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1 Introduction

At La Banya, gulls (both Audouin’s gulls and their main competitor yellow-legged gulls) build their nest in
clumped groups (what is called a sub-colony). Censuses are performed yearly depending on the size of the
sub-colony.

The obtained data is shown in the following table:

year pop. year pop. year pop. year pop. . T
1981 36 1990 4300 1999 10189 2008 13031 o
1982 200 1991 3950 2000 10537 2009 9762
1983 546 1992 6174 2001 11666 2010 11271
1984 1200 1993 9373 2002 10122 2011 8688
1985 1200 1994 10143 2003 10355 2012 7571
1986 2200 1995 10327 2004 9168 2013 6983
1987 1850 1996 11328 2005 13988 2014 4778
1988 2861 1997 11725 2006 15329 2015 2067 ot
1989 4266 1998 11691 2007 14177 2016 1586
2017 793
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Table 1: The Andouin’s population data at La Banya from 1981 to 2017. Predators (foxes) appeared in 1997.
In 2005 there is an abrupt change (at the moment without explanation) provoked by external reasons. The
period 1981-1997 known as First Epoch is characterised by a logistic growth due to the absence of predators
and the fact that the population did not exhaust the food carrying capacity. The period 2006-2017 known as
Second Epoch is characterised by a regular behaviour with migration.

Several biotic and abiotic drivers can influence population fluctuations at the study patch. However, previ-
ous studies show that local biotic drivers explain better these fluctuations than global oceanographic indexes.
Among the these biotic drivers, interference competition with the dominant yellow-legged gull and predation
and disturbance by invasive carnivores (mainly foxes) are the main factors affecting all crucial demographic pa-
rameters, namely adult survival, fertility and dispersal (both immigration and dispersal at spatial mesoscale).
The main difference between these two drivers is that yellow-legged gulls are competitors with a long shared
evolutionary history and long-term stability occurs when the two species occur in a specific patch. On the
contrary, gulls have not developed evolutionary defences to cope with terrestrial predators like carnivores, and
this is why they select for breeding patches isolated and protected against the invasions of the predators.

Population density of yellow-legged gulls and the number of carnivores present at La Banya have been
estimated over the years, and gull carcasses and tracks in the sand have provided estimates of yearly predation
rates that varied with the individual predator and its foraging preferences. Other biotic factor is food availability,
and a proxy to assess its temporal variability is through the statistics of landings of trawlers in the harbors close
to the study site, which are highly correlated with the amounts of fish discarded. Food per capita decreased
as population density approached the carrying capacity during the mid 90’s and also because trawler catches
per unit effort have decreased in recent decades due to overharvesting of fish stocks. Adult survival, which is
the vital rate with largest elasticity for the population dynamics of the gulls, changes with bycatch mortality
at longline fisheries and by carnivore predation.

Previous studies have shown that bycatch is relatively constant over the years, whereas carnivore density
may vary with breeding season, although values were always low. Predation rate increased with the density
of carnivores, but some noise for this association occurred due to individual carnivore preferences for gull
predation. However, these predation rates did not significantly affect adult survival, whereas they increased
dispersal probabilities to other patches (either occupied or empty).



In summary, there is no record of a decrease of food availability in absolute and per capita values (i.e.
accounting for density-dependence), nor a decrease of local survival by carnivore predation or an increase
of competition with the dominant yellow-legged gulls. Thus, these variables cannot explain the decline of
population density of Audouin’s gulls to patch collapse at La Banya since 2006, which should respond to an
increase of dispersal to other patches.

2 Mathematical model with dispersal by social copying

We introduce a mean field model using an ordinary differential equation modeling key ecological processes
expected to explain the field data. Our hypothesis is that the presence of predators triggers a social response of
the birds that start dispersing in an inverse, density-dependent manner. That is, the less individuals at the patch,
the faster the dispersal rate. The mathematical model describes the population dynamics of birds (variable z) in
the patch of study. The model can be considered as a single-patch system considering immigration and dispersal
of individuals. Other processes considered are intra-specific competition for resources and density-independent
death rates. As we thoroughly explain below, the model incorporates a function incorporating a social copying
dispersal process assumed to occur due to the presence of predators. The model will be adapted to the dynamics
and processes hypothesized for the different epochs: a first epoch before predators arrival (1981-1997) and a
second epoch comprised between 1998 and 2017, containing the full collapse of the population during years
2006-2017 since predators were removed in 2017. The model reads:
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with initial population x(0). This equation considers the following ecological processes:

Immigration, Nonlinear
growth and competition
death term Dlspcrswl by social copying
with @ = v — € (units: blrds/year Equatlon con81ders an initial exponential increase of the population

proportional to parameter v (including both the reproductlon of birds and the arrival of new individuals from
other patches of the metapopulation, which is made proportional to the population present at the patch). This
population increase is constrained by a logistic function with carrying capacity K (units: birds), introducing
intra-specific competition for resources. Also, we consider density-independent death rate, proportional to
parameter €. The competition term will be also written as Sz?, with 3 = v/K (units: years™!). The nonlinear
dispersal function given by
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is an Elliot sigmoid ©-scaled, o—strengthened, and d—displaced. All the model parameters are non-negative
and we have fixed © := 1000 (this parameter controls how stretched is the sigmoid function and it is related
with the order of magnitude of the carrying capacity K). Figure 1 shows some examples of the shape of the
function ¥ for different values of the parameters. The function W is designed so that the dispersal response
of the population of birds generically increases when the population numbers at the patch diminish. Finally,
parameter X is the dispersal rate that parameterize the impact of function ¥ (units: birds/year) in Eq. (2).

The following proposition and lemma summarize the mathematical properties of the functions ¥(z, u, 0, 9),
E(x,0,0) and Egir(z, 1, 0,9).

Lemma 1 (On the functions £(x,0,0) and Egi(x, p,0,9)). For all u,0,5 >0 and x > 0 we have

(1) £(0,0,6) = —ﬁ‘fﬂ;, and Eq4ir(0, p,0,0) = “20?057
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Figure 1: Shapes of the function ¥(z, u,o,d) used to model social copying behaviour during dispersal. We
display several shapes tuning three parameters u, o and J, ranging from constant dispersal (orange line below),
to exponential-like (black curve) or to sigmoid-like (e.g. red, blue or violet curves). The parameter p determines
if the curves intersect 0 population density from below (p > 1) or from above (0 < u < 1) U(z,u,0,6) = 1. The
parameter o determines how steep is the sigmoid and § denotes the population size at which the curve starts

bending.

(2) E4ir(6,p,0,0) = E(6,0,8) =0,

(3) Egir(x, 11,0,9) = E(x,0,6) =0 for every x > 0,

(4) =1 < &(x,0,0) <1,

(5) L&(x,0,6)= (@Jrfl)ﬁ >0, and

(6) limg_, 4 E(x,0,0) =1 provided that o > 0.

When o > 0, € and Eg;r are continuous as functions of x. Moreover, for p >0 and 0 < x < 6,
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where I':= (2—p)© + (1 —p)od and z = 9§ — x.

Proposition 2 (On the function ¥(z,p,0,0)). For every p,d > 0 and © > 0 we have ¥(x,p,0,0) = 1.
Moreover, for o > 0 we have

(a) The function V(z, u,0,0), as a function of z, is continuous, differentiable, and strictly positive.
(b) ¥(0,u,0,0) =1 and lim;_ 4o U(z,pu,0,5) = 0. Moreover, for every o > 1 and 0 < x < § we have

l—p
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(c) If u > 1, then W(x, u,0,0) is strictly decreasing as a function of x. Moreover, % U(x, u, o, 6)|x:0 18 0 when
w =1 and negative when p > 1.

(d) For 0 < p<1andé >0, U(x,pu,0,d) is a unimodal function with a mazimum at * € (0,9) (that is, ¥
is strictly increasing in [0,x*] and strictly decreasing in [x*,+00)). In particular, % U(x, u,0,0) > 0 for
every x € [0,z*). On the other hand, for every x € (0,0, ¥(x, u,0,0) < U(z*, u,0,0) < 2.

By using the logistic growth Model (2) (with A = 0) for the First Epoch data (no migration) one can estimate

(as intrinsic parameters of the model):

Parameter units Range or value Meaning or description
K birds 16651.2696 Carrying Capacity.
0% birds? /year  0.406001835194 Intrinsic growth rate.
€ birds/year  0.057052426616 Death rate.

—e  birds/year  0.3489494085776018 Neat population growth rate.
== birds? /year  0.000024382635446  Intrinsic growth rate over the carrying capacity.




3 The exercise

Fit the parameters of Model

d
(2) d—f = px — Bx? — \U(x, u,0,0)
to the Second Epoch data to check the hypothesis that Andouin’s migration occurs with social copying with a
Genetic Algorithm.

The solution of this model is denoted by x(t) = 4z u,0,6(t), and its parameters are:

Parameter Range or value Meaning or description

Intrinsic growth rate over the carrying capacity.
Estimated with the Fisrt Epoch Data.

Neat population growth rate. It includes a linear
p=a—p < a=0.3489494085776018 migration term of the form pz, where p is the
linear dispersal rate.

B 0.000024382635446

T2 pu,0,5(0) [0, K] ODE’s Initial condition.
A R Non-linear Dispersal Rate.
Determines -2 1 Y(z, p, 0, 6)| o It s
0 h = 1,
p - when p =

negative when p > 1, and
positive  when p < 1.

Determines the “slopes” of the sigmoids.
o ~ 600 approximates a Heaviside function.
R+ Point of change of concavity of ¥ (x, i, g, d).

o RT

Observe that the solution z(t) depends on the initial condition x(0) € [0, K], that must be considered a free
parameter as well.

4 Proposed solution strategy

The exercise is to be solved with a minimising genetic algorithm with an appropriate fitness function.
Please, be aware that the solution of the ODE has a rather strong sensitive dependence with respect to
parameters and initial condition); meaning that the genetic algorithm will have difficulties in finding the solution.

4.1 Individuals

Clearly, an individual in the population is specified by six chromosomes corresponding to the six free parameters.

As it has been explained, the proof of Holland’s Convergence Theorem works in the setting of genes or
chromosomes consisting in unsigned integers expressed in binary. Consequently the above “real numbers phe-
notype” is better encoded in the form of a discretized genotype consisting in unsigned integers. In the following
table we explain, for each parameter, the theoretical range (given in the above table), an effective (reasonable,
common sense) search range and a reasonable sensitivity (or better said precision), thus fixing the range and
discretization formula for the genotype.

Phenotype Genotype
Theoretical LDhiEEse Precision or g Factor (formula) from
Parameter Rance Search discretization Search genotype to phenotype
& Range step Range
2(0) [0, K] [0, 16600] 10~2 (0,221 — 1] 2859 ~ 0.0079155006005766 - - -
) 100 35 ~
0 (—00,a]  [~100,0.35] 108 0,234 — 1] & a8y —100%
g- 5. 841138773 - 10 — 100
A R [0, 3000] 10~* (0,225 — 1] 3890 ~ 8.940696982762 - - - 10~°
" R* [0,20] 10-¢ (0,225 — 1] 2% ~ 5.960464655174--- 10"
o R [0, 1000] 1072 (0,217 — 1] 9% ~ 0.007629452739355006 - - -
) R [0, 25000] 1 (0,215 — 1] 2P09% ~ 0.7629627368999298 - - -




Observations:
e All upper limit and precision values for the phenotype have been set to “common sense reasonable values”.

e All upper limit values of the genotype have been chosen to be the smallest possible powers of two that
satisfy the following condition:

genotype upper limit of the form 2™ > phenotype upper limit/precision.
For example, for the initial conditions the above formula gives

221 = 2,097,152 > 1,660,000 = 16,600/102.

e Observe that the number 2" — 1 when written in binary in 64 a bits representation, has a string of 64 —n
consecutive zeroes at the left, and a string of n consecutive ones at the right. Moreover, the expression in
binary of all integers in the range [0,2"™ — 1] has a string of at least 64 — n consecutive zeroes at the left.
This is very useful, when programming crossovers and mutations, to avoid complicate feasibility tests.

e All powers of two in the above table have exponent less than or equal to 40, and there are some with
exponents larger than 32. So, the base data type for the genes to store these genotype elements must be
unsigned long int.

4.2 Fitness function

The Genetic Algorithm must identify an individual that could possibly have generated the observed data for
the Second Epoch. This is done by finding the ”fittest” individual from the point of view of generating the
observed data. In other words, the fitness function must measure how similar is the observed data to solution
of the ODE which has a given individual as parameters

More precisely, an individual Ind contains all the necessary parameters to compute the solution of Model (2)
fort=1,2,...,11.

Two possible norms that measure the agreement between the pandemic data generated by Ind and the figured
pandemic public data are:

(6) max{(x(t)—z(t+2006))2:t=0,1,2,...,11},

2
)

(7) i W, (:zr(t) (4 2006))
t=0

where z(y) denotes the population size of Andouine seagulls at year y and Wy, Wy, ..., Wi; > 0 are weights.
Clearly, a value zero in the above fitness function indicates that Ind’s phenotype is the one that drives the
pandemic through Model 2.

4.3 Integrating an ODE: Computing the values of z(t) for t =1,2,...,100

We will use the Runge-Kutta-Fehlberg method of order 7-8 with adaptive space (see the appendix to this
document).

In the file RKF78.c (also needed RKF78.h for definitions and prototypes) there is an implementation for
ODE’s and another one for systems (see the implementation notes in RKF78.c for the meaning of parameters
and how to use the procedure).

However as an example on how to use RKF78 we provide here a full programmed implementation of the
computation of the values z(t) for t =0,1,2,...,11.

#define ElliotSigmoidSCALE 1000
#define TwoElliotSigmoidSCALE 2000

double ElliotSigmoid(double x, double sigma, double delta) {
x = sigmax*(x-delta);
return x/(El1liotSigmoidSCALE + fabs(x));



double Psi(double x, double mu, double sigma, double delta){
if (fabs(sigma) < ZeRoParsThreshold) return 1.0;
double ES = ElliotSigmoid(x, sigma, delta);
sigma *= delta; x /= delta;
if (x < delta) {
ES = ES * (x + (mux(1.0-x)*(sigma + ElliotSigmoidSCALE)) / (sigma + TwoElliotSigmoidSCALE));
}
return ((1 - ES)*(sigma + TwoElliotSigmoidSCALE)) / (sigma*(1+mu) + TwoElliotSigmoidSCALE) ;
}

typedef struct {
double phi;
double beta;
double lambda;
double mu;
double sigma;
double delta;

} ODE_Parameters;

void MigrationODE(double t, double x, double *der, void *Params)<{
ODE_Parameters *par = (ODE_Parameters *) Params; // Pointer cast to save typing and thinking
*der = par->phi * x - par->beta*x*x - par->lambda*Psi(x, par->mu, par->sigma, par->delta);

#define HMAX 1.0
#define HMIN 1.e-6
#define RKTOL 1.e-8
int Generate_EDO_Prediction( double *xt, double xO,
unsigned short number_of_years,
ODE_Parameters *pars ){
register unsigned ty;
xt[0] = x0; // Storing IC x(0)
for(ty=1; ty < number_of_years; ty++) xt[ty] = 0.0;

double t = 0.0, err, h = 1.e-3;
for(ty=1; ty < number_of_years; ty++) { int status;
while(t+h < ty) {
status = RKF78(&t, &x0, &h, &err, HMIN, HMAX, RKTOL, pars, MigrationODE);
if (status) return status;
} // Adaptative stepsize h. To assure stopping at t = ty
h =1ty - t;
status = RKF78(&t, &x0, &h, &err, HMIN, HMAX, RKTOL, pars, MigrationODE);
if(status) return status;
xt[ty] = x0;
}

return O;



Appendix A
Runge-Kutta Methods

The Runge-Kutta methods are an important family of iterative methods for the ap-
proximation o solutionsof ODE's, that were develoved around 1900 bythe german
mathematicians C. Runge (1856—192Yand M.W. Kutta (1867—194%. We start with
the consideredion o the explicit methods. Let us consider an initail value problem
(IVP) g
X
5p = f(tx(), (A1)

X(t) = (X1 (1), %2(t), ... %a(t)T, f € [a, b] x R" — R", with an initial condtion
X(0) = Xo. (A2)

We ae interested in a numericd approximation o the continuowsly diff erentiable
solution x(t) of the IVP (A.1)—(A.2) over the time interval t € [a, b]. To this am
we subdvidetheinterval [a, b] into M equal subintervals and seled the mesh points
tj [11, 8]

ti=a+jh, j=01...,M, h=

b—a
vt (A3)

Thevaluehiscdled a step size.

The family of explicit Runge—Kutta (RK) methods of the m'th stage is given
by[11, 9]

X(tnt1) = Xnt1 = Xn+ h_zlqki ; (A4

where

13



ki = f(tn, Xn),
ko = f(tn+ azh, Xn+ hB21ky (tn, Xn)),
ks = f(tn+ ash, xn -+ h(Bz1ka(tn, Xn) + Bazka(tn, Xn))),

m-1
km = f(th+ amh, Xn+h Z Bmikj).
=1

To spedfy a particular method, we need to provide the integer m (the number of
stages), and the wefficients a; (fori =2,3,...,m), Bjj (for 1 < j <i <m), and g
(fori=1,2,...,m). These data ae usually arranged in a co-cdled Butcher tableau
(after JohnC. Butcher) [11, 9]:

Table A.1 The Butcher tableau.

0
az| B
03| Bs1 Baz
OBt Bz -« - - - Brm-1
[ e ... Cm-1 Cm
Examples
1. Letm=1.Then
ki = f(tn, Xn),

Xn1 = Xn+hey f(tn, Xn).
On the other hand, the Taylor expansion yields
Xni1=Xn+hX|, +-- =Xa+hf(th, Xn) + O(h?) = c1 = 1.

Thus, thefirgt-stage RK-methodis equivalent to the explicit Euler’smethod Note
that the Euler’'s methodis of the first order of acarragy. Thuswe can speak about
the RK method d thefirst order.

2. Now consider the cae m= 2. Inthis case Eq. (A.4) is equivalent to the system



ki = f(tn, Xn),
ko = f(tn+ 02h, Xn+hB2iky)
Xni1 = Xn+ h(Ciki 4+ Coko) .

(A.5)

Now let uswrite down the Taylor series expansion o x in the neighbahood d t,
uptotheh? term, i.e,

dx|  h?d% 3
Xn+17Xn+ha tn+E W tn+ﬁ(h )
However, we know that x = f(t, x), so that
d?>x _ df(t,x) af(t,x) af(t, x)
— = = ’ f(t —
az " dt o HIEOT5,

Hencethe Taylor series expansion can be rewritten as

h2 [ of of
Xn+1— Xn = hf(tn, Xn) + ( f )

I v“r 3
AGRAR +O(h°). (A.6)

(tn,Xn)

On the other hand, the term k; in the proposed RK method can also expanded to
o(h3) as

af of
ke = f(tn+ 02, o +hBorks) = N (tn. xn) + et 5 | o).

(tn,Xn)

+hB f

(tn,Xn)

Now, substituting this relation for k; into the last equation o (A.5), we adieve
the following expresson:

+0(h°).

(tn,Xn)

of
+h2coBorf —

of
Xn+1—Xn:h(C1+Cz)f(tn,Xn)+h20202— ax

ot

(tn,Xn)

Making comparisionthe last equation and Eq. (A.6) we cax write down the sys-
tem of algebraic equations for unknown coefficients

Ci+c =1,
1

C0p = 5
1
0232125-

The system involves four unknowns in three ejuations. That is, one additional
condtion must be supgied to solve the system. We discusstwo useful choices,
namely

a) Let ap =1. Thenc, =1/2, ¢ = 1/2, B3 = 1. The arrespondng Butcher
tableau reads:



~ o
g~

212

Thus, in this case the two-stages RK methodtakes the form

h
Xn+1=Xn+ 5

5 (f(tm Xn) + f(tn + h, Xn + hf (tn, xn))>,

and is equivalent to the Heun's method, so we refer the last method to as
RK-method d the second ader.

b) Now let a, =1/2. Inthiscasec; = 1, ¢c; = 0, B21 = 1/2. The correspondng
Butcher tableau reads:

0
1/2|1/2

In this case the seand-order RK method (A.4) can be written as

h h
Xn+1:Xn+hf<tn+§7Xn+§f(tn,xn))

andis cdled the RK2 method.

RK 4 Methods

One member of the family of Runge—Kuttamethods (A.4) isoften referred to asRK4
method or classical RK method and represents one of the solutions correspondngto
the case m= 4. In this case, by matching coefficientswith thase of the Taylor series
one obtains the foll owing system of equations[8]

10



Ci+C+C3+Cp =1,

Bo1= 0z,
Ba1+ B3z = a3,
1
C202+ C303+ Callg = 5
1
C203 4 C3a2 4 c4a2 = 3
1
C203 + 303 + a0 = 7
1
C302332+ Ca(Q2f42+ a3fs3) = 5

C30203332+ C404(a2Ba2+ A3P43) =
2 2 2p \ _
C305 a2+ Ca(Q5 Baz+ a3 faz) =

C402f32P43 =

| gl 2l

The system involves thirteen unknavnsin eleven equations. That is, two additional
condtionmust be suppied to solve the system. The most useful choicesis[9]

1

a; = -
27

B31=0.

The correspondngButcher tableau ispresented in Table A.2. Thetableau A.2 yields

Table A.2 The Butcher tableau correspondng to the RK4 method

1/6 1/3 /3 1/6

the equivalent correspondngequations defining the dasscd RK4 method

h
Xni1=Xn+ 6(k1+2k2+2k3+k4), (A7)

where

11



ki = f(tn, Xn),

h h
ko = f(tn+ 5, Xn+ K1),

2 2
h h
ks = f(tn+§axn+§k2)7

ks = f(tn+h, Xn + hk3).

This method is reasonably simple and robust and is a good gneral candidate for
numericd solution of ODE’'s when combined with an intelli gent adaptive step-size
routine or an embedded methods (,e.g., so-cdled Runge-Kutta-Fehlberg methods
(RKF45)).

Remark:
Notice that except for the dasscd method (A.7), one can also construct other

RK4 methods. We mention orly so-cdled 3/8-Runge-Kutta method. The Brutcher
tableau, correspondngto this methodis presented in Table A.3.

Table A.3 The Butcher tableau correspondng to the 3/8- Runge-Kutta method.

1/8 38 3/8 1/8

Geometrical interpretation of the RK4 method

Let us consider a aurve x(t), obtained by (A.7) over a singe time step from t,
to ty11. The next value of approximation Xp1 is obtained ty integrating the slope

function, i.e.,
thi1

X1 — Xn = / F(t.x)dt. (A8)
tn
Now, if the Simpson'srule is applied, the gpproximationto the integral of the last
equationreals[10]

it

/f(t,x)dm2<f(tn,x(tn))+4f(tn+g,x(tn+g))+f(tm,x(tm))). (A.9)
th

12



On the other hand, the values ki, k», ks and k4 are gpproximations for slopes of
the aurvex, i.e., k; isthe slope of the left end of the interval, kp and k3 describe two
estimations of the slopein themidd e of thetimeinterval, whereas k4 correspondsto
the slope & the right. Hence we can choaose f (tn, X(tn)) = kg and f (tn1,X(th41)) =
ks, whereas for the value in the middle we choose the average of k; andks, i.e.,

h ko + ks

h
f(tn+E>X(tn+§)): >

Then Eq. (A.8) beacomes

h 4(k:
Xn+1:Xn+€(kl+w+k4>v

which is equivalent to the RK4 schema (A.7).

Stage ver sus Order

The locd truncation error € for the method (A.7) can be estimated from the aror
term for the Simpson'srule (A.9) andequals[10, 8]

@
X
=—h .
Entt 2880

Now we can estimate thefinal global error E, if we suppaethat only the aror above
is presented. After M steps the acaimulated error for the RK4 methodreads

Ex(b).h) = e X boay, oh
U k; 2880 2880 '

That is, the RK4 method (A.7) is of the fourth order. Now, let us compare two
appximations, obtained using the time steps h and h/2. For the step sizeh we have

E(x(b), h) ~ Kh*,
with K = const. Hence, for the step h/2 we get

h h* 1
That is, if the step sizein (A.7) is reduced by the fador of two, the global error of
the methodwill be reduced by the fadtor of 1/16.

E(x(b),

Remark:

In general there are two ways to improve the acaracy:

13



1. One careducethetime step h, i.e., the anourt of stepsincreases;
2. The method d the higher convergency order can be used.

However, increasing o the convergency order p isreasonable only upto somelimit,
given by so-cdled Butcher barrier [11], which says, that the anourt of stages m
grows faster, as the order p. In other words, for m > 5 there are no explicit RK
methods with the convergency order p = m (the corresponding system is unsolv-
able). Hence in order to reat convergency order five one needs sx stages. Notice
that further increasing o the stage m= 7 leads to the convergency order p=>5 as
well.

A.0.1 Adaptive stepsize control and embedded methods

As mentioned abowve, one way to guarantee acaragy in the solution o (A.1)—
(A.1) is to solve the problem twice using step sizes h and h/2. To ill ustrate this
approad, let us consider the RK method d the order p and denate an exad solution
a the point tn.1 =ty + h by Xp1, whereas x; and x; represent the goproximate
solutions, correspondng to the step sizes h and h/2. Now let us perform one step
with the step size h and after that two steps eat of size h/2. In this case the true
solution and two numericd approximations are related by

’XI’Hl = X1 +Chp+1 + ﬁ(hp+2) s

p+1
Kns1 = X2+ 2C <§> +0(hP+2),

Thatis,

1 [X1— Xa|
x|l =ChPtl(1- = — 11772l
[X1 — X2/ =Ch <1 2p> sC T—2 e’

Substituing therelation for C in the seandestimate for the true solution we get
Xni1=Xz2+ &+ O(hPH?),
where
_ [xa—xqf
2r—1

can be considered as a convenient indicator of the truncaionerror. That is, we have
improved ou estimate to the order p+ 1. For example, for p = 4 we get

X1 — X2

(]
s o).

Xn1 = X2+

This estimate is acaurrate to fifth order, one order higter than with the original step
h. However, this methodis not efficient. First of all, it requires a significant amourt
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of computation (we shoud solve the equation threetimes at eat time step). The
seond pant is, that we have no passhility to control the truncaion error of the
method (higher order means nat always higher acarragy).

However we can use an estimate ¢ for the step size control, namely we can compare
€ with some desired accuracy & (seeFig A.1).

(Inputi,Xj,é‘o, hj, j :0)

|

|Cdculatex (tj +hj, hy), x( ,+h,, ands

+—»| Doublestep size hj,1 := 2h; I‘

|t,+1—t,+h,,J =j+1

y&s

—| Halve step size hj, g := h%; Reiterate the step |‘

Fig. A.1 Flow diagramm of the step size cntrol by use of the step douhling method

Alternatively, using the estimate €, we can try to formulate the foll owing problem of the adap-
tive step size control, namely: Using the given values x; andt;, find the largest possble step size
hnew, SO that the truncation error after the step with this gep size remains below some given desired
acaragy €, i.e

hrnew \ P71 X1 — Xa
p+1 new 1 2
Chiay <& < (T ) 155 <é&.

1/p+1
hrew = h <£°> .

Then if the two answers are in close ayreament, the gpproximation is acceted. If € > & the step
sizehas to be deaeased, whereas the relation € < &g means, that the step size has to be increased
in the next step.

Notice that becaise our estimate of error is not exad, we shodd pu some "safety” fador
B ~1[11, 9]. Usudly, B = 0.8, 0.9. The flow diagramm, correspondng to the the adaptive step
size ontrol is shown onFig. A.2

Notice one aditional technicd point. The choise of the desired error & depends on the IVP
we ae interested in. In some gplicaionsit isconvinient to set &y propational to h[9]. In thiscase
the exporent 1/p+ 1 in the estimate of the new time step isnolonger corred (if hisreduced from
atoo-large value, the new predicted value hney Will fail to mee the desired acarragy, so instead of
1/p+ 1 we shoud scde with 1/p (see[9] for detail s)). That is, the optimal new step size can be

written as
1/p+1
B h(%") . E>g,

Y (A.10)

Bh(%‘)) , £ < &,

That is,

Nrew =
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Input to, Xo, &0, h, j =0 I

|

| Calculate x(t; +h, h), x(t; +h, ) and e |‘

yes 1/p+1
—» The step is acceted; hnay 1= [;h(%) a1 =t +Poaws ] 1= j+1

no

1/p
Prew =B h(%) Reiterate the step

Fig. A.2 Flow diagramm of the adaptive step size @ntrol by use of the step doubling method

where (3 isa "safety” fador.

Runge-K utta-Fehlberg method

The dternative stepsize aljustment algorithm is based on the embedded Runge-Kutta formulas,
originaly invented by Fehlberg andis cdl ed the Runge-Kutta-Fehlberg methods (RKF45) [11, 10].
At eath step, two different approximations for the solution are made and compared. Usualy an
fourth-order method with five stages is used together with an fifth-order method with six stages,
that uses al of the paints of the first one. The general form of a fifth-order Runge-Kutta with six
stagesis

k= f(t, ),
ko = f(t+aoh, x+hBosky),

ke

5
f(t+aah,x+hz Beikj) -
j=1
The embedded fourth-order formulais
6
Xni1 =Xn+h Zf k+0(h°).
i=
And a better value for the solutionis determined using a Runge-Kutta method d fifth-order:
6
Xhi1=Xn+h Zq* k +o(h%)
i=

The two particlular choises of unknovn parametrs of the method are given in Tables A.4-A.5.
The aror estimate is

6
&= Xnr1— X1l = Z(Ci —c¢k.
i=
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Table A.4 Fehlberg parameters of the Runge-Kutta-Fehlberg 4(5) method

v4 V4
3/8 3/32 932
12/13|19322197-72002197 72962197
1 | 439216 -8 3680513 -8454104
12 -8/27 2 -35442565 18584104 -11/40
25216 0 1408565 21974104 -1/5
16/135 0 665612825 2856566430 -9/50 255

Table A.5 Cash-Karp parameters of the Runge-Kutta-Fehlberg 4(5) method

1/5 /5
3/10  3/40 940
3/5 3/10 -9/10 65
1 -11/54 52 -7027 3527

7/8 163155296 17%12 57913828 4427810592 2581096
37/378 0 250621 123594 5121771
282527648 0 1857818384 135265296 27714336 14

Aswas mentioned abowe, if we take the aurrent step h and prodwce an error €, the crrespondng
"optimal” step hopy is estimated as
02
&
opt = B h(%) ,

where & is a desired acaracy and 3 is a "safety” fador, 8 ~ 1. Then if the two answers are
in close agreament, the gproximation is acceted. If € > & the step size has to be deaeased,
whereas the relation € < &0 means, that the step size ae to beincreased in the next step.

Using Eq. (A.10), the optimal step can be often written as

0.2
&
Bh lTU‘ » €2 &ols

Popt = 0.25
&
pn(se) . e<ea,
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