, parent

end procedure
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Comments on Dijkstra’s Algorithm
dist[v] =∞ for some vertex v
This will happen at termination whenever the vertex v is
unreachable form the source. This may indicate that the graph is
not connected or that it is directed and there is no (direct) path
from the source vertex to v .

How the minimal spanning tree is specified?
Through the vectors dist and parent.

dist[v] gives the computed optimal distance from source to
the vertex v.
parent[v] specifies the predecessor of the node v in a
shortest path.

Thanks to the vector parent we can backwards construct the
computed optimal paths to all vertices, thus building a minimal
spanning tree.
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An example of the Dijkstra’s Algorithm
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Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 20/60

An example of the Dijkstra’s Algorithm
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An example of the Dijkstra’s Algorithm
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Implementation of the Dijkstra’s Algorithm in C
Initializations and main

#include <stdio.h>
#include <stdlib.h>
#include <values.h> // For MAXFLOAT = \infty and UINT_MAX = \infty

typedef struct{ unsigned vertexto; float weight; } weighted_arrow;
typedef struct{ char name;

unsigned arrows_num; weighted_arrow arrow[5];
float dist; unsigned parent;

} graph_vertex;

#define ORDER 5

int main() { register unsigned i;
graph_vertex Graph[ORDER] = {

{ ’A’, 2, {{1, 10}, {2, 3}}, MAXFLOAT, UINT_MAX }, // vertex 0
{ ’B’, 2, {{2, 1}, {3, 2}}, MAXFLOAT, UINT_MAX }, // vertex 1
{ ’C’, 3, {{1, 4}, {3, 8}, {4, 2}}, MAXFLOAT, UINT_MAX }, // vertex 2
{ ’D’, 1, {{4,7}}, MAXFLOAT, UINT_MAX }, // vertex 3
{ ’E’, 1, {{3,9}}, MAXFLOAT, UINT_MAX }, // vertex 4

};

Dijkstra(Graph, 0U);

fprintf(stdout, "Vertex | Cost | Parent\n-------|-------|-------\n");
fprintf(stdout, " %c (%u) |%6.1f |\n", Graph[0].name, 0U, Graph[0].dist);
for(i=1; i < ORDER; i++)

fprintf(stdout, " %c (%u) |%6.1f | %c (%u)\n",
Graph[i].name, i, Graph[i].dist, Graph[Graph[i].parent].name, Graph[i].parent);

}

Output: the minimal spanning tree

Vertex | Cost | Parent
-------|-------|-------
A (0) | 0.0 |
B (1) | 7.0 | C (2)
C (2) | 3.0 | A (0)
D (3) | 9.0 | B (1)
E (4) | 5.0 | C (2)
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Implementation of the Dijkstra’s Algorithm in C
Priority queue declarations and the Dijkstra function code

typedef struct QueueElementstructure {
unsigned v;
struct QueueElementstructure *seg;

} QueueElement;
typedef QueueElement * PriorityQueue;

int IsEmpty( PriorityQueue Pq ){ return ( Pq == NULL ); }

void Dijkstra(graph_vertex * Graph, unsigned source){
PriorityQueue Pq = NULL;
char expanded[ORDER] = {[0 ... ORDER-1] = 0};

Graph[source].dist = 0.0;
add_with_priority(source, &Pq, Graph);

while(!IsEmpty(Pq)){ register unsigned i;
unsigned node = extract_min(&Pq);
expanded[node] = 1;
for(i=0; i < Graph[node].arrows_num; i++){

unsigned adj = Graph[node].arrow[i].vertexto;
if(expanded[adj]) continue;
float dist_aux = Graph[node].dist + Graph[node].arrow[i].weight;
if(Graph[adj].dist > dist_aux){

char Is_adj_In_Pq = Graph[adj].dist < MAXFLOAT;
Graph[adj].dist = dist_aux;
Graph[adj].parent = node;
if(Is_adj_In_Pq) decrease_priority(adj, &Pq, Graph);
else add_with_priority(adj, &Pq, Graph);

} } } }
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Implementation of the Dijkstra’s Algorithm in C
The priority queue functions code: extract min

Notation and the definition of a Priority Queue
Given pointers QueueElement *a, *b, we will write a < b to denote that the
queue element *b is a descendant (in the queue) of the element *a
(that is, b = a->seg->seg· · · ->seg).
In these notes a Priority Queue verifies

a < b ⇐⇒ Graph[a->v].dist ≤ Graph[b->v].dist
for every pair of valid pointers QueueElement *a, *b.
Then the function extract min has to deal (without any search) with the first
element of the queue.

The extract min function code
unsigned extract_min(PriorityQueue *Pq){

PriorityQueue first = *Pq;
unsigned v = first->v;

*Pq = (*Pq)->seg;
free(first);
return v;

}
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Implementation of the Dijkstra’s Algorithm in C
The priority queue functions code: add with priority

The add with priority function code
void add_with_priority( unsigned v,

PriorityQueue *Pq, graph_vertex * Graph )
{ QueueElement *aux = (QueueElement *) malloc(sizeof(QueueElement));

if(aux == NULL) exit(66);

aux->v = v;

float costv = Graph[v].dist;
if( *Pq == NULL || !(costv > Graph[(*Pq)->v].dist) ) {

aux->seg = *Pq; *Pq = aux;
return;

}

register QueueElement * q;
for(q = *Pq; q->seg && Graph[q->seg->v].dist < costv; q = q->seg );
aux->seg = q->seg; q->seg = aux;
return;

}
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Standard creation of a new queue element

The check !(costv > Graph[(*Pq)->v].dist) occurs when *Pq != NULL.
Then the queue *Pq is not empty, and the new element aux containing v
must be the first element of the queue.

At this point *Pq != NULL and Graph[(*Pq)->v].dist < costv.
This for loop computes the largest QueueElement *q with q ≥ *Pq such that Graph[q->v].dist <
costv (the insertion point of aux). The loop ends either with:

q->seg = NULL: then, *q is the last element of the queue (equivalently costv is greater than all costs
in the queue) and aux must be placed at the end of the queue (i.e. after *q — q->seg = aux), or

Graph[q->v].dist < costv <= Graph[q->seg->v].dist: then, *q is not the last element of the
queue (q->seg != NULL), and aux must be placed between *q and *(q->seg).
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Implementation of the Dijkstra’s Algorithm in C
The function requeue with priority code:
a simple but inefficient approach to decrease priority

Notation and Strategy
pv denotes the pointer QueueElement * pv to the element of the queue which

contains v. In particular, pv->v = v.
prepv denotes the pointer QueueElement * prepv to the element of the queue

which is before *pv. That is, prepv->seg = pv, and prepv->seg->v = pv->v = v.
Strategy: Remove *pv from the queue and re-enqueue v with the new decreased cost.

The requeue with priority function code
void requeue_with_priority( unsigned v,

PriorityQueue *Pq, graph_vertex * Graph ){
if((*Pq)->v == v) return;

register QueueElement * prepv;
for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * pv = prepv->seg;
prepv->seg = pv->seg;
free(pv);

add_with_priority(v, Pq, Graph);
}

Nothing to do: The first element of the queue is v. Since the new
Graph[v].dist is smaller, it is not necessary to re-order the queue.
In the rest of the function, (*Pq)->v != v⇐⇒ *Pq < pv⇐⇒

*Pq <= prepv < prepv->seg = pv.
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Implementation of the Dijkstra’s Algorithm in C
The function decrease priority code (with detailed comments in the next pages)

The decrease priority function code
void decrease_priority( unsigned v,

PriorityQueue *Pq, graph_vertex * Graph ){
if((*Pq)->v == v) return;

float costv = Graph[v].dist;
if(!(costv > Graph[(*Pq)->v].dist)){ register QueueElement *prepv;

for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * swap = *Pq;
*Pq=prepv->seg; prepv->seg=prepv->seg->seg; (*Pq)->seg=swap;
return;

}

register QueueElement *q, *prepv;
for(q = *Pq; Graph[q->seg->v].dist < costv; q = q->seg );
if(q->seg->v == v) return;

for(prepv = q->seg; prepv->seg->v != v; prepv = prepv->seg);
QueueElement *pv = prepv->seg;
prepv->seg = pv->seg; pv->seg = q->seg; q->seg = pv;
return;

}

Nothing to do: The first element of the queue is v. Since the new
Graph[v].dist is smaller, it is not necessary to re-order the queue.
In the rest of the function, (*Pq)->v != v⇐⇒ *Pq < pv⇐⇒

*Pq <= prepv < prepv->seg = pv.

Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 26/60

Implementation of the Dijkstra’s Algorithm in C
Comments to the decrease priority function code
The special case costv <= Graph[(*Pq)->v].dist

The new cost costv of *pv is smaller than
or equal to the cost of *Pq.

Strategy: *pv has to be moved to the beginning of the queue
Consequently, we need to compute prepv and

connect *prepv with *(pv->seg) = *(prepv->seg->seg)
Remark: This justifies why we need to compute prepv instead of the (apparently more natural)
computation of pv.

Computation of prepv (pv = prepv->seg)
As we have seen, here we have (*Pq)->v!=v, which is equivalent to

*Pq <= prepv < prepv->seg = pv.
We can compute prepv with this for loop — see the “callout” note at page 25.

Case: !(costv > Graph[(*Pq)->v].dist)
float costv = Graph[v].dist;
if(!(costv > Graph[(*Pq)->v].dist)){ register QueueElement *prepv;

for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * swap = *Pq;
*Pq=prepv->seg; prepv->seg=prepv->seg->seg; (*Pq)->seg=swap;
return;

}
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Implementation of the Dijkstra’s Algorithm in C
Comments to the decrease priority function code
The general case costv > Graph[(*Pq)->v].dist

The new cost costv of *pv is larger than
the cost of *Pq.

Notation
In the general case, when the loop below stops, we have q >= *Pq and

Graph[a->v].dist < costv <= Graph[q->seg->v].dist
for every QueueElement *a such that *Pq <= a <= q (see the corresponding
“callout” note at page 24).

Strategy
Compute q and pv (in fact, prepv), and re-allocate *pv = *(prepv->seg) between
*q and *(q->seg).

Computation of q and exit if q->seg = pv
register QueueElement *q, *prepv;
for(q = *Pq; Graph[q->seg->v].dist < costv; q = q->seg );
if(q->seg->v == v) return;

Exercise: if(q->seg->v == v) there is nothing to do
When q->seg->v = v ⇐⇒ q->seg = pv it is not difficult to see that the queue is still
sorted after decreasing Graph[v].dist.

From now on q->seg->v != v ⇐⇒ q->seg != pv which implies q->seg < pv.
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Implementation of the Dijkstra’s Algorithm in C
Final comments to the decrease priority function code

Strategy recalled
Compute q (already done) and prepv, and re-allocate *pv = *(prepv->seg) between
*q and *(q->seg).

Computation of prepv

As we have seen, here we have q->seg < pv, which is equivalent to
q->seg <= prepv < prepv->seg = pv.

Then the for loop below sequentially computes prepv.
It is not necessary to check the condition prepv->seg != NULL (see the vertical “callout” note at
page 25) because prepv is initialized as q->seg <= prepv and v = prepv->seg->v is in the
queue. Then, in the loop, prepv->seg must run through the queue element containing v.

Computation of prepv and re-allocation of *pv = *(prepv->seg)
for(prepv = q->seg; prepv->seg->v != v; prepv = prepv->seg);
QueueElement *pv = prepv->seg;
prepv->seg = pv->seg; pv->seg = q->seg; q->seg = pv;
return;

Re-allocation of *pv = *(prepv->seg) between *q and *(q->seg)

We also need to connect *prepv with *(pv->seg) = *(prepv->seg->seg).
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Convergence of Dijkstra’s Algorithm
The convergence of Dijkstra’s Algorithm is assured by the next

Theorem
The equality dist[v] = σ(source, v) holds whenever a vertex v ∈ V is
dequeued (with the function extract min) and expanded, and it is maintained
during the rest of the algorithm. In particular, Dijkstra’s algorithm terminates
with dist[v] = σ(source, v) for every vertex v ∈ V .

To prove this theorem we will use the following two lemmas:

DA–Lemma 1
The inequality dist[v] ≥ σ(source, v) holds at every iteration of the
algorithm, for every vertex v ∈ V .

DA–Lemma 2
Let α be a minimal path from source to a vertex v ∈ V . Let u be the
predecessor of v in α, and assume that dist[u] = σ(source, u). Then, if the
edge (u, v) is relaxed we have dist[v] = σ(source, v) after the relaxation.
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Convergence of Dijkstra’s Algorithm (II)
DA–Lemma 1
The inequality dist[v] ≥ σ(source, v) holds at every iteration of the
algorithm, for every vertex v ∈ V .

Proof of DA–Lemma 1
The initial assignment

dist[ ] ← initialized to ∞
dist[source] ← 0

guarantees that dist[v] ≥ σ(source, v) holds for every vertex v ∈ V when the
algorithm starts (before the while loop).
Now we will prove that these inequalities are maintained during the whole algorithm.
Assume by way of contradiction that there exists a first vertex v for which
dist[v] < σ(source, v). Let u be the vertex that caused dist[v] to change (by
setting dist[v] = dist[u] + ω(u, v) at a relaxation step). We have,

dist[v] < σ(source, v) . assumption

≤ σ(source, u) + σ(u, v) . triangle inequality

≤ σ(source, u) + ω(u, v) .
optimal path has weight smaller than or
equal to the weight of a specific path

≤ dist[u] + ω(u, v) = dist[v]; .
v is the first vertex for which
dist[v] < σ(source, v)

a contradiction.
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Convergence of Dijkstra’s Algorithm (III)

DA–Lemma 2
Let α be a minimal path from source to a vertex v ∈ V . Let u be the
predecessor of v in α, and assume that dist[u] = σ(source, u). Then, if the
edge (u, v) is relaxed we have dist[v] = σ(source, v) after the relaxation.

Proof of DA–Lemma 2
The minimality of α and the Optimality Principle imply that

σ(source, v) = ω(α) = σ(source, u) + ω(u, v).

Observe that when the value of dist[v] is modified by the algorithm, it decreases
strictly. Assume that, at some step of the algorithm, dist[v] ≤ σ(source, v). By
DA–Lemma 1 we have that dist[v] = σ(source, v) until the end of the algorithm.
Thus, the lemma holds in this case.

Suppose now that dist[v] > σ(source, v) before the relaxation. We have,
dist[v] > σ(source, v) = σ(source, u) + ω(u, v) = dist[u] + ω(u, v).

Then, during the relaxation step the algorithm sets
dist[v] = dist[u] + ω(u, v) = σ(source, v).
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Convergence of Dijkstra’s Algorithm (IV)
Theorem (Convergence of Dijkstra’s Algorithm)
The equality dist[v] = σ(source, v) holds whenever a vertex v ∈ V is
dequeued (with the function extract min) and expanded, and it is maintained
during the rest of the algorithm. In particular, Dijkstra’s algorithm terminates
with dist[v] = σ(source, v) for every vertex v ∈ V .

Proof of Theorem
If dist[v] = σ(source, v) holds whenever a vertex v ∈ V is dequeued, then this
equality is maintained during the rest of the algorithm because of DA–Lemma 1 and
the fact that the values dist[v] cannot increase during the computation.

So, we only need to prove the first statement of the theorem. Assume that v ∈ V is
the first vertex for which the inequality dist[v] 6= σ(source, v) holds at the moment
of dequeueing it with the function extract min. Note that, by DA–Lemma 1, in fact
we have dist[v] > σ(source, v).

Let us denote by S the set of vertices u ∈ V that have been already dequeued with
the function extract min and expanded. Clearly,

source ∈ S,
v /∈ S because the algorithm is just going to dequeue v , and
since v is the first vertex that will be dequeued with dist[v] > σ(source, v),
the equality dist[u] = σ(source, u) holds for every vertex u ∈ S whenever it is
dequeued, and it is maintained during the rest of the algorithm.
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Convergence of Dijkstra’s Algorithm (V)
Proof of the Theorem

Proof of Theorem (continued)
Let β be a minimal path from source to v . Since source ∈ S, there exist vertices
x , y ∈ V such that:

1 (x , y) is an edge of β,
2 y /∈ S, and
3 every vertex lying in the

sub-path of β from source
to x (including x) belongs
to S.

When the vertex x was dequeued
and added to S, we had

dist[x] = σ(source, x),
and the edge (x , y) was relaxed. By
DA–Lemma 2 with v replaced by y ,
u replaced by x , and α replaced by
the sub-path of β from source to y
(notice that α is a minimal path by
the Optimality Principle), we get

dist[y] = σ(source, y)
after the relaxation of (x , y).

source

a1
a2

a3

x

Set S

y

v
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Convergence of Dijkstra’s Algorithm (VI)
Proof of the Theorem

Proof of Theorem (end)
Since y /∈ S, then either dist[y] =∞ > dist[v] (recall that every node in the
queue has finite dist value), or y is in the queue and dist[v] ≤ dist[y] because v
is being dequeued with extract min.

On the other hand, since v is farther from source than y in the minimal path β, we
have σ(source, y) ≤ σ(source, v).

Then, summarizing,

dist[v] ≤ dist[y] = σ(source, y) ≤ σ(source, v) < dist[v];

a contradiction.
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Analysis of Dijkstra’s Algorithm efficiency
Dijkstra’s Algorithm for graphs, using a priority queue
Repetitive part — omitting initialization

while (not Pq.IsEmpty) do
node ← Pq.extract min() .

Average time taken by the function extract min: TEM
node runs among all possible graph nodes =⇒
The while loop runs for |V | repetitionsexpanded[node] ← true

for each adj ∈ node.neighbours and not expanded[adj] do . Loop iterating over all possible graph ed-
ges (node, adj) =⇒
The loop runs for at most |E| repetitions

dist aux ← dist[node] + ω(node, adj)
if (dist[adj] > dist aux) then

if (dist[adj] = ∞) then Pq.add with priority(adj, dist aux) .
else Pq.decrease priority(adj, dist aux) .
end if
dist[adj] ← dist aux
parent[adj] ← node

end if
end for

end while

Estimated average execution time

|V |
(
TEM + TAwP

)
+
(
|E | − |V |

)
TDP

Average time taken by the function decrease priority: TDP
decrease priority is run |E| − |V | times

Average time taken by the function
add with priority: TAwP
add with priority is run |V | times

since every node must be added to the
queue, and it enters to it exactly once
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Analysis of Dijkstra’s Algorithm efficiency (II)
Table of estimated average run times for several Dijkstra’s Algorithm functions

Queue
strategy TEM TAwP TDP Total Order

State Vector
boolean O

( |V |
2

)
O(1) O(1) O

(
|V |2 + |E |

)
O
(
|V |2
)

Plain linked list
not sorted O

(
Q
2

)
O(1) O(1) O

( |V |Q
2 + |E |

)
O
(
|V |Q

)

Linked list
sorted by priority O(1) O

(
Q
2

)
O
(

Q
2

)
O
(
|V | + |E | Q2

)
O
(
|E |Q

)

Binary Heap
sorted by priority O(1) O

(
log2
(
Q
))
O
(

log2
(
Q
))
O
(
|V | + |E | log2

(
Q
))
O
(
|E | log2

(
Q
))

Where Q denotes the average number of elements in the queue during the
whole algorithm.

Remarks
For the computation of the the estimates for the worst case scenarios: Q ≤ |V | and
|E | ∈ O

(
|V |2
)
.

Boolean State Vector is a vector of type IsNodeInQueue[order] (of size order): A node v
is in the queue if and only if IsNodeInQueue[v] = true. This strategy, when the graph is
big, wastes a lot of memory and really gives a “worst case scenario”.

In the next pages one can find detailed justifications of the above estimated
average run times.
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Analysis of Dijkstra’s Algorithm efficiency
Justification of the estimated average run times

In the next computations we set n = |V | and we denote by Qi the
number of elements in the queue for the repetition i of the while
loop, with i = 1, 2, . . . , n. Also, we denote by di (respectively ai)
the total number of times that the function decrease priority
(respectively add with priority) has been run at the repetition
i of the while loop.

Observe that: ∑n
i=1 di = |E | − n and ∑n

i=1 ai = n.

Average run time of extract min for a plain linked list not sorted:

The expected run time TEM at the repetition i of the while loop is O
( Qi

2

)
. Thus, the total run

time average is:

1
n

n∑

i=1

Ki
Qi

2
≤ max{K1,K2, . . . ,Kn}

2
1
n

n∑

i=1

Qi = max{K1,K2, . . . ,Kn}
Q
2

= O
(

Q
2

)
.
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Analysis of Dijkstra’s Algorithm efficiency
Justification of the estimated average run times

Average run time of add with priority for a linked list sorted by priority:

The expected run time TAwP at the repetition i of the while loop is O
( Qi

2

)
. The total run time

average is:
1
n

n∑

i=1

(
Kj1 + Kj2 + · · · + Kjai

)Qi

2
≤ K 1

2n

n∑

i=1

Qi = O
(

Q
2

)
.

Average run time of decrease priority for a linked list sorted by priority:

The expected run time TDP at the repetition i of the while loop is O
( Qi

2

)
. The total run time

average is:

1
|E | − n

n∑

i=1

(
Kj1 + Kj2 + · · · + Kjdi

)Qi

2
≤ Kn
|E | − n

1
2n

n∑

i=1

Qi = O
(

Q
2

)
.
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Analysis of Dijkstra’s Algorithm efficiency
Justification of the estimated average run times

Average run time of add with priority for a binary heap sorted by priority:

The expected run time TAwP at the repetition i of the while loop is O
(

log2(Qi )
)
. Since the log2

function is concave, by Jensen’s Inequality we have that the total run time average is:

1
n

n∑

i=1

(
Kj1 + Kj2 + · · · + Kjai

)
log2(Qi ) ≤

K 1
n

n∑

i=1

log2(Qi )
Jensen Ineq.
≤ K log2

(
Q
)
∈ O
(

log2
(
Q
))

.

Average run time of decrease priority for a binary heap sorted by priority:

The expected run time TDP at the repetition i of the while loop is O
(

log2(Qi )
)
. Since the log2

function is concave, by Jensen’s inequality we have that the total run time average is:

1
|E | − n

n∑

i=1

(
Kj1 + Kj2 + · · · + Kjdi

)
log2(Qi ) ≤

Kn
|E | − n

1
n

n∑

i=1

log2(Qi )
Jensen Ineq.
≤ K log2

(
Q
)
∈ O
(

log2
(
Q
))

.

Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 40/60



A? Algorithm
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Introduction to A? Algorithm5

A? is a graph traversal and path search algorithm for solving the routing
problem. It is complete, optimal and computationally efficient. It is the best
solution in many cases (despite of the major practical drawback that it stores
all generated nodes in memory).

A? is an informed search algorithm, or a best-first search. It maintains a tree of
paths originating at the start node and extending one edge at a time until its
termination criterion is satisfied. A? can be seen as an extension of Dijkstra’s
Algorithm. It achieves better performance by using heuristics to guide its
search.

At each iteration of its main loop, A? needs to determine which of its paths to
extend. It does so based on the cost of the path and an estimate of the cost
required to extend the path all the way to the goal. Specifically, A? selects the
path that minimizes f (v) = g(v) + h(v) where v is the next node on the path,
g(v) is the cost of the path from the start node to v , and h(v) is a heuristic
function that estimates the cost of the cheapest path from v to the goal.

A? terminates when the path it chooses to extend is a path from start to goal
or if there are no paths eligible to be extended.

5Inspired in https://en.wikipedia.org/wiki/A*_search_algorithm
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Introduction to A? Algorithm

The heuristic function6 is problem-specific. When it is admissible, meaning that
it never overestimates the actual cost to get to the goal, A? is guaranteed to
return a least-cost path from start to goal.

Typical implementations of A? use a priority queue to perform the repeated
selection of minimum (estimated) cost nodes to expand. This priority queue is
known as the Open Queue (or Open Set). At each step of the algorithm, the
node with the lowest f value is removed from the queue, the f and g values of
its neighbours are updated accordingly, and these neighbours are added to the
queue. The algorithm continues until a removed node (thus the node with
lowest f value out of all open nodes) is a goal node. The f value of that goal is
then also the cost of the shortest path, since h at the goal is zero in an
admissible heuristic.

To find the actual sequence of steps that constitute a shortest path, as in
Dijkstra’s Algorithm, one has to keep track of the predecessor of each node on
the computed shortest path. At A? termination, the ending node will point to
its predecessor, and so on, until some node’s predecessor is the start node.

6As an example, when searching for the shortest route on a map, h(v) might represent the
straight-line distance from v to the goal, since that is physically the smallest possible distance
between any two points.
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A? Algorithm pseudocode
procedure AStar(graph G, start, goal, h)

Open ← EmptyPriorityQueue
parent[G.order] ← uninitialized . General initialization
g[G.order] ← initialized to ∞ .

Important to detect the non-
visited (and non-enqueued) nodes

g[start] ← 0
parent[start] ←∞ .

Open set initialization: start has distance 0
to itself, has no parent and is enqueued

Open.add with priority(start, g, h)
while not Open.IsEmpty do . The main loop

current ← Open.extract min(g, h) .

if (current is goal) then return g, parent . We have found the solution
for each adj ∈ current.neighbours do

adj new try gScore ← g[current] + ω(current, adj) . New cost from start to
adj through currentif adj new try gScore < g[adj] then

parent[adj] ← current
g[adj] ← adj new try gScore
if not Open.BelongsTo(adj) then Open.add with priority(adj, g, h)
else Open.requeue with priority(adj, g, h)
end if

end if
end for

end while
return failure . goal is not accessible from start

end procedure

extract min removes a node current with minimal
f (current) = g(current) + h(current) from the Open Queue.
Subsequently, the node current will be expanded.

Relaxation step /
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The A? Philosophy
A?–Remark
Let v ∈ V be a vertex of G for which there exists a node u ∈ V \ {γ}
such that:

i (u, v) ∈ E is an edge of the graph,
ii u is removed from the Open Queue by the function extract min,

and
iii g(v) > g(u) + ω(u, v).

Then, the if clause of the relaxation step holds true for adj = v, and
g(v) is set to the lower value g(u) + ω(u, v) <∞,
u is set to be parent[v], and
v is set to belong to the Open Queue with the new g(v) value.

Moreover, this is the only way that v can enter to the Open Queue and
parent[v] can be modified.

Definition
The operation described in the above remark will be called relaxing the
node v after expanding the node u.
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The A? Philosophy: Another view of A?

The basic operative of the A? Algorithm is based on the construction
(exploration) of paths in the following sense:

Definition
Let α :=

(
v0 −→ v1 −→ · · · −→ vn−1 −→ vn

)
be a path in the graph G .

We say that α has been constructed by the A? Algorithm if, at some of
the A? iterates, vn is relaxed after the expansion of vn−1, g(vi) <∞ for
i = 0, 1, . . . , n, and vj = parent[vj+1] for j = 0, 1, . . . , n − 1.

Then, a basic result about the A? Algorithm that complements the
A?–Remark is the following:

A? Basic Lemma
All paths constructed by the A? Algorithm are acyclic.

A consequence of the A? Basic Lemma is that the basic operative of the
A? Algorithm constructs a subset of the acyclic paths strating at ξ, and
traverses the subgraph of G formed by the union of these acyclic paths.
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The A? Philosophy: Another view of A? — Proofs
Remark (the A? implemented path information does not allow cyclic paths)
The A? (and Dijkstra) strategy of constructing backwards the shortest paths, which is
based on keeping track of the predecessor (parent[]) of each node on the computed
shortest path, can never give as a result a cyclic path because every node can have a
unique parent.
Thus, the implemented way of constructing the shortest paths (fortunately) agrees
with the previous lemma.

Proof of A? Basic Lemma
Assume that A? has just constructed a cyclic path (x0 −→ x1 −→ · · · −→ xk)α, where
α := (v0 −→ v1 −→ · · · −→ vn−1 −→ vn) is a loop (i.e., vn = v0). Without loss of
generality we may assume that α is acyclic (i.e., v0, v1, . . . , vn−1 are pairwise
different). Then, prior to the relaxation of vn after the expansion of vn−1 the nodes
v0 = parent[v1], v1 = parent[v2], . . . , vn−2 = parent[vn−1] and vn−1 have been
previously relaxed. Thus, by A?–Remark,

g(v0) = g(vn) > g(vn−1) + ω(vn−1, vn)
= g(vn−2) + ω(vn−2, vn−1) + ω(vn−1, vn) = · · ·

= g(v0) +
n−1∑

j=0

ω(vj , vj+1) > g(v0);

a contradiction.
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On the heuristic function

It is clearly seen that the whole algorithm and, in particular, its
efficiency depend on the heuristic function.

As we will see, the best heuristic function is the one that estimates
(but never overestimates) the actual cost to get to the goal.

Example

Let G = (V ,E , ω) be a weighted graph and let γ denote the goal
node. For every vertex v ∈ V we set

h(v) :=
{

min{ω(v , u) : (v , u) ∈ E} if v 6= γ,
0 if v = γ.

We will show that the heuristic function in this example is
admissible and monotone, but it is a bad since is far from correctly
estimating σ(v , γ).
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

A
0

0.471
nil

expanded A

D C B F E H G P S U

g 0

0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471

0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil

A A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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5.203

4.818
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19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

D C B
0.471 0.495 0.528
0.942 0.99 1.036
A A A

expanded A

D C B F E H G P S U

g 0

0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471

0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil

A A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

C B E
0.495 0.528 23.626
0.99 1.036 24.146
A A D

expanded A D

C B F E H G P S U

g 0 0.471

0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942

0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A

A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U

A

B D E G

C F H

P
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12.373

3.618
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6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

B F E P
0.528 12.528 23.626 35.347
1.036 19.419 24.146 39.224
A C D C

expanded A D C

B F E H G P S U

g 0 0.471 0.495

0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99

1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A

A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U

A
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12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

F E P
12.528 23.626 35.347
19.419 24.146 39.224

C D C
expanded A D C B

F E H G P S U

g 0 0.471 0.495 0.528

12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036

19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A A

C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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12.373

3.618
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6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

E P
19.419 35.347
19.939 39.224

F C
expanded A D C B F

E H G P S U

g 0 0.471 0.495 0.528 12.528

19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419

19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A A C

F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U

A
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6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

H G P
19.939 23.704 35.347
20.459 24.334 39.224

E E C
expanded A D C B F E

H G P S U

g 0 0.471 0.495 0.528 12.528 19.419

19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939

20.459 21.199 39.224 41.734 41.734

parent nil A A A C F

E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

G P
20.569 35.347
21.199 39.224

H C
expanded A D C B F E H

G P S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939

20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459

21.199 39.224 41.734 41.734

parent nil A A A C F E

H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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5.203
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3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

P I
35.347 37.975
39.224 44.632

C G
expanded A D C B F E H G

P S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569

35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199

39.224 41.734 41.734

parent nil A A A C F E H

C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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20.832 2.510 13.313

Open Queue
g
f

parent

S Q I O T
39.224 40.165 37.975 51.525 54.478
41.734 43.141 44.632 55.975 59.681

P P G P P
expanded A D C B F E H G P

S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347

39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224

41.734 41.734

parent nil A A A C F E H C

P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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19.131

3.199
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20.832 2.510 13.313

Open Queue
g
f

parent

U Q I O T R
41.734 40.165 37.975 51.525 54.478 60.056
41.734 43.141 44.632 55.975 59.681 63.255

S P G P P S
expanded A D C B F E H G P S

U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224

41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734

41.734

parent nil A A A C F E H C P

S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.
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An example of the A? Algorithm
Finding the optimal path from source node A to node goal U
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20.832 2.510 13.313

Open Queue
g
f

parent

Q I O T R
40.165 37.975 51.525 54.478 60.056
43.141 44.632 55.975 59.681 63.255

P G P P S
expanded A D C B F E H G P S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734
f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again), as prescribed by the fact that the heuristic is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 49/60



Implementation of the A? Algorithm in C
Declarations and auxiliary functions

Graph declarations and auxiliary functions
typedef char bool; enum {false, true};
typedef struct{ unsigned vertexto; float weight; } weighted_arrow;
typedef struct{ char name; unsigned arrows_num; weighted_arrow arrow[5]; } graph_vertex;
typedef struct { float g; unsigned parent; } AStarPath;

bool AStar(graph_vertex *, AStarPath *, unsigned, unsigned, unsigned);

void ExitError(const char *miss, int errcode) {
fprintf (stderr, "\nERROR: %s.\nStopping...\n\n", miss); exit(errcode);

}

Priority Queue and A? declarations and auxiliary functions
typedef struct QueueElementstruct { unsigned v; struct QueueElementstruct *seg; } QueueElement;
typedef QueueElement * PriorityQueue;
typedef struct { float f; bool IsOpen; } AStarControlData;

float heuristic(graph_vertex *Graph, unsigned vertex, unsigned goal){ register unsigned short i;
if(vertex == goal) return 0.0;
float minw = Graph[vertex].arrow[0].weight;
for(i=1; i < Graph[vertex].arrows_num ; i++){

if( Graph[vertex].arrow[i].weight < minw ) minw = Graph[vertex].arrow[i].weight;
}

return minw; }

To implement the function Open.BelongsTo() efficiently in time
Instead of sequentially explore the whole queue to determine whether a given node v belongs to the list, it is much
simpler to check if ASCD[v].IsOpen is true. The drawback is that this bool variable costs one byte more per node,
and its maintenance must be done manually (add with priority automatically sets this variable for easiness).
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Question
Is the heuristic function a good one? If not, how to improve it?
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Implementation of the A? Algorithm in C
main program and results

#define GraphOrder 21

int main() {
graph_vertex Graph[GraphOrder] = {

{’A’, 3, { {1, 0.528}, {2, 0.495}, {3, 0.471} }},
{’B’, 2, { {0, 0.528}, {3, 0.508} }},

... ... ... ... ... ...
{’U’, 2, { {18, 2.510}, {19, 13.313} }} };

AStarPath PathData[GraphOrder];
unsigned node_start = 0U, node_goal = 20U;

bool r = AStar(Graph, PathData, GraphOrder, node_start, node_goal);
if(r == -1) ExitError("in allocating memory for the OPEN list in AStar", 21);
else if(!r) ExitError("no solution found in AStar", 7);

register unsigned v=node_goal, pv=PathData[v].parent, ppv; PathData[node_goal].parent=UINT_MAX;
while(v != node_start) { ppv=PathData[pv].parent; PathData[pv].parent=v; v=pv; pv=ppv; }

printf("Optimal path found:\nNode name | Distance\n----------|---------\n");
printf(" %c (%3.3u) | Source\n", Graph[node_start].name, node_start);
for(v=PathData[node_start].parent ; v !=UINT_MAX ; v=PathData[v].parent)

printf(" %c (%3.3u) | %7.3f\n", Graph[v].name, v, PathData[v].g);
return 0; }

Output: Shortest path
Node name | Distance
----------|---------

A (000) | Source
C (002) | 0.495
P (015) | 35.347
S (018) | 39.224
U (020) | 41.734

Starting at node goal, reverse the parents path so that successor
becomes parent and, conversely, parent becomes successor.
Then, we can write the optimal path forward; starting at
node start until we arrive at node goal.
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Implementation of the A? Algorithm in C
main program and results

#define GraphOrder 21

int main() {
graph_vertex Graph[GraphOrder] = {

bool r = AStar(Graph, PathData, GraphOrder, node_start, node_goal);
if(r == -1) ExitError("in allocating memory for the OPEN list in AStar", 21);
else if(!r) ExitError("no solution found in AStar", 7);

register unsigned v=node_goal, pv=PathData[v].parent, ppv; PathData[node_goal].parent=UINT_MAX;
while(v != node_start) { ppv=PathData[pv].parent; PathData[pv].parent=v; v=pv; pv=ppv; }

printf("Optimal path found:\nNode name | Distance\n----------|---------\n");
printf(" %c (%3.3u) | Source\n", Graph[node_start].name, node_start);
for(v=PathData[node_start].parent ; v !=UINT_MAX ; v=PathData[v].parent)

printf(" %c (%3.3u) | %7.3f\n", Graph[v].name, v, PathData[v].g);
return 0; }

Output: Shortest path
Node name | Distance
----------|---------

A (000) | Source
C (002) | 0.495
P (015) | 35.347
S (018) | 39.224
U (020) | 41.734

graph_vertex Graph[GraphOrder] = {
{’A’, 3, { {1, 0.528}, {2, 0.495}, {3, 0.471} }},
{’B’, 2, { {0, 0.528}, {3, 0.508} }},
{’C’, 4, { {0, 0.495}, {3, 3.437}, {5, 12.033}, {15, 34.852} }},
{’D’, 4, { {0, 0.471}, {1, 0.508}, {2, 3.437}, {4, 23.155} }},
{’E’, 4, { {3, 23.155}, {5, 6.891}, {6, 4.285}, {7, 0.520} }},
{’F’, 2, { {2, 12.033}, {4, 6.8910} }}, {’G’, 3, { {4, 4.285}, {7, 0.630}, {8, 17.406} }},
{’H’, 2, { {4, 0.520}, {6, 0.630} }},
{’I’, 5, { {6, 17.406}, {9, 6.657}, {10, 15.216}, {11, 10.625}, {12, 17.320} }},
{’J’, 2, { {8, 6.657}, {12, 16.450} }}, {’K’, 2, { {8, 15.216}, {14, 12.373} }},
{’L’, 2, { {8, 10.625}, {12, 3.618} }}, {’M’, 3, { {8, 17.320}, {9, 16.450}, {11, 3.618} }},
{’N’, 2, { {14, 4.450}, {19, 6.450} }},
{’O’, 4, { {10, 12.373}, {13, 4.450}, {15, 16.178}, {19, 5.203} }},
{’P’, 5, { {2, 34.852}, {14, 16.178}, {16, 4.818}, {18, 3.877}, {19, 19.131} }},
{’Q’, 3, { {15, 4.818}, {17, 3.199}, {18, 2.976} }}, {’R’, 2, { {16, 3.199}, {18, 20.832} }},
{’S’, 4, { {15, 3.877}, {16, 2.976}, {17, 20.832}, {20, 2.510} }},
{’T’, 4, { {13, 6.450}, {14, 5.203}, {15, 19.131}, {20, 13.313} }},
{’U’, 2, { {18, 2.510}, {19, 13.313} }} };
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Implementation of the A? Algorithm in C
main program and results

#define GraphOrder 21

int main() {
graph_vertex Graph[GraphOrder] = {

{’A’, 3, { {1, 0.528}, {2, 0.495}, {3, 0.471} }},
{’B’, 2, { {0, 0.528}, {3, 0.508} }},

... ... ... ... ... ...
{’U’, 2, { {18, 2.510}, {19, 13.313} }} };

AStarPath PathData[GraphOrder];
unsigned node_start = 0U, node_goal = 20U;

bool r = AStar(Graph, PathData, GraphOrder, node_start, node_goal);
if(r == -1) ExitError("in allocating memory for the OPEN list in AStar", 21);
else if(!r) ExitError("no solution found in AStar", 7);

register unsigned v=node_goal, pv=PathData[v].parent, ppv; PathData[node_goal].parent=UINT_MAX;
while(v != node_start) { ppv=PathData[pv].parent; PathData[pv].parent=v; v=pv; pv=ppv; }

printf("Optimal path found:\nNode name | Distance\n----------|---------\n");
printf(" %c (%3.3u) | Source\n", Graph[node_start].name, node_start);
for(v=PathData[node_start].parent ; v !=UINT_MAX ; v=PathData[v].parent)

printf(" %c (%3.3u) | %7.3f\n", Graph[v].name, v, PathData[v].g);
return 0; }

Output: Shortest path
Node name | Distance
----------|---------

A (000) | Source
C (002) | 0.495
P (015) | 35.347
S (018) | 39.224
U (020) | 41.734

Starting at node goal, reverse the parents path so that successor
becomes parent and, conversely, parent becomes successor.
Then, we can write the optimal path forward; starting at
node start until we arrive at node goal.
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Implementation of the A? Algorithm in C
The Dijkstra function code

bool AStar(graph_vertex *Graph, AStarPath *PathData, unsigned GrOrder,
unsigned node_start, unsigned node_goal){ register unsigned i;

PriorityQueue Open = NULL;
AStarControlData *Q;

if((Q = (AStarControlData *) malloc(GrOrder*sizeof(AStarControlData))) == NULL)
ExitError("when allocating memory for the AStar Control Data vector", 73);

for(i=0; i < GrOrder; i++) { PathData[i].g = MAXFLOAT; Q[i].IsOpen = false; }

PathData[node_start].g = 0.0; PathData[node_start].parent = ULONG_MAX;
Q[node_start].f = heuristic(Graph, node_start, node_goal);
if(!add_with_priority(node_start, &Open, Q)) return -1;

while(!IsEmpty(Open)){ unsigned node_curr;
if((node_curr = extract_min(&Open)) == node_goal) { free(Q); return true; }

for(i=0; i < Graph[node_curr].arrows_num ; i++){
unsigned node_succ = Graph[node_curr].arrow[i].vertexto;
float g_curr_node_succ = PathData[node_curr].g + Graph[node_curr].arrow[i].weight;
if( g_curr_node_succ < PathData[node_succ].g ){

PathData[node_succ].parent = node_curr;
Q[node_succ].f = g_curr_node_succ + ((PathData[node_succ].g == MAXFLOAT) ?

heuristic(Graph, node_succ, node_goal) : (Q[node_succ].f-PathData[node_succ].g) );
PathData[node_succ].g = g_curr_node_succ;
if(!Q[node_succ].IsOpen) { if(!add_with_priority(node_succ, &Open, Q)) return -1; }
else requeue_with_priority(node_succ, &Open, Q);

}
}
Q[node_curr].IsOpen = false;

} /* Main loop while */
return false;

}

To check easily whether a
given node v belongs to the
queue: It does so if and only
if Q[v].IsOpen is true.

For node start we have
f = h because g = 0.0.
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To check easily whether a
given node v belongs to the
queue: It does so if and only
if Q[v].IsOpen is true.

For node start we have
f = h because g = 0.0.

To save computational effort we call the heuristic function to compute h:
h(node succ) = heuristic(Graph, node succ, node goal)

only the first time that we visit a node (PathData[node succ].g == MAXFLOAT). When a node node succ
has been already visited we recover the value of h(node succ) = f(node succ) - g(node succ) (recall
that we are not storing the h-values separately) from the formula

f(node succ) - g(node succ) = Q[node succ].f-PathData[node succ].g.
For efficiency, the computation of

Q[node succ].f = PathData[node succ].g new + h(node succ)
is implemented by means of an arithmetic if.
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Implementation of the A? Algorithm in C
Priority queue functions code — Alike Dijkstra’s algorithm

bool IsEmpty(PriorityQueue Pq){
return ((bool) (Pq == NULL));

}
unsigned extract_min(

PriorityQueue *Pq){
PriorityQueue first = *Pq;
unsigned v = first->v;

*Pq = (*Pq)->seg;
free(first);
return v; }

void requeue_with_priority(unsigned v, PriorityQueue *Pq,
AStarControlData * Q){

register QueueElement * prepv;
if((*Pq)->v == v) return;

for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * pv = prepv->seg;
prepv->seg = pv->seg;
free(pv);

add_with_priority(v, Pq, Q); }

bool add_with_priority(unsigned v, PriorityQueue *Pq, AStarControlData * Q){
register QueueElement * q;
QueueElement *aux = (QueueElement *) malloc(sizeof(QueueElement));
if(aux == NULL) return false;

aux->v = v;
float costv = Q[v].f;
Q[v].IsOpen = true;

if( *Pq == NULL || !(costv > Q[(*Pq)->v].f) ) {
aux->seg = *Pq; *Pq = aux;
return true;

}

for(q = *Pq; q->seg && Q[q->seg->v].f < costv; q = q->seg ) ;
aux->seg = q->seg; q->seg = aux;
return true;

}

Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 53/60



Algorithmic properties of A?:
Termination and Completeness

Theorem
A? always terminates on finite graphs.

Remark (finiteness of acyclic paths starting at ξ)
Let C be the maximal subgraph of G that contains ξ and is connected. Observe that
every path of G starting at ξ is contained in C .
Let mξ denote the out-degree of ξ in C , let m denote the maximum out-degree of a
vertex in C , and let ` denote the number of vertices in C (including ξ).
Since a path is acyclic if and only if every vertex appears at most once in the path, the
length of an acyclic path starting at ξ is smaller than or equal to `− 1. So, the
number of acyclic paths starting at ξ can be brutally upper bounded by mξ ·m`−2.

Proof
If A? does not stop after finding a solution (by extracting γ from the Open Queue
with the function extract min) then, by A? Basic Lemma and the above Remark, it
will traverse the subgraph of G formed by the union of finitely many acyclic paths
starting at ξ in finite time. Upon completion of this traversal, the Open Queue will
become empty and A? will stop with failure.

Lluís Alsedà Shortest paths algorithms in weighted graphs Índex General 54/60

Algorithmic properties of A?:
Termination and Completeness

Completeness An algorithm is said to be complete if it termi-
nates with a solution when one exists.

Completeness Theorem
A? is complete (even on infinite graphs).
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Algorithmic properties of A?:
Admissibility

Admissibility An algorithm is admissible if it is guaranteed to
return an optimal solution whenever a solution
exists.

Definition
An heuristic function h is said to be
admissible if for every vertex v ∈ V ,

h(v) ≤ σ(v , γ)
where γ is the goal node.

Admissibility Theorem
A? is admissible.

Example (the heuristic function from Page 48 is admissible)
If v = γ we have: h(v) = h(γ) = 0 ≤ σ(v , γ).
If v 6= γ, let α be an optimal path from v to the node goal γ and let u ∈ V be
such that (v , u) ∈ E and α starts with (v , u). We have

h(v) = min{ω(v , x) : (v , x) ∈ E} ≤ ω(v , u) ≤ ω(α) = σ(v , γ).
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Algorithmic properties of A?:
Dominance and Optimality

Dominance An algorithm A?
1 is said to dominate A?

2 if every node
expanded by A?

1 is also expanded by A?
2 . Similarly,

A?
1 strictly dominates A?

2 if A?
1 dominates A?

2 and
A?
2 does not dominate A?

1 . We will also use the
phrase “more efficient than” interchangeably with
dominates.

Optimality An algorithm is said to be optimal over a class of
algorithms if it dominates all members of that class.

Definition
An heuristic function h2 is more informed than h1 if both are admissible
and h2(v) > h1(v) for every non-goal vertex v ∈ V . Similarly, an A?

algorithm using h2 is said to be more informed than that using h1.

Theorem
If A?

2 is more informed than A?
1 , then A?

2 dominates A?
1 .
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Algorithmic properties of A?:
Monotone (Consistent) Heuristics

By the triangle inequality we have σ(u, γ) ≤ σ(u, v) + σ(v , γ) for every
u, v ∈ V , where γ ∈ V denotes the goal node. Since, by admissibility
h(·) is an estimate of σ(·, γ), it is now reasonable to expect that if the
process of estimating h(·) is consistent, it should inherit the above
inequality and satisfy h(u) ≤ σ(u, v) + h(v) for every u, v ∈ V .

Definition (Consistency and Monotonicity)
An heuristic function h is said to be consistent if

h(u) ≤ σ(u, v) + h(v)
is satisfied for all pairs of nodes u, v ∈ V .
A heuristic function h is said to be monotone if it satisfies

h(u) ≤ ω(u, v) + h(v)
for every u, v ∈ V such that (u, v) ∈ E is an edge of the graph.
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Algorithmic properties of A?:
Monotone (Consistent) Heuristics

Monotonicity may seem, at first glance, to be less restrictive than
consistency, because it only relates the heuristic of a node to the
heuristics of its immediate successors. However, a simple proof by
induction on the depth of the descendants of u shows the following

Theorem
A heuristic function is monotone if and only if it is consistent.

It is also simple to relate consistency to admissibility.

Theorem
Every consistent heuristic is admissible.

Example (the heuristic function from Page 48 is monotone)
Let u, v ∈ V be such that (u, v) ∈ E is an edge of the graph. Then,

h(u) = min{ω(u, x) : (u, x) ∈ E} ≤ ω(u, v) ≤ ω(u, v) + h(v)
because h is non-negative.
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Algorithmic properties of A?:
Properties of Monotone Heuristics ξ ∈ V denotes the source node

Theorem (All discovered paths are optimal)
An A? algorithm guided by a monotone heuristic finds optimal paths to
all expanded vertices v ∈ V . That is,

g(v) = σ(ξ, v)
for every expanded vertex v ∈ V .

Theorem (Monotonicity of the sequence of f values)
Monotonicity implies that the sequence {f (vi)}`

i=1 of f values of the
sequence of vertices {vi}`

i=1 expanded by A? is non-decreasing.

Theorem (Easy expansion conditions)
If h is a monotone heuristic, then the necessary condition for expanding a
vertex v ∈ V is given by

σ(ξ, v) + h(v) ≤ σ(ξ, γ),
and the sufficient condition by the strict inequality

σ(ξ, v) + h(v) < σ(ξ, γ).
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