¥ Introduction to Algorithms
e 6.046J/18.401J

ALGORITHMS LECTURE 17

Shortest Paths I

* Properties of shortest paths
* Dijkstra’s algorithm

* Correctness

* Analysis

* Breadth-first search

Prof. Erik Demaine

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.1

m;‘\. Paths in graphs

e

Consider a digraph G = (V, E) with edge-weight
function w : £ — R. The weight of pathp =v, —
v, = -+ — v, 1s defined to be

k—1
w(p) =D w(v;,vipy)-
=1

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.2

ALGORITHMS

=71 Paths in graphs

e
V\“ \‘

Consider a digraph G = (V, E) with edge-weight
function w : £ — R. The weight of pathp =v, —
v, = --+ — v, 1s defined to be

k-1
w(p) =D Wi, Vi)
=1

Example:
@ N 2 @ 2 @ 1 @
w(p) =-2
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.3

N\!,\ Shortest paths

B

A shortest path from u to v 1s a path of
minimum weight from u to v. The shortest-
path weight from u to v is defined as

O(u, v) =min{w(p) : p is a path from u to v}.

Note: 6(u, v) = oo if no path from u to v exists.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.4

=31 Optimal substructure

“‘\ o

Theorem. A subpath of a shortest path is a
shortest path.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.5

=71 Optimal substructure

¢
Y - .

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

OO0 000

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.6

=31 Optimal substructure

[t
)

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

OO0 0000
]

S~ -

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.7

S7N Triangle inequality

AN :

Theorem. Forall u, v, x € IV, we have
O(u, v) < d(u, x) + d(x, v).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.8

m
“\‘ ‘

| Triangle inequality

Theorem. For all u, v, x € VV, we have
o(u, v) < o(u, x) + d(x, v).

Proof.

[

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.9

m Well-definedness of shortest
«3" paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.10

m Well-definedness of shortest
w3 " paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

Example:
<0
)
@ N N .
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.11

. Slngle source shortest paths

\\\‘ ‘

Problem. From a given source vertex s € V, find
the shortest-path weights (s, v) for all v € V.

If all edge weights w(u, v) are nonnegative, all
shortest-path weights must exist.

IDEA: Greedy.

1. Maintain a set S of vertices whose shortest-
path distances from s are known.

2. At each step add to S the vertex v € V'S
whose distance estimate from s is minimal.

3. Update the distance estimates of vertices
adjacent to v.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.12

\
“‘\

dis] <« 0
for eachv € - {5}
do d[v] -
S«
O« V

W;‘ Dijkstra’s algorithm

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

> (O is a priority queue maintaining /' — S

L17.13

m@. Dijkstra’s algorithm

NOTE: all remaining

d[s] <0
for eachv e /- {s}

do d[v] <
S
O«V > (O is a priority queue maintaining /' — S
while O =

do v < EXTRACT-MIN(Q)

S« Suiu if d[u] = infinity: break;

for each v € Adj[u] (with v from Q)
do if d[v] > d[u] + w(u, v)
then d[v] < d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

vertices are not
accessible from
source

L17.14

ALGORITHMS

71 Dijkstra’s algorithm

NOTE: all remaining

b

d[s] < 0
for each v € V- {s}

do d[v] < o
S«
Q«V > (O 1s a priority queue maintaining /' — S
while O =9

do © < EXTRACT-MIN

S« SuU {u} if d[u] = infinity: break;

for each v € Adj[u] (with v from Q)
do if d[v] > d[u] + w(u, v)
then d[v] < d[u] + w(u, v)

D
Implicit DECREASE-KEY

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

elaXation

vertices are not
accessible from
SOUrG

L17.15

== Example of Dijkstra’s

" algorithm

Graph with
nonnegative
edge weights:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L17.16

m Example of Dijkstra’s
3" algorithm

Initialize:

S {}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.17

@ Example of Dijkstra’s
3" algorithm

“A” <« EXTRACT-MIN(Q):

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.18

= Example of Dijkstra’s
«" algorithm

Relax all edges leaving A4:

S {A}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.19

M Example of Dijkstra’s
2" algorithm

“C” <~ EXTRACT-MIN(Q):

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.20

@+ Example of Dijkstra’s
«>Y algorithm

Relax all edges leaving C:

0 o o o o 3
10 3 o o
7 1 5 S 4 C
{4, C}
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.21

@ Example of Dijkstra’s
" algorithm

“E” <« EXTRACT-MIN(Q):

0 W o o 3 5
10 3 o o
7 11 5

S:{A4 CE)}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.22

== Example of Dijkstra’s
e - algorithm

Relax all edges leaving E:

H o S {A4CE}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.23

M Example of Dijkstra’s
" algorithm

“B” <« EXTRACT-MIN(Q):

Q:

0 [CoORNe's)

10 3
7
7

— =83
8
w
W

S: {4 CEB)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.24

- Example of Dijkstra’s
3" algorithm

Relax all edges leaving B:

0
0: D
0 oo o o o 3 5

10 3 o o

7 11 5

7 11 S{A, C,E,B}

9

November 14,2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.25

M Example of Dijkstra’s
w3T algorithm

7 9
“D” « EXTRACT-MIN(Q)
0 o o o o 3 5
10 3 o o
7 1 5
7 11 S§:14, CE B D}
9
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.26

=31 Correctness — Part I

Lemma. Initializing d[s] <— 0 and d[v] <— « for all
v e V— {s} establishes d[v] = (s, v) forall v € V,
and this invariant is maintained over any sequence
of relaxation steps.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.27

"‘"‘ Correctness — Part I

A\

Lemma. Initializing d[s] <— 0 and d[v] <— o for all
v e V— {s} establishes d[v] > &(s, v) forall v € V,
and this invariant is maintained over any sequence

of relaxation steps.
Proof. Suppose not. Let v be the first vertex for

which d[v] < (s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then,
d[v] <9d(s, v) supposition
<0o(s, u) +0(u, v) triangle inequality
< 0(s,u) +w(u, v) sh. path < specific path
<d[u]+w(u,v) vis first violation
Contradiction. []

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.28

=31 Correctness — Part 11

Lemma. Let u be v’s predecessor on a shortest
path from s to v. Then, if d[u]| = (s,) and edge
(u, v) 1s relaxed, we have d[v] = (s, v) after the
relaxation.

=31 Correctness — Part 11
Lemma. Let z be v’s predecessor on a shortest
path from s to v. Then, if d[u]| = 6(s,) and edge
(u, v) 1s relaxed, we have d[v] = 0(s, v) after the
relaxation.

Proof. Observe that d(s, v) = o(s, u) + w(u, v).
Suppose that d[v] > (s, v) before the relaxation.
(Otherwise, we’re done.) Then, the test d[v] >
d[u] + w(u, v) succeeds, because d[v] > (s, v) =
o(s, u) + w(u, v) = d[u] + w(u, v), and the]
algorithm sets d[v] = d[u] + w(u, v) = (s, v).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.29 November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.30
ALGORITHMS ALG
o N
S7N Correctness — Part I11 -

)

Theorem. Dijkstra’s algorithm terminates with
d[v]=20(s,v) forall v e V.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.31

= 4~ Correctness — Part I11

AN

Theorem. Dijkstra’s algorithm terminates with
d[v]=0d(s,v) forall v e V.

Proof. Tt suffices to show that d[v] = d(s, v) for every
v € V'when v is added to S. Suppose u is the first
vertex added to S for which d[u] > 6(s, u). Let y be the
first vertex in /' — § along a shortest path from s to ,
and let x be its predecessor:

S, just before
adding u.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.32

m Correctness — Part I11

Analys1s of Dijkstra

S (continued) Y
while O =0
S do u < EXTRACT-MIN(O)
S« Su {u}
for each v € Adj|u]
do if d[v] > d[u] + w(u, v)
then d[v] < d[u] + w(u, v)
Since u is the first vertex violating the claimed
invariant, we have d[x]| = 6(s, x). When x was
added to S, the edge (x, y) was relaxed, which
implies that d[y] = 6(s, y) < (s, u) < d[u]. But,
d[u] < d[y] by our choice of . Contradiction. []
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.33 November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.34
Analys1s of Dijkstra Analys1s of Dijkstra
while O =0 while O =
do u < EXTRACT-MIN(Q) do v < EXTRACT-MIN(Q)
for each v € Adj|u] . for each v € Adj|u]
ti t
Hmes do if d[v] > d[u] + w(u, v) eS| degree(u) do if d[v] > d[u] + w(u, v)
then d[v] < d[u] + w(u, v) times then d[v] < d[u] + w(u, v)
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.35 November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.36

Analys1s of Dijkstra

m‘

while O =0
do © < EXTRACT-MIN(Q)
4 S« S {u}
. for cach v € Adj|u]
t
imes degree(u) do if d[v] > d[u] + w(u, v)
times then d[v] < d[u] + w(u, v)

Handshaking Lemma = ©(E) implicit DECREASE-KEY’s.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.37

Analys1s of Dijkstra

\‘ ‘
while O =0
do u <~ EXTRACT-MIN(Q)

4 S« Su {u}

) for each v € Adj|u]
t

1mes degree(u) do if d[v] > d[u] + w(u, v)

times then d[v] < d[u] + w(u, v)

Handshaking Lemma = ©(£) implicit DECREASE-KEY’s.
Time = OV Tyrract-Min £ TDrcrEAsEKEY)

Note: Same formula as in the analysis of Prim’s
minimum spanning tree algorithm.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.38

w== Analysis of Dijkstra
S ‘ (continued)

Time = O(V) Texrract-Mmn T OE) TDEcrEASE-KEY

Q I EXTRACT-MIN I DECREASE-KEY Total

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.39

M Analysis of Dijkstra
" (continued)

Time = O(V) Texrract-Mmn T OE) TDEcrEASE-KEY

Q 1 EXTRACT-MIN 1 DECREASE-KEY Total
array o(V) O(1) o(1?)
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.40

M Analysis of Dijkstra

m Analysis of Dijkstra

" (continued) w3 (continued)
Time = O(V) Tgxrract-Min T OE) Tppcrpase-Key Time = O(V) Txrract-Min T OE) Tppcrpase-Key
Q T EXTRACT-MIN T DECREASE-KEY Total Q T EXTRACT-MIN T DECREASE-KEY Total
array o) Oo(1) o(1?) array o(V) o(1) O(17?)
bina bina
heap 027 O(gh) OElgh) heap 27 o(gh) OElgV)
Fibonacci O(lg)) o(1) OE+Vigh)
heap amortized amortized worst case
:'“"l":\l‘l ‘ Unweighted graphs ;:!‘:\II‘I ‘ Unweighted graphs
Suppose that w(u, v) =1 for all (u, v) € E. Suppose that w(u, v) = 1 for all (1, v) € E.
Can Dijkstra’s algorithm be improved? Can Dijkstra’s algorithm be improved?
* Use a simple FIFO queue instead of a priority
queue.

\
WY o

'-"'7"'3 Unweighted graphs

Suppose that w(u, v) = 1 for all (1, v) € E.
Can Dijkstra’s algorithm be improved?
* Use a simple FIFO queue instead of a priority
queue.
Breadth-first search
while O =Y
do 1 <— DEQUEUE(Q)
for each v € Adj|u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(O, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.45

k'-"f'\""“ Unweighted graphs
Suppose that w(u, v) = 1 for all (u, v) € E.
Can Dijkstra’s algorithm be improved?
* Use a simple FIFO queue instead of a priority
queue.
Breadth-first search
while O =
do u < DEQUEUE(Q)
for each v € Adj|u]
do if d[v] =
then d|v] < d[u] + 1
ENQUEUE(Q, v)
Analysis: Time = O(V + E).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.46

@& Example of breadth-first
« " search

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.47

- Example of breadth-first
w3 search

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.48

m Example of breadth-first
2" search

11
O: v bd

@i Example of breadth-first
w2 search

122
0: dce

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.49 November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.50
= Example of breadth-first Example of breadth-first
P— p m p
w3 search 2" search
22
O: c e O:
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.51 November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.52

m Example of breadth-first
2" search

33
0: gi

@i Example of breadth-first
w2 search

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.53 November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.54
THMS
s== Example of breadth-first M Example of breadth-first
« " search 3" search
4 4
November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.55 November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.56

@5 Example of breadth-first
«3 7 search

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.57

== Example of breadth-first
=" search

¢
AN

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L17.58

7T Correctness of BFS

[t
Y e

while O =0
do © <— DEQUEUE(Q)
for each v € Adj[u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(Q, v)
Key idea:
The FIFO O in breadth-first search mimics
the priority queue O in Dijkstra.
* Invariant: v comes after # in O implies that
d[v] =d[u] or d[v] = d[u] + 1.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.59

