Deterministic optimization assignment

December 15, 2020

The Rosenbrock's function is:

$$
f\left(x_{1}, x_{2}\right):=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

The exercise consists in solving the problem of minimizing f over \mathbb{R}^{2} starting at the point $(-1.5,-1)$. Is this point a good seed?

Compare the two different methods below by explaining towards which point do they converge, and how many iterations are required.
(Where) Is f convex? Are the points obtained a global minimum?
Methods to program:
(a) the Conjugate Gradient Method, and
(b) Levenberg-Marquardt.

