A Comparison of Genetic Sequencing Operators

T. Starkweather, S. McDaniel,
K. Mathias, D. Whitley
Computer Science Dept.
Colorado State University
Fort Collins, CO 80523

Abstract

This work compares six sequencing operators
that have been developed for use with ge-
netic algorithms. An improved version of
the edge recombination operator is presented,
the concepts of adjacency, order, and position
are reviewed in the context of these opera-
tors, and results are compared for a 30 city
“Blind” Traveling Salesman Problem and a
real world warehouse/shipping scheduling ap-
plication. Results indicate that the effective-
ness of different operators is dependent on the
problem domain; operators which work well in
problems where adjacency is important (e.g.,
the Traveling Salesman) may not be effective
for other types of sequencing problems. Oper-
ators which perform poorly on the Blind Trav-
eling Salesman Problem work extremely well
for the warehouse scheduling task.

1 INTRODUCTION

Gil Syswerda [5] conducted a study in which “edge re-
combination” (a genetic operator specifically designed
for the Traveling Salesman Problem) performed poorly
relative to other operators on a job sequence schedul-
ing task. While the population size used by Syswerda
was small (30 strings) and good results were obtained
on this problem using mutations alone (no recombina-
tion), Syswerda’s discussion of the relative importance
of position, order and adjacency for different sequencing
tasks raises an issue that has not been adequately ad-
dressed. Researchers, including ourselves [8] [10], seem
to tacitly assume that all sequencing tasks are similar
and that one genetic operator should suffice for all types
of sequencing problems.

This paper compares six different operators on two dif-
ferent sequencing tasks. The comparisons include an
improved version of “edge recombination.” The prob-
lems are a 30 city “Blind” Traveling Salesman Prob-

C. Whitley
Mechanical Engineering Dept.
Colorado State University
Fort Collins, CO 80523

lem and a 195 element sequencing task for a real world
warehouse/shipping scheduling application. Our exper-
iments show that different operators are better suited to
different kinds of sequencing tasks. Edge recombination
is only roughly competitive with operators such as PMX
on the warehouse scheduling problem and the resulting
search is an order of magnitude slower than operators
which stress relative order as opposed to adjacency.

The genetic algorithm used in these experiments is
GENITOR, which was developed at Colorado State
University [7]; our results also suggest that GENITOR
is a key part of our improved performance on the Trav-
eling Salesman Problem. It uses a one-at-a-time re-
placement paradigm in which only one pair of strings
reproduces during any given generation and only one
offspring is generated. The new offspring replaces the
worst string in the population rather than one of its
parents. This ensures that the best string found so far
will never be replaced in the population.

We do not offer comparative results in this paper to
other approaches for the Traveling Salesman Problem.
We do note, however, that GENITOR is really solving
a more difficult version of the Traveling Salesman Prob-
lem than that solved by most other algorithms. Most
algorithms use local edge information to do local im-
provements; GENITOR uses only the overall value of
the total sequence. David Goldberg [2] points out that
genetic algorithms are actually solving a “Blind” Trav-
eling Salesman Problem. The Blind Traveling Salesman
Problem is interesting because for certain types of se-
quence optimization tasks local information is not read-
ily available. In a fair comparison on the “classic” Trav-
eling Salesman Problem, the genetic algorithm would be
allowed to also use local information about edge costs.
In other words, parent and offspring tours could be im-
proved by using local information. A group of European
researchers [6] have used this type of strategy and have
achieved impressive results on classic Traveling Sales-
man Problems with up to 666 cities. They found that
by combining genetic operators and local search meth-
ods developed by Lin/Kernigan they obtained superior
results to 5 other approaches on 8 different problems

ranging in size from 48 to 666 cities (median size 318).
Thus, it appears likely that genetic methods could be-
come a basic part of the tool kit for solving Travel-
ing Salesman Problems and that the genetic algorithm
could be viewed as a structure in which to organize and
apply many of the tools that already exist. The reader
interested in comparison tests on the classic Traveling
Salesman Problem should consult the results of Ulder
et al. [6].

2 EMPHASIS OF DIFFERENT
SEQUENCING OPERATORS

Six genetic sequencing operators are compared in this
study: improved edge recombination, order crossover,
variants proposed by Syswerda [5] which we shall refer
to as order crossover #2 and position crossover, PMX
crossover, and cycle crossover.

2.1 ENHANCED EDGE RECOMBINATION

The edge recombination operator is different from other
genetic sequencing operators in that it emphasizes ad-
jacency information instead of the order or position of
the items in the sequence. The “edge table” used by the
operator is really an adjacency table listing the connec-
tions into and out of a city found in the two parent
sequences. The edges are then used to construct off-
spring in such a way that we avoid isolating cities or
elements in the sequence.

For example, the tour [b a d f g e ¢ j h i contains
the links [ba, ad, df, fg, ge, ec, cj, jh, hi, ib], when
one considers the tour as a hamiltonian cycle. In order
to preserve links present in the two parent sequences a
table is built which contains all the links present in each
parent tour. Building the offspring then proceeds as
follows: (1) Select a starting element. This can be one
of the starting elements from a parent, or can be chosen
from the set of elements which have the fewest entries
in the edge table. (2) Of the elements that have links
to this previous element, choose the element which has
the fewest number of links remaining in its edge table
entry, breaking ties randomly. (3) Repeat step 2 until
the new offspring sequence in complete.

An example is given of edge recombination is given in
figure 1. Suppose element a is selected randomly to
start the offspring tour. Since a has been used, all oc-
currences of a are removed from the right-hand side of
the edge table. Element ¢ has links to elements b, f,
and j. Elements b and f both have 3 links remaining
in their table entries, but element j has only 2 links re-
maining. Therefore, j is selected as the next element in
the offspring, and all occurrences of j are removed from
the right-hand side of the edge table. Element j has
links to i and h, both of which have 3 links remaining.
Therefore, one of these elements are selected at random

Parent 1: abcdefghi]j
Parent 2: cfajhdighbe
Offspring: ajihdcfebg
Edge table: city 1links
a b, £, j
b a, c, g, e
c b, d, e, £
d d, £, b, c
e d, f, b, c
f e, g, c, a
g f, h, 1, b
h g, i, j, d
i h, j, d, g
j i, a, h

Figure 1: Edge Recombination

(element i in figure 1) and the process continues until
the child tour is complete.

When the edge recombination operator was first imple-
mented, we realized that it had no active mechanism
to preserve “common subsequences” between the 2 par-
ents. We have developed a simple solution to this prob-
lem. When the “edge table” is constructed, if an item is
already in the edge table and we are trying to insert it
again, that element of the sequence must be a common
edge. The elements of a sequence are stored in the edge
table as integers, so if an element is already present, the
value is inverted: if A is already in the table, change the
integer to -A. The sign acts as a flag. Consider the fol-
lowing sequences and edge table: [ab ¢ d e f] and [c d
e bfal.

a: b, -f, c d: -c, -e
b: a, c, e, £ e: -d, £, b
c: b, -d, a f: e, —a, b

The new edge table is the same as the old edge table, ex-
cept for the flagged elements. One of three cases holds
for an edge table entry. 1) If four elements are entered
in the table as connections to a given table entry, that
entry is not part of a common subsequence. 2) If three
elements are entered as connections to a given table en-
try, then one of the first two elements will be negative
and represents the beginning of a common subtour. 3)
If only two elements are entered for a given table en-
try, both must be negative and that entry is an internal
element in a common subsequence. Giving priority to
negative entries when constructing offspring affects edge
recombination for case 2 only. In case 1, no connecting
elements have negative values, and in case 3 both con-
necting elements are negative, so edge recombination
behaves just as before. In case 2, the negative element
which represents the start of a common subtour is given

Parent 1: abcdefghi]j
Parent 2: cfajhdigbe
Cross Pts: * *

Offspring: fgajhdibce

Figure 2: Order Crossover #1

first priority for being chosen. Once this common sub-
sequence is started, each internal element (case 3) of
the sequence has only one edge in and one edge out,
so it is guaranteed that the common sections of the se-
quence will be preserved. The implementation of this
idea (along with better mechanisms to ensure random
choices when random choices are indicated) improved
our performance on the Blind Traveling Salesman Prob-
lem. Using a single population of 1000 and a total of
30,000 recombinations GENITOR with the enhanced
edge recombination operator finds the optimal solution
on the 30 city problem described in Whitley et al. [8]
on 30 out of 30 runs. On a 105 city problem the new
operator finds the “best known” solution on 14/30 runs
with no parameter tuning.

2.2 ORDER CROSSOVER

The original order crossover operator (which we refer to
as order crossover) was developed by Davis [1] (also see
[4]). The offspring inherits the elements between the
two crossover points, inclusive, from the selected par-
ent in the same order and position as they appeared
in that parent. The remaining elements are inherited
from the alternate parent in the order in which they
appear in that parent, beginning with the first position
following the second crossover point and skipping over
all elements already present in the offspring. Thus, al-
though the purported goal is to preserve the relative
order of elements in the sequences to be combined, part
of the offspring inherits the order, adjacency and abso-
lute position of part of one parent string, and the other
part of the offspring inherits the relative order of the
remaining elements from the other parent, with disrup-
tion occurring whenever an element is present that has
already been chosen.

An example is given in figure 2. The elements a, j, h, d,
and i are inherited from P2 in the order and position in
which they occur in P2. Then, starting from the first
position after the second crossover point, the child tour
inherits from P1. In this example, position 8 is this
next position. P1[8] = h, which is already present in
the offspring, so P1 is search until an element is found
which is not already present in the child tour. Since
h, i, and j are already present in the child, the search
continues from the beginning of the string and Off[8] =
P1[2] = b, Off[9] = P1[3] = ¢, Off[10] = P1[4] = e, and
so on until the new tour is complete.

Parent 1: abcdefghi]
Parent 2: cfajhdighbe
Cross Pts: * % * *
Offspring: ajcdefghihb

Figure 3: Order Crossover #2

2.3 ORDER CROSSOVER #2

The operator which was developed by Syswerda [5] dif-
fers from the above order operator in that several key
positions are chosen randomly and the order in which
these elements appear in one parent is imposed on the
other parent to produce two offspring; in our experi-
ments we produce only one offspring.

In the example of figure 3, positions 3, 4, 7, and 9 have
been selected as the key positions. The ordering of the
elements in these positions from Parent 2 will be im-
posed on Parent 1. The elements (in order) from Par-
ent 2 are a, j, i and b. In Parent 1 these same elements
are found in positions 1, 2, 9 and 10. In Parent 1 P1[1]
= a, P1]2] = b, P1[9] =i and P1[10] = j, where P1 is
Parent 1 and the position is used as an index. In the
offspring the elements in these positions (i.e., 1, 2, 9, 10)
are reordered to match the order of the same elements
found in Parent 2 (i.e., a,], i, b). Therefore Off[1] = a,
Off[2] = j, Off[9] = i and Off[10] = b, where Off is the
offspring under construction. All other elements in the
offspring are copied directly from Parent 1.

2.4 PARTIALLY MAPPED CROSSOVER
(PMX)

This operator is described in detail by Goldberg and
Lingle [3]. A parent and two crossover sites are selected
randomly and the elements between the two starting
positions in one of the parents are directly inherited by
the offspring. Each element between the two crossover
points in the alternate parent are mapped to the po-
sition held by this element in the first parent. Then
the remaining elements are inherited from the alternate
parent. Just as in the order crossover operator #1, the
section of the first parent which is copied directly to
the offspring preserves order, adjacency and position
for that section. However, it seems that more disrup-
tion occurs when mapping the other elements from the
unselected parent. In the first example (figure 4), the
elements in positions 3, 4, 5 and 6 are inherited by the
child from Parent 1. Then beginning with position 3,
the element in P1 (c) is located in P2 (position 7) and
this position in the offspring is filled with the element
in Parent 2 at position 3: Off[7] = P2[3]. Moving to po-
sition 4 in Parent 1, we find a d and see that it occurs
at position 1 in Parent 2, so Off[8] = P2[5] = a and f
(P1[6]) is at P2[10] so Off[10] = P2[6] = g. The remain-
ing elements are inherited from P2: Off[2] = P2[2] =i,

Parent 1: abcdefghi]j
Cross Pts: * *

Parent 2: dijhagcebftf
Offspring: hicdefjabg

Figure 4: PMX Crossover Example 1

Parent 1: abcdefghi]j
Cross Pts: * *

cfajhdigbe
ajcdefighbh

Parent 2:
Offspring:

Figure 5: PMX Crossover Example 2

and Off[9] = P2[9] = b.

Since the segment of elements from the alternate parent
does not contain any elements in the key segment of
the first parent, both adjacency and relative order are
preserved.

In the second example (figure 5), the mapping proceeds
as above with Off[3 to 6] = P1[3 to 6]. Next Off[1] =
P2[3] = a, since P1[3] = ¢ and P2[1] = c. Next, we note
that P1[4] = d and P2[4] = j. Since P2[6] = d, this is
the preferred position for j in the offspring, but it has
already been filled. City j is skipped over temporarily.
Element h maps to element e which occupies position
10 in parent 2, so Off[10] = h. City d maps to element
f which occupies position 2 in parent 2, so Off[2] = d;
even though this is a duplicate it is left in the offspring
temporarily. Elements i, g and b are then inherited
from P2 leaving a sequence with no j element and two
d elements. The element d which is outside the origi-
nally selected positions 3 through 6 is replaced with a
j resulting in a complete and legal sequence. Note that
when this substitution occurs, it results in a mutation
where neither adjacency, position, or relative order is
preserved by the substitution. Also note that PMX is
influenced by position, especially in Example 2.

2.5 CYCLE CROSSOVER

Originally developed by Oliver et al. [4], this operator
preserves the absolute position of elements in the par-
ent sequence. A parent sequence and a cycle starting
point are randomly selected. The element at the cycle
starting point of the selected parent is inherited by the
child. The element which is in the same position in the
other parent cannot then be placed in this position so
its position is found in the selected parent and is in-
herited from that position by the child. This continues
until the cycle is completed by encountering the initial
item in the unselected parent. Any elements which are
not yet present in the offspring are inherited from the
unselected parent. Note that cycle crossover always pre-
serves the position of elements from one parent or the

Parent 1: abcdefghi]j
Cross Pts: *
Parent 2: cfajhdighbe

Offspring: cbadefghi

(S

Figure 6: Cycle Crossover

Parent 1: abcdefghi]j
Cross Pts: * ok * *
Parent 2: cfajhdighbe
Offspring: abcjhfdgie

Figure 7: Position Based Crossover

other without any disruption.

In figure 6, position four in Parent 1 is the selected
starting position for the cycle and Off[4] = P1[4] = d.
Parent 2 is then searched until the position of element
d is found (P2[6]) and the offspring tour at this posi-
tion inherits the element in this position from Parent
1, Off[6] = P1[6] = {. f occurs in P2 at position 2, so
Off[2] = P1]2] = b followed by Off[9] = p1[9] = i, Off[7]
= P1[7] = h, Off[5] = P1[5] = e, and Off[10] = P1[10] =
j. This completes a cycle, since P2[5] = j and P1[5] = d,
which was the starting element in the cycle. Now any
remaining elements are inherited from Parent 2: Off[1]
= P2[1] = ¢ and Off[3] = P2[3] = a.

2.6 POSITION BASED CROSSOVER

This operator, also proposed by Syswerda [5], is in-
tended to preserve position information during the re-
combination process. Several random locations in the
sequence are selected along with one parent; the ele-
ments in those positions are inherited from that par-
ent. The remaining elements are inherited in the order
in which they appear in the alternate parent, skipping
over all elements which have already been included in
the offspring. Thus, the operator appears to be simi-
lar to Davis’ Order Crossover #1 operator except that
the elements copied from the selected parent come from
random locations in the sequence and not from adjacent
locations; although designed as a “position” operator,
it certainly is less effective at preserving position than
cycle crossover and probably less effective at preserv-
ing position than PMX. We argue this is really another
order operator.

In figure 7 the elements b, ¢, f and i are inherited from
Parent 1 in positions 2, 3, 6 and 9 respectively. The re-
maining elements are inherited from Parent 2 as follows:
Off[1] = P2[3] since P2[1] and P2[2] have already been
included in the offspring. Then going in order, Off[4] =
P2[4], Off[5] = P2[5], Off[7] = P2[6], Off[8] = P2[8] and
Off[10] = P2[10].

Op Bias | Trials | Pop | Best | Avg

Edge 1.5 | 50000 | 500 | 16/30 | 421.6
Order #1 | 1.5 | 50000 | 500 | 8/30 | 429.5
Order #2 | 1.5 | 50000 | 500 | 9/30 | 440.5
Position 1.5 | 50000 | 500 | 11/30 | 431.3
PMX 1.5 | 50000 | 500 437 | 514.6
Cycle 1.5 | 50000 | 500 459 | 519.9

Table 1: 30 City Results (untuned)

Op Bias | Trials | Pop Best | Avg
Edge 1.4 | 30000 | 1000 | 30/30 | 420.0
Order #1 | 1.1 | 100000 | 1000 | 25/30 | 420.7
Order #2 | 1.2 | 100000 | 1000 | 18/30 | 421.4
Position 1.2 | 120000 | 1000 | 18/30 | 423.2
PMX 1.2 | 120000 | 1400 1/30 | 452.8
Cycle 1.1 | 150000 | 1500 440 | 490.3

Table 2: 30 City Results (tuned)

3 THE 30 CITY BLIND TRAVELING
SALESMAN

Each of the above operators was used to solve the 30
city Traveling Salesman Problem. In order to compare
the performance on two levels they were each run using
the same parameters for 30 experiments and then each
was tuned for best results. The parameters for the first
comparison were: selection bias of 1.5, population size
of 500, no explicit mutation and 50,000 trials. The only
exception to this is that the cycle crossover operator
always mutates whenever the offspring and the selected
parent are identical. Results appear in Table 1.

We attempted to optimize the performance of each op-
erator by tuning the following parameters: bias, pop-
ulation size and number of trials. The results in able
2 are similar to those in Table 1, although PMX and
cycle showed very little improvement despite the pa-
rameter tuning. The three order crossover operators
(Order #1, Order #2 and Position) have similar per-
formance. Using higher selection bias values in general
gave poorer results for all operators except edge recom-
bination. PMX and cycle crossover in particular con-
verged too quickly in most cases to find the optimal
solution. The improved edge recombination operator
found the optimal solution 28 out of 30 times using a
population of 650, bias of 1.7 and 30,000 recombina-
tions. As shown, a larger population found the optimal
solution on every attempt. Our results differ somewhat
from the results cited by Oliver et. al.[4]. The ranking
of the operators in terms of performance is the same
(Order #1 is better than PMX which is better than
Cycle). The main difference is that all of these opera-
tors produced much better results in the current study.
Order crossover #1 and PMX both failed to find the
optimal solution to this problem in the Oliver et al.

study. The main difference in the two studies is the
use of the GENITOR algorithm instead of the standard
generational genetic algorithm. This strongly suggests
that the use of GENITOR is partially responsible for
the positive results we have obtained on this problem.

In a previous study we found that the old edge recombi-
nation operator coupled with a distributed genetic algo-
rithm found the best known solution on 30 out of 30 at-
tempts using 10 subpopulations of 200 individuals each,
using up to a total of 70,000 evaluations/recombinations
(7,000 per subpopulation). On the 105 city problem the
old edge recombination operator operator coupled with
a distributed genetic algorithm matched the best known
solution on 15 out of 30 attempts using up to 2 million
recombinations; all results were within 1% of the best
known solution and 29/30 were within 0.5% of the best
known. Using the enhanced edge recombination oper-
ator we found the best known solution on 14/30 runs
using a single population algorithm (popsize: 5000) and
only 1 million recombinations. These are first run re-
sults with no parameter tuning. While these results are
not directly comparable, they do support the notion
that the enhanced edge recombination operator is more
effective than the original implementation.

3.1 DISCUSSION

The key difference between the operators is the infor-
mation which each attempts to preserve during recom-
bination. For the Traveling Salesman Problem the im-
portant information would seem to be the adjacency
information. The edge recombination operator explic-
itly preserves adjacency information and clearly has
the best performance on this problem. Information
about absolute position appears to be relatively unim-
portant. None of the operators use mutation (except
cycle crossover when the offspring is identical to one of
the parents). We have done some experiments which
suggest that the performance of some of the operators
can be improved if mutation is used; resolving this issue
requires further tests. Perhaps most surprising is the
difference in performance between the order operators
and among the position preserving operators. These dif-
ferences can be explained by looking at how the opera-
tor preserves adjacency information, relative order and
position. Adjacency information is clearly important,
but the results obtained with the order operators (or-
der crossover #1, order crossover #2, and the so-called
position based crossover) suggests that order informa-
tion is useful for solving this problem. PMX may pro-
duce a greater emphasis on absolute position than the
other order operators; the cycle operator clearly stresses
absolute position.

It is important to note that the performance of these op-
erators on a given problem is directly related to the na-
ture of that problem. In other problems such as schedul-

ing, the important information may not be adjacency,
but may have a higher correlation to the position in the
string or the relative order among the encoded elements
in the string.

4 A WAREHOUSE/SHIPPING
SCHEDULER

A prototype scheduling system has been developed for
the Coors brewery in Golden, Co., which uses a genetic
algorithm to optimize the allocation of beer production
and inventory to the orders at the plant. A simulator
was constructed consisting of a representation for beer
production, the contents of inventory, arrangement of
truck and rail loading docks, and orders for a 24 hour
period. Preliminary tests indicated that the system is
viable and subsequent tests of the system used real data
from the plant.

The objective of the Coors scheduling package is the ef-
ficient allocation of orders to loading docks in the plant
based on a fixed production schedule. Beer produc-
tion occurs on multiple production lines which operate
24 hours a day. Each line produces different product
types. There are numerous product types which can be
produced, based on type of beer as well as various pack-
ages and labels. The data which is available for each line
includes flow-rate, start and stop times, and product-
type. The scheduling simulator analyzes the production
schedule for each line and creates a time-sorted list com-
posed of the product-type, amount, and time available.
This time-sorted production list is then examined dur-
ing an event driven simulation. An input file to the
scheduling simulator contains the contents of inventory
at the start of the time-period which is to be scheduled.
New orders enter a loading dock upon completion of
a previous order; the inventory is initially checked for
product needed by the new order. Minimizing the con-
tents of inventory is an important aspect of this prob-
lem. Inventory impacts the physical work of moving
product more than once on the plant floor, the physical
space occupied by product in storage, as well as refriger-
ation costs, etc. The schedule simulation places orders
in rail and truck loading docks and attempts to fill the
orders with the product that comes out of production
and inventory. An order consists of one or more prod-
uct type and an associated amount. In the actual data
for the test scheduling period 195 customer orders are
present and waiting to be filled. The schedule simulator
attempts an efficient mapping between the product that
is available and these orders. A “good” schedule is one
which minimizes the average inventory in the system,
and fills as many orders as possible. Each individual in
the population maintained by the genetic algorithm is
a sequence of customer order numbers. This sequence
is mapped to the loading docks by the schedule simula-
tor and orders are filled and placed in the docks based

strictly on this sequence. Initially these sequences are
randomly created, and as genetic search progresses new
sequences are created by the process of genetic recom-
bination. For the genetic algorithm to work, an evalu-
ation for the sequence is needed. The evaluation of the
sequence of orders is obtained using a scheduling simu-
lator, which models operation of the plant and creates
a shipping schedule based on the sequence.

Our results indicate that for this sequencing problem,
relative order of the items which make up the sequence
is more important than adjacency. This is not surpris-
ing given the nature of the problem: the relative order in
which product is used will clearly affect inventory more
than adjacency. Adjacency would appear to be almost
irrelevant in this domain. This means that genetic re-
combination operators which perform well on the Trav-
eling Salesman because they stress adjacency will be
poor for sequencing tasks where relative order is critical.
Experiments with the same 6 recombination operators
tested on the 30 city Blind Traveling Salesman Problem
were conducted on this warehouse/shipping sequencing
task.

Figure 8 gives two graphs comparing the six operators
on both the Blind Traveling Salesman Problem and the
warehouse/shipping scheduler. As the graphs show, the
results of schedule optimization with the six operators
are almost the opposite of the results for the Traveling
Salesman Problem.

The graph of the warehouse/shipping scheduler shows
the comparative results for the 6 operators with up to
30,000 recombinations. (The population size is 200, the
selective bias is 1.7, the number of runs is 15; no param-
eter tuning was used.) Both of Syswerda’s operators did
extremely well on this problem; they also did relatively
well on the Traveling Salesman Problem. When we use
edge recombination with up to 200,000 recombinations
it finds solutions comparable to those found by PMX in
20,000 recombinations; both results are inferior to order
crossover #2 and the position based operator.

The difference in search speed displayed by the oper-
ators coupled with increased performance in worksta-
tions has allowed us to achieve 2 orders of magnitude
improvement in execution speed on the scheduling ap-
plication. We are currently using a 15 MIP workstation.
This means that our scheduler now executes in minutes
rather than hours. (e.g., 6 hours becomes 3.6 minutes
given 100 times faster execution). Scheduling 195 jobs
in under 5 minutes is close to real time in the context
of this warehouse/shipping problem. This allows quick
rescheduling in the event of line breakages, shortfalls in
production, and other unforeseen circumstances. Our
execution times are, of course, dependent on the com-
plexity of the evaluation function.

00 v Ly
B — -
crger ¥l -
crder #2 -
oyciae ™o
AGC = positioh-bassd — - o
= T
¥
(=2
[~
[t
b
=
4
= 600 b
505 -
qea A . 1 F
a 10000 22000 10909 40300 Soa0
recombinations
Q03000 T T v 7 T
edga
pmyg ==
order Bl - - -
ardet 42 -----
cycle — -
positicn-based — -
.. 250000 F B e
O i AR
o L ..
o 1Y .
® . e e]
4 . A
E LR
BN
& R
3 ‘;g__ “:‘\:-—.‘___ -
¢ T S
A 200C00 M '\‘-.:‘:_ . '_—-—*"_-__w_:_n's-.—_wr.=_—_"'1:'__‘_':‘-‘_:-‘-;7:-—_‘———-awuq
Vi T T T =4
A
ML
b Y .
e L N . .
150000 4 . 4 L !
2 2000 100460 15000 20044 25000 30000
recombinacions

Figure 8: Graphs of 6 Operators for the
house/Shipping Scheduler (bottom).

Blind 30 City Traveling Salesman Problem (top) and the Ware-

ACKNOWLEDGEMENTS

This research was supported in part by a grant from the
Colorado Institute of Artificial Intelligence (CIAI). CIAI is
sponsored in part by the Colorado Advanced Technology
Institute (CATI), an agency of the State of Colorado.

References

[1]

3]

[5]

(6]

[7]

8]

[9]

[10]

L. Davis. (1985) “Applying Adaptive Algorithms
to Epistatic Domains.” In Proc. International Joint
Conference on Artificial Intelligence.

D. Goldberg. (1989) Genetic Algorithms in Search,
Optimization and Machine Learning. Addison
Wesley, Reading, MA.

D. Goldberg and R. Lingle. (1985) “Alleles, loci,
and the Traveling Salesman Problem.” In Proc. In-
ternational Conference on Genetic Algorithms and
their Applications.

I. Oliver, D. Smith, and J. Holland. (1987) “A
Study of Permutation Crossover Operators on the
Traveling Salesman Problem.” In Proc. Second In-
ternational Conference on Genetic Algorithms and
their Applications.

G. Syswerda. (1990) “Schedule Optimization Us-
ing Genetic Algorithms.” In Handbook of Genetic
Algorithms. 1. Davis, ed. Van Nostrand Reinhold,
New York.

N. Ulder, E. Pesch, P. van Laarhoven, H. Ban-
delt, E. Aarts. (1990) “Improving TSP Exchange
Heuristics by Population Genetics.” In Parallel
Problem Solving In Nature. Springer/Verlag.

D. Whitley and J. Kauth (1988) “GENITOR:
A Different Genetic Algorithm” In Proc. Rocky
Mountain Conf. on Artificial Intelligence.

D. Whitley, T. Starkweather, and D. Fuquay.
(1989) “Scheduling Problems and Traveling Sales-
man: The Genetic Edge Recombination Opera-
tor.” In Proc. Third Int’l. Conference on Genetic
Algorithms and their Applications. J. D. Shaeffer,
ed. Morgan Kaufmann.

D. Whitley and T. Starkweather. (1990) “GENI-
TOR II: A Distributed Genetic Algorithm.” Jour-
nal of Experimental and Theoretical Artificial In-
telligence. 2:189-214.

D. Whitley, T. Starkweather, and D. Shaner.
(1990) “Traveling Salesman and Sequence
Scheduling: Quality Solutions Using Genetic Edge
Recombination.” In Handbook of Genetic Algo-
rithms. L. Davis, ed. Van Nostrand Reinhold, New
York.

