Introduction to Algorithms $6.046 \mathrm{~J} / 18.401 \mathrm{~J}$

Lecture 17 Shortest Paths I

- Properties of shortest paths
- Dijkstra's algorithm
- Correctness
- Analysis
- Breadth-first search

Prof. Erik Demaine

Paths in graphs

Consider a digraph $G=(V, E)$ with edge-weight function $w: E \rightarrow \mathbb{R}$. The weight of path $p=v_{1} \rightarrow$ $v_{2} \rightarrow \cdots \rightarrow v_{k}$ is defined to be

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) .
$$

Paths in graphs

Consider a digraph $G=(V, E)$ with edge-weight function $w: E \rightarrow \mathbb{R}$. The weight of path $p=v_{1} \rightarrow$ $v_{2} \rightarrow \cdots \rightarrow v_{k}$ is defined to be

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) .
$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortestpath weight from u to v is defined as $\delta(u, v)=\min \{w(p): p$ is a path from u to $v\}$.

Note: $\delta(u, v)=\infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have

$$
\delta(u, v) \leq \delta(u, x)+\delta(x, v) .
$$

Triangle inequality

Theorem. For all $u, v, x \in V$, we have

$$
\delta(u, v) \leq \delta(u, x)+\delta(x, v) .
$$

Proof.

\square

ALGORITHMS
 Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

ALGORITHM
 \square
 Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.
If all edge weights $w(u, v)$ are nonnegative, all shortest-path weights must exist.
Idea: Greedy.

1. Maintain a set S of vertices whose shortestpath distances from s are known.
2. At each step add to S the vertex $v \in V-S$ whose distance estimate from s is minimal.
3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[v] \leftarrow \infty$
$S \leftarrow \varnothing$
$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$

Dijkstra's algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$
$S \leftarrow \varnothing$
$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$
while $Q \neq \varnothing$

Dijkstra's algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$
$S \leftarrow \varnothing$
$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$
while $Q \neq \varnothing$
do $u \leftarrow \operatorname{Extract-Min}(Q)$ $S \leftarrow S \cup\{u\} \quad$ if d $[u]=$ infinity: break; NOTE: all remain for each $v \in \operatorname{Adj}[u]$ (with v from Q) accessible from do if $d[v]>d[u]+w(u, v)$

ALGORITHMS
 Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

Acoing Example of Dijkstra's algorithm

Initialize:

$Q:$| A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| 0 | ∞ | ∞ | ∞ | ∞ |

$$
S:\{ \}
$$

Acoimaic Example of Dijkstra's algorithm

$$
\begin{aligned}
& " A " \leftarrow \operatorname{Extract-Min}(Q): \\
& \left.Q: \begin{array}{llllll}
A & B & C & D & E \\
\hline \begin{array}{llllll}
\hline & \infty & \infty & \infty & \infty
\end{array}
\end{array}\right\}
\end{aligned}
$$

ALGORITHMS
 Example of Dijkstra's algorithm

Relax all edges leaving A :

$$
\operatorname{ing} A:
$$

$$
Q: \begin{array}{ccccc}
A & B & C & D & E \\
\hline 0 & \infty & \infty & \infty & \infty \\
& 10 & 3 & \infty & \infty
\end{array}
$$

$$
S:\{A\}
$$

Example of Dijkstra's algorithm

$$
S:\{A, C\}
$$

ALGORITHMS
 Example of Dijkstra's algorithm

Relax all edges leaving C :
Q.

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5

$$
S:\{A, C\}
$$

Anomample of Dijkstra's algorithm

$" E " \leftarrow \operatorname{Extract-Min}(Q)$:

$$
S:\{A, C, E\}
$$

ALGORITHMS
 Example of Dijkstra's algorithm

Relax all edges leaving E :

$$
S:\{A, C, E\}
$$

Acormes Example of Dijkstra's algorithm

$" B " \leftarrow \operatorname{Extract-Min}(Q)$:

$$
S:\{A, C, E, B\}
$$

ALGORITHMS
 Example of Dijkstra's algorithm

Relax all edges leaving B :

Example of Dijkstra's algorithm

Correctness - Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[\nu] \leftarrow \infty$ for all $v \in V-\{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Correctness - Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V-\{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.
Proof. Suppose not. Let v be the first vertex for which $d[v]<\delta(s, v)$, and let u be the vertex that caused $d[v]$ to change: $d[v]=d[u]+w(u, v)$. Then,

$$
d[v]<\delta(s, v) \quad \text { supposition }
$$

$\leq \delta(s, u)+\delta(u, v) \quad$ triangle inequality $\leq \delta(s, u)+w(u, v) \quad$ sh. path \leq specific path $\leq d[u]+w(u, v) \quad v$ is first violation
Contradiction.

Correctness - Part II

Lemma. Let u be v 's predecessor on a shortest path from s to v. Then, if $d[u]=\delta(s, u)$ and edge (u, v) is relaxed, we have $d[v]=\delta(s, v)$ after the relaxation.

Correctness - Part II

Lemma. Let u be v 's predecessor on a shortest path from s to v. Then, if $d[u]=\delta(s, u)$ and edge (u, v) is relaxed, we have $d[v]=\delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v)=\delta(s, u)+w(u, v)$. Suppose that $d[v]>\delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test $d[v]>$ $d[u]+w(u, v)$ succeeds, because $d[v]>\delta(s, v)=$ $\delta(s, u)+w(u, v)=d[u]+w(u, v)$, and the algorithm sets $d[v]=d[u]+w(u, v)=\delta(s, v)$.

Correctness - Part III

Theorem. Dijkstra's algorithm terminates with $d[v]=\delta(s, v)$ for all $v \in V$.

Correctness - Part III

Theorem. Dijkstra's algorithm terminates with $d[v]=\delta(s, v)$ for all $v \in V$.
Proof. It suffices to show that $d[v]=\delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u]>\delta(s, u)$. Let y be the first vertex in $V-S$ along a shortest path from s to u, and let x be its predecessor:
S, just before adding u.

Correctness - Part III (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x]=\delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that $d[y]=\delta(s, y) \leq \delta(s, u)<d[u]$. But, $d[u] \leq d[y]$ by our choice of u. Contradiction. \square

Analysis of Dijkstra

```
while \(Q \neq \varnothing\)
    do \(u \leftarrow\) Extract- \(\operatorname{Min}(Q)\)
        \(S \leftarrow S \cup\{u\}\)
        for each \(v \in \operatorname{Adj}[u]\)
        do if \(d[v]>d[u]+w(u, v)\)
            then \(d[v] \leftarrow d[u]+w(u, v)\)
```


Analysis of Dijkstra

```
while \(Q \neq \varnothing\)
    do \(u \leftarrow\) Extract- \(\operatorname{Min}(Q)\)
        \(S \leftarrow S \cup\{u\}\)
        for each \(v \in \operatorname{Adj}[u]\)
        do if \(d[v]>d[u]+w(u, v)\)
            then \(d[v] \leftarrow d[u]+w(u, v)\)
```


Analysis of Dijkstra

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.
Time $=\Theta\left(V \cdot T_{\text {Extract-Min }}+E \cdot T_{\text {Decrease-Key }}\right)$
Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} \quad T_{\text {Decrease-Key }} \quad$ Total

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$$
Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }} \quad \text { Total }
$$

array $\quad O(V) \quad O(1) \quad O\left(V^{2}\right)$
binary
heap
$O(\lg V)$
$O(E \lg V)$

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$$
Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }} \quad \text { Total }
$$

binary
heap
$O(\lg V)$
$O(\lg V)$
$O(E \lg V)$
Fibonacci
heap amortized
$O(\lg V)$
amortized
$O(E+V \lg V)$
worst case

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$.
Can Dijkstra's algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.
Breadth-first search
while $Q \neq \varnothing$ do $u \leftarrow \operatorname{Dequeue}(Q)$ for each $v \in \operatorname{Adj}[u]$ do if $d[\nu]=\infty$
then $d[\nu] \leftarrow d[u]+1$ Enqueue (Q, v)

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$.
Can Dijkstra's algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.
Breadth-first search

$$
\begin{aligned}
& \text { while } Q \neq \varnothing \\
& \text { do } u \leftarrow \operatorname{Dequeve}(Q) \\
& \text { for each } v \in \operatorname{Adj}[u] \\
& \text { do if } d[v]=\infty
\end{aligned}
$$

$$
\text { then } d[\nu] \leftarrow d[u]+1
$$

$$
\text { Enqueue }(Q, v)
$$

Analysis: Time $=O(V+E)$.

ALGORITHMS
 \therefore
 …"
 Example of breadth-first search

$Q:$

ALGORITHMS
 Example of breadth-first search

noimas Example of breadth-first search

Anemance of breadth-first search

Anample of breadth-first search

Anample of breadth-first search

Anemance of breadth-first search

Example of breadth-first search

Example of breadth-first search

Anomacic Example of breadth-first search

Example of breadth-first search

Q: $a b d c$ e $g i f h$

Anemance of breadth-first search

Q: $a b d c$ e $g i f h$

Correctness of BFS

$$
\begin{aligned}
& \text { while } Q \neq \varnothing \\
& \qquad \begin{array}{r}
\text { do } u \leftarrow \operatorname{Dequeve}(Q) \\
\text { for each } v \in A d j[u] \\
\text { do if } d[v]=\infty \\
\text { then } d[v] \leftarrow d[u]+1 \\
\\
\quad \operatorname{ENQUEUE}(Q, v)
\end{array}
\end{aligned}
$$

Key idea:
The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

- Invariant: v comes after u in Q implies that $d[v]=d[u]$ or $d[v]=d[u]+1$.

