
Genetic algorithms application

Master degree in Modelling for Science and Engineering

January 14, 2020

This assignment is based on [McC05, Example 5.3].

1 A model for cancer treatment

Consider N(t) the number of tumor cells at time t, which, according to the Gompertz growth model, can be
modeled with the following differential equation defined only for N(t) ≥ 0:

N ′(t) = N(t)

λ ln

(
Θ

N(t)

)
−

d∑

j=1

kj

n−1∑

i=0

Cijχ(
τi,τi+1

](t)

= N(t)
(
λ ln(Θ)− λ ln

(
N(t)

)
− drifti

)
whenever t ∈

(
τi, τi+1

]
,

where:

• drifti =
∑d
j=1 kjCij ;

• λ and Θ are general parameters of the model, being λ the sensitivity or “evolution speed” of the tumour
and Θ a kind of a carrying capacity;

• n is the number of doses or treatment sessions, given at times τ0 = 0 < τ1 < · · · < τn−1. The dose at time
τn−1 is supposed to act until a given time τn > τn−1;

• χ(
τi,τi+1

] is the indicator function on the interval
(
τi, τi+1

]
:

χ(
τi,τi+1

](t) =

{
1 if t ∈

(
τi, τi+1

]
, and

0 otherwise;

• d is the number of drugs in each dose;

• Cij with i ∈ {0, 1, . . . , n− 1} and j ∈ {1, 2, . . . , d} denotes the concentration of drug j at the dose i;

• kj with j ∈ {1, 2, . . . , d} is the “effectivity” of the drug j and is estimated by means of clinical trial results.

Observe that, the expression N ′(t) = N(t)
(
λ ln(Θ)− λ ln

(
N(t)

)
− drift

)
vanishes at Θ·exp

(−drift
λ

)
, whenever

N(t) > 0. So, the solution N(t) of the above ODE is

{
strictly increasing whenever Θ · exp

(−drifti
λ

)
> N(0), and

strictly decreasing whenever Θ · exp
(−drifti

λ

)
< N(0).

In any case, Θ · exp
(−drift

λ

)
is a horizontal assymptote of N(t) as t goes to infinity.

There are also some general restrictions for the above model:

A priori constraints (on the dose concentrations):

Constraint 1: There is a maximum concentration for each drug Cmax ,j , so that Cij ≤ Cmax ,j for
i = 0, 1, . . . , n− 1.

Constraint 2: There is also a maximum of the cumulative concentracion for each drug Ccum,j .

So,
∑n−1
i=0 Cij ≤ Ccum,j .

1

Constraint 3: As a side effect, there are m important organs such that the organ k ∈ {1, 2, . . . ,m} can assume
a maximum Cs-eff,k of damage, and each drug j damages the organ k an amount of ηkj per
concentration unit. So,

Cs-eff,k ≥
d∑

j=1

ηkjCij

for every i, k such that 0 ≤ i ≤ n−1 and 1 ≤ k ≤ m. Of course, we can multiply the parameters
njk by a constant depending on k such that we can normalize Cs-eff,k = 1.

Constraints on the effect of the doses:

Constraint 4: There is a maximum in the number of tumour cells Nmax , so, Nmax ≥ N(t) for all t.

2 Aim of the exercise

At first we want to find a curative treatment which, among the curative options, it is the most effective in the
sense that it minimises the following fitness function:

∫ τ`

τ0

N(t)dt.

We consider that the solution is curative if N(τi) ≤ 1000 for 3 consecutive values τ`−2, τ`−1 and τ` with
` ∈ {2, 4, . . . , n} (from [McC99]).

If a curative treatment does not exist we want to find a palliative treatment that maximises the lifespan
of the patient. A palliative treatment has no dose or treatment neither at time τn nor later on. So, the term∑d
j=1 kjCij in Gompertz model must be taken equals to zero for t > τn.

We consider that the lifespan of the patient terminates when Constraint 4 is violated.

3 Parameters of the model

Some of the parameters are taken from [McC99], while others are (computationally) experimental:

• Θ = 1012 (from [McC99]).

• λ = 0.336.

• N(0) = 20000 (from the picture in [McC99]).

• Number of drugs: d = 10.

• Parameters ~k = [k1, . . . , k10]:

~k = [0.12, 0.0502, 0.0637, 0.1347, 0.0902, 0.0546, 0.0767, 0.1121, 0.0971, 0.0403].

• Number of doses: n = 10, with equal separation: T = τi+1 − τi = 3 for i = 0, 1, . . . , n − 2. So, τ0 = 0,
τ1 = 3, . . . τ8 = 24 and the treatment finishes at τ9 = 27. We take τn = τ10 = 33 (invented).

• A posteriori Constraint 4: Nmax = 0.95 ·Θ = 9.51011 (invented).

• A priori Constraint 1: Cmax ,j = 15 for all j.

• A priori Constraint 2: Ccum,j = 127 for all j (invented).

• A priori Constraint 3: We consider m = 4 different organs which cannot be killed by the treatment
with all Cs-eff,k = 1. Here we propose two different cases of parameters ηkj :
The first case corresponds to:

k \ j 1 2 3 4 5 6 7 8 9 10
1 0.0036 0.0098 0.0061 0.0009 0.0003 0.0108 0.0045 0.0021 0.0096 0.0125
2 0.0063 0.0082 0.0062 0.0062 0.0083 0.013 0.0039 0.0019 0.0015 0.005
3 0.0129 0.0018 0.0116 0.0021 0.009 0.0129 0.0054 0.0049 0.0093 0.0066
4 0.0053 0.0086 0.0067 0.0029 0.0089 0.0054 0.0042 0.0095 0.0112 0.0092

2

where we have been able to find curative treatments.

The second case corresponds to:

k \ j 1 2 3 4 5 6 7 8 9 10

1 0.00612 0.01666 0.01037 0.00153 0.00051 0.01836 0.00765 0.00357 0.01632 0.02125
2 0.01071 0.01394 0.01054 0.01054 0.01411 0.0221 0.00663 0.00323 0.00255 0.0085
3 0.02193 0.00306 0.01972 0.00357 0.0153 0.02193 0.00918 0.00833 0.01581 0.01122
4 0.00901 0.01462 0.01139 0.00493 0.01513 0.00918 0.00714 0.01615 0.01904 0.01564

where we have just found palliative treatments.

4 Proposed solution strategy

The idea is to try to solve the first problem (finding a curative treatment) and, if it turns to be infeasible, then
solve the second one. Both problems are to be solved with minimising genetic algorithms with appropriate
fitness functions. Notice that, for the second problem, an inversion of the lifespan must be done since we want
to maximise it.

Inspired by the penalty methods, infeasible individuals will be assigned with a very high fitness (in any case,
with a value larger than the maximum possible integral

∫ τ10
τ0

N(t)dt or inverse of lifespan.
To do this it is necessary to write two fitness functions that have as input an individual from the population

and return the fitness of this individual. These functions must evaluate feasibility of the individual and penalize
infeasibility, and compute the numerically the appropriate solution of the Gompertz model and evaluate either∫ τ`
τ0
N(t)dt or lifespan.
A problem is considered to be infeasible when for 10 consecutive generations all individuals are infeasible.
The recommended stoping rule is that the best solution (best fitness) does not improve during four consec-

utive feasible generations (meaning that contain some feasible individuals).
Next we discuss different aspect implementation aspects of the strategy.

4.1 Individuals

Clearly, an individual in the population must be a vector of dimension d×n listing all independent variables Cij ;
the dose concentrations for all the treatments. Taking into account Constraint 1: Cmax ,j = 15 for all j, we will
use unsigned integer of 4 bits for each entry of the vector, when written in binary (in other words Constraint 1
is “hardcoded”). Since there is no such datatype this vector must be of unsigned char type (and waste half
of the memory — to avoid this wasting of memory seems too complicate). The suggested organization for an
“individual” vector is:

[
C0,1, C0,2, . . . , C0,d, C1,1, C1,2, . . . , C1,d, . . . , Cn−1,1, Cn−1,2, . . . , Cn−1,d

]
.

4.2 Computing the integral
∫ τ`
τ0

N(t)dt

The methods to integrate ODE’s give its solution at discrete values of time:

N(t0), N(t1), . . . , N(ti), . . . , N(tr)

with t0 = 0 < t1 < t2 < · · · < ti < · · · < tr = tfin. Usually, neighbouring values of ti are very close to each
other. This implies that the trapezoidal rule is enough to compute a very good approximation of an integral.
However, the very nice usual trapezoidal rule formulae cannot be applied here since, in general, the points ti
are not equispaced.

Clearly,

∫ tfin

0

N(t)dt =

r−1∑

i=0

∫ ti+1

ti

N(t)dt ≈
r−1∑

i=0

N(ti+1) +N(ti)

2

(
ti+1 − ti

)
=

1

2

r−1∑

i=0

(
N(ti+1) +N(ti)

)(
ti+1 − ti

)
.

4.3 Integrating and ODE

We will use the Runge-Kutta-Fehlberg method of order 7-8 with adaptive space. See the appendix to this
document.

In the file RKF78.c (also needed RKF78.h for definitions and prototypes) there is an implementation for
ODE’s and another one for systems (see the implementation notes in RKF78.c for the meaning of parameters
and how to use the procedure).

However as an example on how to use RKF78 and write the fitness function we proivide here an implemen-
tation.

3

typedef struct { double drift_i; } ODE_Parameters;

void Gompertz(double t, double N, double *der, void *Params){

*der = ((N < 1.e-16) ? 0.0 :

N*(lambdalogTheta_par - lambda_par*log(N) - ((ODE_Parameters *) Params)->drift_i));

}

NOTE: The construction ((N < 1.e-16) ? 0.0 : is crucial to avoid bad behaviour for rounding errors.

/* Tumour Parameters */

#define lambda_par 0.336

#define lambdalogTheta_par 9.284023094951992774680543277273261947643

#define NZero_par 20000

#define CCUMj_par 127

#define NMax_par 9.5e+11

#define m_par 4

#define d_par 10

#define n_par 11

static float k_j[d_par] = {0.12, 0.0502, 0.0637, 0.1347, 0.0902, 0.0546, 0.0767, 0.1121,

0.0971, 0.0403};

static float t_i[n_par] = {0.0, 3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0, 33.0};

static float eta_kj[m_par][d_par] = {

{0.0036, 0.0098, 0.0061, 0.0009, 0.0003, 0.0108, 0.0045, 0.0021, 0.0096, 0.0125},

{0.0063, 0.0082, 0.0062, 0.0062, 0.0083, 0.013, 0.0039, 0.0019, 0.0015, 0.005},

{0.0129, 0.0018, 0.0116, 0.0021, 0.009, 0.0129, 0.0054, 0.0049, 0.0093, 0.0066},

{0.0053, 0.0086, 0.0067, 0.0029, 0.0089, 0.0054, 0.0042, 0.0095, 0.0112, 0.0092} };

double Curative_Fitness(unsigned char *Cij){

register unsigned char i, j;

ODE_Parameters GompertzParams;

double N = NZero_par, t = t_i[0];

double hmin = 1.e-8, hmax = 1.0, h = 1.e-3, tol = 1.e-8;

unsigned char curativecounter = 0U, npar = n_par - 1;

double integral = 0.0, lastt = t, lastN = N;

if(!TestIfConstraints2and3AreVerified(Cij)) return MAXDOUBLE;

for(i=0; i < npar; i++){ double tfin = t_i[i+1]; // Implementing treatment i

GompertzParams.drift_i = 0.0;

for(j=0; j < d_par; j++) GompertzParams.drift_i += k_j[j] * *(Cij++);

while(t+h < tfin) {

RKF78(&t, &N, &h, hmin, hmax, tol, &GompertzParams, Gompertz);

if(N > NMax_par) return MAXDOUBLE;

integral += (lastN + N)*(t - lastt);

lastt = t; lastN = N;

}

do { h = tfin - t;

RKF78(&t, &N, &h, hmin, hmax, tol, &GompertzParams, Gompertz);

if(N > NMax_par) return MAXDOUBLE;

integral += (lastN + N)*(t - lastt);

lastt = t; lastN = N;

} while (t < tfin);

if(N < 1000) { curativecounter++; if(curativecounter > 2) return integral/2.0; }

else curativecounter = 0U;

}

return MAXDOUBLE;

}

For the second family of parameters consider to replace the corresponding code by:

4

static float eta_kj[m_par][d_par] =

{{0.00612, 0.01666, 0.01037, 0.00153, 0.00051, 0.01836, 0.00765, 0.00357, 0.01632, 0.02125},

{0.01071, 0.01394, 0.01054, 0.01054, 0.01411, 0.0221, 0.00663, 0.00323, 0.00255, 0.0085},

{0.02193, 0.00306, 0.01972, 0.00357, 0.0153, 0.02193, 0.00918, 0.00833, 0.01581, 0.01122},

{0.00901, 0.01462, 0.01139, 0.00493, 0.01513, 0.00918, 0.00714, 0.01615, 0.01904, 0.01564}

};

NOTE: The computation of drifti with pointer arithmetic is based with:

drifti :=

d∑

j=1

kj ∗ Cij =

d par−1∑

j=0

k j[j] * Cij[i*d par+j].

unsigned char TestIfConstraints2and3AreVerified(unsigned char *Cij){

register unsigned char i, j, k;

unsigned char npar = n_par - 1, *Cijofi;

for(j=0; j < d_par; j++){ unsigned int ccumj = 0U;

for(i=0; i < npar; i++) ccumj += *(Cij + i*d_par + j);

if(ccumj > CCUMj_par) return 0U;

}

for(i=0, Cijofi=Cij; i < npar; i++, Cijofi += d_par) {

for(k=0; k < m_par; k++){ double Cseffk = 0.0;

for(j=0; j < d_par; j++) Cseffk += eta_kj[k][j] * Cijofi[j];

if(Cseffk > 1.0) return 0U;

}

}

return 1U;

}

References

[McC99] A McCall, John & Petrovski. A decision support system for cancer chemoterapy using genetic al-
gorithms. Computational Intelligence for Modelling Control & Automation. M. Mohammadian (Ed).
IOS Press., pages 65–70, 1999.

[McC05] John McCall. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math., 184(1):205–
222, 2005.

5

Appendix A
Runge-Kutta Methods

The Runge-Kutta methods are an important family of iterative methods for the ap-
proximation of solutionsof ODE’s, that weredevelovedaround 1900 bythegerman
mathematiciansC. Runge(1856–1927) andM.W. Kutta(1867–1944).Westart with
the considereation of the explicit methods. Let us consider an initail value problem
(IVP)

d x
d t

= f (t, x(t)), (A.1)

x(t) = (x1(t), x2(t), . . . xn(t))T , f ∈ [a, b]×Rn → Rn, with an initial condition

x(0) = x0 . (A.2)

We are interested in a numerical approximation of the continuously differentiable
solution x(t) of the IVP (A.1)–(A.2) over the time interval t ∈ [a, b]. To this aim
wesubdividethe interval [a, b] into M equal subintervalsandselect the mesh points
t j [11, 8]

t j = a+ j h , j = 0, 1, . . . , M, h =
b−a

M
. (A.3)

Thevalueh is called a step size.
The family of explicit Runge–Kutta (RK) methods of the m’ th stage is given

by [11, 9]

x(tn+1) := xn+1 = xn +h
m

∑
i=1

ciki , (A.4)

where

13

6

k1 = f (tn, xn),

k2 = f (tn +α2h, xn +hβ21k1(tn, xn)),

k3 = f (tn +α3h, xn +h(β31k1(tn, xn)+β32k2(tn, xn))),

...

km = f (tn +αmh, xn +h
m−1

∑
j=1

βm jk j).

To specify a particular method, we need to provide the integer m (the number of
stages), and the coefficients αi (for i = 2,3, ...,m), βi j (for 1 ≤ j < i ≤ m), and ci

(for i = 1,2, ...,m). These data are usually arranged in a co-called Butcher tableau
(after JohnC. Butcher) [11, 9]:

Table A.1 TheButcher tableau.

0
α2 β21
α3 β31 β32
...

...
...

.. .
...

...
...

αm βm1 βm2 βmm−1

c1 c2 cm−1 cm

Examples

1. Let m = 1. Then

k1 = f (tn, xn) ,

xn+1 = xn +hc1 f (tn, xn) .

On theother hand, the Taylor expansion yields

xn+1 = xn +h ẋ
∣∣
tn
+ · · ·= xn +h f (tn, xn)+O(h2) ⇒ c1 = 1.

Thus, thefirst-stageRK-methodisequivalent to the explicit Euler’smethod. Note
that theEuler’smethodisof thefirst order of accuracy. Thuswe can speak about
theRK method of thefirst order.

2. Now consider the case m = 2. In this caseEq. (A.4) isequivalent to thesystem

7

k1 = f (tn, xn) , (A.5)

k2 = f (tn +α2h, xn +hβ21k1) ,

xn+1 = xn +h(c1k1+ c2k2) .

Now let uswritedown theTaylor seriesexpansion of x in theneighborhood of tn
upto theh2 term, i.e.,

xn+1 = xn +h
dx
dt

∣∣∣∣
tn

+
h2

2
d2x
dt2

∣∣∣∣
tn

+O(h3) .

However, weknow that ẋ = f (t, x), so that

d2x
dt2 :=

d f (t, x)
dt

=
∂ f (t, x)

∂ t
+ f (t, x)

∂ f (t, x)
∂x

.

Hencethe Taylor seriesexpansioncan berewritten as

xn+1−xn = h f (tn, xn)+
h2

2

(
∂ f
∂ t

+ f
∂ f
∂x

)∣∣∣∣
(tn,xn)

+O(h3) . (A.6)

On the other hand, the term k2 in theproposed RK methodcan also expanded to
O(h3) as

k2= f (tn+α2 h, xn+hβ21k1)= h f (tn,xn)+hα2
∂ f
∂ t

∣∣∣∣
(tn,xn)

+hβ21 f
∂ f
∂x

∣∣∣∣
(tn,xn)

+O(h3) .

Now, substituting this relation for k2 into the last equation of (A.5), we achieve
the followingexpression:

xn+1−xn = h(c1+c2) f (tn, xn)+h2c2 α2
∂ f
∂ t

∣∣∣∣
(tn,xn)

+h2c2β21 f
∂ f
∂x

∣∣∣∣
(tn,xn)

+O(h3) .

Makingcomparision the last equationandEq. (A.6) we can write down the sys-
tem of algebraic equationsfor unknown coefficients

c1+ c2 = 1,

c2 α2 =
1
2
,

c2β21 =
1
2
.

The system involves four unknowns in three equations. That is, one additional
condition must be supplied to solve the system. We discusstwo useful choices,
namely

a) Let α2 = 1. Then c2 = 1/2, c1 = 1/2, β21 = 1. The corresponding Butcher
tableau reads:

8

0
1 1

1/2 1/2

Thus, in this case the two-stagesRK methodtakes the form

xn+1 = xn +
h
2

(
f (tn, xn)+ f (tn +h, xn +h f (tn, xn))

)
,

and is equivalent to the Heun’s method, so we refer the last method to as
RK-method of thesecond order.

b) Now let α2 = 1/2. In this case c2 = 1, c1 = 0, β21 = 1/2. The corresponding
Butcher tableau reads:

0
1/2 1/2

0 1

In thiscase thesecond-order RK method(A.4) can be written as

xn+1 = xn +h f
(
tn +

h
2
, xn +

h
2

f (tn, xn)
)

and iscalled the RK2 method.

RK4 Methods

Onemember of thefamily of Runge–Kuttamethods(A.4) isoften referred to asRK4
method or classical RK method andrepresentsoneof thesolutionscorrespondingto
the casem = 4. In thiscase, by matchingcoefficientswith thoseof theTaylor series
oneobtains the followingsystem of equations[8]

9

c1+ c2+ c3+ c4 = 1,

β21 = α2 ,

β31+β32 = α3 ,

c2α2+ c3α3+ c4α4 =
1
2
,

c2α2
2 + c3α2

3 + c4α2
4 =

1
3
,

c2α3
2 + c3α3

3 + c4α3
4 =

1
4
,

c3α2β32+ c4(α2β42+α3β43) =
1
6
,

c3α2α3β32+ c4α4(α2β42+α3β43) =
1
8
,

c3α2
2β32+ c4(α2

2β42+α2
3β43) =

1
12

,

c4α2β32β43 =
1
24

.

The system involvesthirteen unknownsin eleven equations. That is, two additional
conditionmust besupplied to solve thesystem. Themost useful choices is [9]

α2 =
1
2
, β31= 0.

The correspondingButcher tableau ispresented in TableA.2. Thetableau A.2 yields

Table A.2 TheButcher tableau corresponding to theRK4 method.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

the equivalent correspondingequationsdefining the classical RK4 method:

xn+1 = xn +
h
6

(
k1+2k2+2k3+ k4

)
, (A.7)

where

10

k1 = f (tn, xn),

k2 = f (tn +
h
2
, xn +

h
2

k1),

k3 = f (tn +
h
2
, xn +

h
2

k2),

k4 = f (tn +h, xn +hk3).

This method is reasonably simple and robust and is a good general candidate for
numerical solution of ODE’s when combined with an intelli gent adaptive step-size
routine or an embedded methods (,e.g., so-called Runge-Kutta-Fehlberg methods
(RKF45)).

Remark:

Notice that except for the classical method (A.7), one can also construct other
RK4 methods. We mention only so-called 3/8-Runge-Kutta method. The Brutcher
tableau, correspondingto thismethodispresented in TableA.3.

Table A.3 TheButcher tableau corresponding to the3/8- Runge-Kutta method.

0
1/3 1/3
2/3 -1/3 1
1 1 -1 1

1/8 3/8 3/8 1/8

Geometrical interpretation of the RK4 method

Let us consider a curve x(t), obtained by (A.7) over a single time step from tn
to tn+1. The next value of approximation xn+1 is obtained ty integrating the slope
function, i.e.,

xn+1−xn =

tn+1∫

tn

f (t,x)dt . (A.8)

Now, if the Simpson’s rule is applied, the approximation to the integral of the last
equationreads [10]

tn+1∫

tn

f (t,x)dt ≈ h
6

(
f (tn,x(tn))+4 f (tn +

h
2
,x(tn +

h
2
))+ f (tn+1,x(tn+1))

)
. (A.9)

11

On the other hand, the values k1, k2, k3 and k4 are approximations for slopes of
the curvex, i.e., k1 is theslopeof the left end of the interval, k2 andk3 describe two
estimationsof theslopein themiddleof thetimeinterval, whereask4 correspondsto
theslope at the right. Hence, we can choose f (tn,x(tn)) = k1 and f (tn+1,x(tn+1)) =
k4, whereas for thevalue in themiddlewe choosethe averageof k2 andk3, i.e.,

f (tn +
h
2
,x(tn +

h
2
)) =

k2+ k3

2
.

Then Eq. (A.8) becomes

xn+1 = xn +
h
6

(
k1+

4(k2+ k3)

2
+ k4

)
,

which isequivalent to theRK4 schema(A.7).

Stage versus Order

The local truncation error ε for the method(A.7) can be estimated from the error
term for theSimpson’s rule (A.9) andequals [10, 8]

εn+1 =−h5 x(4)

2880
.

Now we can estimatethefinal global error E, if wesupposethat only the error above
ispresented. After M steps the accumulated error for theRK4 methodreads

E(x(b), h) =−
M

∑
k=1

h5 x(4)

2880
≈ b−a

2880
x(4)h = O(h4) .

That is, the RK4 method (A.7) is of the fourth order. Now, let us compare two
appximations, obtained using the time steps h and h/2. For the step sizeh we have

E(x(b), h)≈ K h4 ,

with K = const. Hence, for thestep h/2 weget

E(x(b),
h
2
) = K

h4

16
≈ 1

16
E(x(b), h) .

That is, if the step size in (A.7) is reduced by the factor of two, the global error of
themethodwill be reduced by the factor of 1/16.

Remark:

In general there are two ways to improvethe accuracy:

12

1. One can reducethe timestep h, i.e., the amount of steps increases;
2. Themethod of thehigher convergency order can beused.

However, increasing of the convergency order p isreasonableonly upto somelimit,
given by so-called Butcher barrier [11], which says, that the amount of stages m
grows faster, as the order p. In other words, for m ≥ 5 there are no explicit RK
methods with the convergency order p = m (the corresponding system is unsolv-
able). Hence, in order to reach convergency order five one needs six stages. Notice
that further increasing of the stage m = 7 leads to the convergency order p = 5 as
well .

A.0.1 Adaptive stepsize control and embedded methods

As mentioned above, one way to guarantee accuracy in the solution of (A.1)–
(A.1) is to solve the problem twice using step sizes h and h/2. To ill ustrate this
approach, let usconsider theRK method of theorder p and denote an exact solution
at the point tn+1 = tn + h by x̃n+1, whereas x1 and x2 represent the approximate
solutions, corresponding to the step sizes h and h/2. Now let us perform one step
with the step size h and after that two steps each of size h/2. In this case the true
solutionand two numerical approximationsare related by

x̃n+1 = x1+C hp+1+O(hp+2) ,

x̃n+1 = x2+2C

(
h
2

)p+1

+O(hp+2) .

That is,

|x1−x2|=C hp+1
(

1− 1
2p

)
⇔ C =

|x1−x2|
(1−2−p)hp+1 .

Substituing the relation for C in the secondestimate for the truesolutionwe get

x̃n+1 = x2+ ε +O(hp+2) ,

where

ε =
|x1−x2|
2p −1

can be considered asa convenient indicator of the truncationerror. That is, wehave
improved our estimate to theorder p+1. For example, for p = 4 weget

x̃n+1 = x2+
|x1−x2|

15
+O(h6) .

This estimate is accurate to fifth order, one order higter than with the original step
h. However, thismethodis not efficient. First of all , it requiresa significant amount

13

of computation (we should solve the equation threetimes at each time step). The
second point is, that we have no possibilit y to control the truncation error of the
method(higher order meansnot alwayshigher accuracy).
However we can use an estimateε for the step size control, namely we can compare
ε with some desired accuracy ε0 (seeFig A.1).

Input t j, x j, ε0, h j, j = 0

Calculate x(t j +h j, h j), x(t j +h j,
h j
2) and ε

ε ≪ ε0 Doublestep size: h j+1 := 2h j

ε > ε0 t j+1 = t j +h j, j := j+1

Halvestep size: h j+1 :=
h j
2 ; Reiterate thestep

no
no

yes

yes

Fig. A.1 Flow diagramm of thestep size control by use of thestep doubling method.

Alternatively, using the estimateε , we can try to formulate the following problem of theadap-
tive step size control, namely: Using the given values x j and t j, find the largest possible step size
hnew, so that thetruncationerror after thestep with this step sizeremainsbelow somegiven desired
accuracy ε0, i.e,

C hp+1
new ≤ ε0 ⇔

(
hnew

h

)p+1 |x1−x2|
1−2−p ≤ ε0 .

That is,

hnew = h

(
ε0

ε

)1/p+1

.

Then if the two answers are in close agreement, the approximation is accepted. If ε > ε0 the step
sizehas to be decreased, whereas the relation ε < ε0 means, that the step sizehas to be increased
in thenext step.

Notice that because our estimate of error is not exact, we should put some ”safety” factor
β ≃ 1 [11, 9]. Usually, β = 0.8, 0.9. The flow diagramm, corresponding to the the adaptive step
size control is shown onFig. A.2

Noticeone additional technical point. The choise of the desired error ε0 depends on the IVP
we are interested in. In some applications it i sconvinient to set ε0 propotional to h [9]. In thiscase
the exponent 1/p+1 in the estimateof thenew timestep isno longer correct (if h is reduced from
a too-large value, thenew predicted value hnew will fail to meet thedesired accuracy, so instead of
1/p+1 we should scale with 1/p (see[9] for details)). That is, the optimal new step size can be
written as

hnew =

β h

(
ε0
ε

)1/p+1

, ε ≥ ε0,

β h

(
ε0
ε

)1/p

, ε < ε0,

(A.10)

14

Input t0, x0, ε0, h, j = 0

Calculate x(t j +h, h), x(t j +h, h
2) and ε

ε < ε0 Thestep isaccepted; hnew := β h

(
ε0
ε

)1/p+1

, t j+1 = t j +hnew, j := j+1

hnew := β h

(
ε0
ε

)1/p

Reiterate thestep

yes

no

Fig. A.2 Flow diagramm of the adaptivestep size control by use of thestep doubling method.

where β is a ”safety” factor.

Runge-Kutta-Fehlberg method

The alternative stepsize adjustment algorithm is based on the embedded Runge-Kutta formulas,
originally invented byFehlberg andiscalled the Runge-Kutta-Fehlberg methods (RKF45) [11, 10].
At each step, two different approximations for the solution are made and compared. Usually an
fourth-order method with five stages is used together with an fifth-order method with six stages,
that uses all of the points of the first one. The general form of a fifth-order Runge-Kutta with six
stages is

k1 = f (t, x),

k2 = f (t +α2h, x+hβ21k1),

...

k6 = f (t +α6h, x+h
5

∑
j=1

β6 jk j) .

The embedded fourth-order formula is

xn+1 = xn +h
6

∑
i=1

ci ki +O(h5) .

Andabetter value for thesolution isdetermined using aRunge-Kutta method of fifth-order:

x∗n+1 = xn +h
6

∑
i=1

c∗i ki +O(h6)

The two particlular choises of unknown parametrs of themethodare given in Tables A.4–A.5.
The error estimate is

ε = |xn+1−x∗n+1|=
6

∑
i=1

(ci − c∗i)ki.

15

Table A.4 Fehlberg parameters of theRunge-Kutta-Fehlberg 4(5) method.

1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
25/216 0 1408/2565 2197/4104 -1/5
16/135 0 6656/12825 28561/56430 -9/50 2/55

Table A.5 Cash-Karp parameters of theRunge-Kutta-Fehlberg 4(5) method.

1/5 1/5
3/10 3/40 9/40
3/5 3/10 -9/10 6/5
1 -11/54 5/2 -70/27 35/27

7/8 1631/55296 175/512 575/13828 44275/110592 253/4096
37/378 0 250/621 125/594 512/1771

2825/27648 0 18575/48384 13525/55296 277/14336 1/4

As was mentioned above, if we take the current step h and produce an error ε , the corresponding
”optimal” step hopt is estimated as

hopt = β h

(
εtol

ε

)0.2

,

where εtol is a desired accuracy and β is a ”safety” factor, β ≃ 1. Then if the two answers are
in close agreement, the approximation is accepted. If ε > εtol the step size has to be decreased,
whereas the relation ε < εtol means, that thestep size are to be increased in thenext step.
UsingEq. (A.10), theoptimal step can be often written as

hopt =

β h

(
εtol
ε

)0.2

, ε ≥ εtol,

β h

(
εtol
ε

)0.25

, ε < εtol,

16

