Assignment: Maximization of a (complicate) function by a genetic algorithm

Let D be the set of non-negative integers smaller or equal to $2^{32}-1=4294967295$ (that is, the elements of D are unsigned long int constants) and let E denote D^{4} (that is, E is the set of vectors of length 4 with entries in $D)$. Let $f: E \longrightarrow \mathbb{R}$ denote the function defined as follows. First define a four parameter function $\varphi: E \longrightarrow \mathbb{R}$ by:

$$
\varphi(x, y, z, t, a, b, c, d):=2^{43}-(x-a)^{2}-(y-b)^{2}-(z-c)^{2}-(t-d)^{2}
$$

Then,

$$
\begin{aligned}
f(x, y, z, t):= & (-1)^{\mathrm{s}} \cdot \sin (x+y+z+t) \\
& \varphi(x, y, z, t, 1237566.4,54783217.5,1237896431.1,325123467.37) \\
& \varphi(x, y, z, t, 5674235.4,4067231567.2,13245678.3,3748967543.2) \\
& \varphi(x, y, z, t, 3867435523.2,7134893.75,3565897564.1,15675987.34) \\
& \varphi(x, y, z, t, 4000223567.09,3734098765.4,3367981234.4,4067231567.25),
\end{aligned}
$$

where

$$
\mathrm{s}:=\left[\frac{x+t}{2^{31}+y+z}+0.86525597943226508722\right]
$$

and, as usual, [•] denotes the integer part function.
To calculate the maximum of f write a program that implements an appropriate genetic algorithm. The choices made in the algorithm (type of crossover, type of mutation, probability of mutation, size of the population, number of generations in a run, ...) should be commented and justified. The result and its quality should be also addressed.

Remark. The functions involved in the definition of f are rather complicate. In shake of precision and speed it is recommended to program these functions and numbers taking into account these issues and using all possible shortcuts.

