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1. Transitivity on trees

Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X → X is transitive, then

I f has the relative specification property
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Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X → X is transitive, then

I f has the relative specification property

f : X → X is transitive if
I ∀U,V – nonempty open ∃n ∈ N : f n(U) ∩ V 6= ∅
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1. Transitivity on trees

Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X → X is transitive, then

I f has the relative specification property

f : X → X has the specification property if [Bowen 1971]
I ∀ε > 0 ∃m ∀k ≥ 2 ∀x1, . . . , xk ∈ X
∀a1 ≤ b1 < · · · < ak ≤ bk with ai − bi−1 ≥ m (i = 2, . . . , k)
and ∀p ≥ m + bk − a1,
there is a point x ∈ X with f p(x) = x and

d(f n(x), f n(xi )) ≤ ε for ai ≤ n ≤ bi , 1 ≤ i ≤ k .
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1. Transitivity on trees

Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X → X is transitive, then

I f has the relative specification property

f : X → X has the relative property P if [Banks 1997]
I there exist regular closed sets D0, . . . ,Dm−1 covering X such

that, for every 0 ≤ i < j < m, Di ∩ Dj is nowhere dense,

f (Di ) ⊆ D(i+1) modm

and
f m|Di : Di → Di has the property P.
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1. Transitivity on trees

Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X → X is transitive, then

I f has the relative specification property

Consequently, every transitive tree map
I is relatively mixing
I has positive entropy
I has dense periodic points
I . . .
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2. Transitivity on dendrites

Dendrites
Dendrite

I a locally connected metric continuum which contains no circle

A point x of a dendrite X is
I end point if X \ {x} is connected
I cut point if X \ {x} is not connected

I branch point if X \ {x} has at least 3 components

E (X ) and B(X )

I the sets of all end points and branch points

Tree
I a dendrite with finitely many end points
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2. Transitivity on dendrites

Dendrites
An arc A = [a, b] in a dendrite X is called free if

I A \ {a, b} is open in X

For a dendrite X the following are equivalent
I X does not contain a free arc
I branch points of X are dense in X
I end points of X are dense (i.e. residual) in X
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2. Transitivity on dendrites

Transitivity on dendrites: Positive results

Theorem (Alsedà-Kolyada-Llibre-Snoha 1999; Kwietniak 2011;
Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012)
If X is a dendrite containing a free arc and f : X → X is transitive,
then

I f is relatively mixing
I f has positive entropy
I f has dense periodic points
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2. Transitivity on dendrites

Transitivity on dendrites: Positive results

Theorem (Alsedà-Kolyada-Llibre-Snoha 1999; Kwietniak 2011;
Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012)
If X is a dendrite containing a free arc and f : X → X is transitive,
then

I f is relatively mixing
I f has positive entropy
I f has dense periodic points

Theorem (Acosta-Hernández-Naghmouchi-Oprocha 2013)
If X is a dendrite and f : X → X has a transitive cut point, then

I f is relatively weakly mixing
I f has dense periodic points
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2. Transitivity on dendrites

Transitivity on dendrites: Negative results

Theorem (Hoehn-Mouron 2013)
There is a dendrite X (with dense B(X )) admitting a map
f : X → X which is

I weakly mixing but
I not mixing

Moreover, [Acosta-Hernández-Naghmouchi-Oprocha 2013]
I f is proximal, and thus
I it has a unique periodic (= fixed) point
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2. Transitivity on dendrites

Transitivity on dendrites: Negative results

Theorem (Š.)
There is a dendrite X (with dense B(X )) admitting a map
f : X → X such that

I f is transitive
I f has infinite decomposition ideal

(that is, f is not relatively totally transitive)
I f has a unique periodic (= fixed) point
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2. Transitivity on dendrites

Transitivity on dendrites: The main theorem
C (X )

I the space of all subcontinua (= subdendrites) of X equipped
with the Hausdorff metric

Nf (U,V )

I the return time set {n ∈ N : f n(U) ∩ V 6= ∅}
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2. Transitivity on dendrites

Transitivity on dendrites: The main theorem

Theorem (Š.)
Let σ : Σ→ Σ be a subshift. Then there are a dendrite X (with
dense B(X )) and maps f = fσ : X → X and D : Σ→ C (X ) s.t.

I f ◦ D = D ◦ σ; i.e. f (D(γ)) = D(σ(γ)) for every γ ∈ Σ

I for every cylinders [α], [β] in Σ and every non-empty open sets
U ⊆ D[α], V ⊆ D[β] in X there is n0 ∈ N such that, for every
n ≥ n0,

n ∈ Nσ([α], [β]) ⇐⇒ n ∈ Nf (U,V )

consequently, f is transitive (totally transitive, weakly mixing,
mixing) if and only if σ is

I if σ is aperiodic then f has a unique periodic (= fixed) point
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2. Transitivity on dendrites

Transitivity on dendrites: The main theorem

Corollary
There is a dendrite X and maps f , g , h : X → X such that

I f is transitive and has infinite decomposition ideal
I g is weakly mixing but not mixing
I h is mixing but has not dense periodic points
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3. Proof of the main result
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3. Proof of the main result

Structure of the proof

Theorem
For a subshift σ : Σ→ Σ there is a dendrite X , a continuous map
f : X → X and a map D : Σ→ C (X ) such that

I f ◦ D = D ◦ σ
I Nf (U,V ) ≈ Nσ([α], [β]) for every . . .
I if σ is aperiodic then Per(f ) = Fix(f ) is a singleton

Main steps of the proof.

1. construct the dendrite X
2. define D : Σ→ C (X )

3. construct the map f : X → X
4. prove the properties of f
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3. Proof of the main result

Step 1: The dendrite X
The dendrite X : the universal dendrite of order 3

I branch points are dense
I every branch point has order 3

We can write

X =
∞⋃

m=0

Xm ∪ X∞

I X0 = [a, b] is a segment
I X1 = X0 ∪

⋃
r∈Q [ar , br ]

I X2 = X1 ∪
⋃

rs∈Q2 [ars , brs ]

I . . .
I X∞ = {br : r ∈ Q∞} totally disconnected dense Gδ set

where Q is the set of all dyadic rationals in (0, 1)
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3. Proof of the main result

Step 1: The dendrite X

a b

● ●

The set X0
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3. Proof of the main result

Step 1: The dendrite X
We can write

X = closure

( ∞⋃

m=0

Xm

)
=
∞⋃

m=0

Xm ∪ X∞

I X0 = [a, b] is a segment
I X1 = X0 ∪

⋃
r∈Q [ar , br ]

I X2 = X1 ∪
⋃

rs∈Q2 [ars , brs ]

I . . .
I X∞ = {br : r ∈ Q∞} totally disconnected dense Gδ set

where Q is the set of all dyadic rationals in (0, 1)
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3. Proof of the main result

Step 2: The subdendrites D(γ)

Assume that Σ = {0, 1}N and σ : Σ→ Σ is the full shift

D0,D1

I D0,D1 are regular closed subdendrites of X
I D0 ∪ D1 = X
I D0 ∩ D1 = X0 is nowhere dense in X
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3. Proof of the main result

Step 2: The subdendrites D(γ)
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3. Proof of the main result

Step 2: The subdendrites D(γ)

D00,D01,D10,D11

I D00, . . . ,D11 are regular closed subdendrites of X
I D0 = D00 ∪ D01, D1 = D10 ∪ D11

I
⋃

i0i1 6=j0j1(Di0i1 ∩ Dj0j1) = X1 is nowhere dense in X
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Step 2: The subdendrites D(γ)
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3. Proof of the main result

Step 2: The subdendrites D(γ)

For γ = γ0γ1 · · · ∈ Σ:
I D(γ) = Dγ0 ∩ Dγ0γ1 ∩ Dγ0γ1γ2 ∩ . . .
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3. Proof of the main result

Step 3: The map f : X → X
f0 : X0 → X0 X0 = [a, b]

I a surjective map
I “agrees with” the shift σ
I f0(x) < x for x ∈ (a, b)

I limn f n
0 (x) = a for every x 6= b
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3. Proof of the main result

Step 3: The map f : X → X
f1 : X1 → X1 X1 = X0 ∪

⋃
r∈Q [ar , br ]

I f1(ar ) = f0(ar )

I maps every end point br onto an end point b%(r) in such a way
that

lim
n→∞

f n
1 (br ) = b for every r ∈ Q
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3. Proof of the main result

Step 3: The map f : X → X
f1 : X1 → X1 X1 = X0 ∪

⋃
r∈Q [ar , br ]

I continuous surjective extension of f0
I “agrees with” the shift σ
I maps every [ar , br ] onto

[f0(ar ), b%(r)] = [f0(ar ), a%(r)] ∪ [a%(r), b%(r)]

I limn f n
1 (x) = a for every x 6= b, br (r ∈ Q)
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3. Proof of the main result

Step 3: The map f : X → X
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3. Proof of the main result

Step 3: The map f : X → X
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3. Proof of the main result

Step 3: The map f : X → X
fm : Xm → Xm (m ≥ 2) Xm = Xm−1 ∪

⋃
r∈Qm [ar, br]

I continuous surjective extension of fm−1

I “agrees with” the shift σ
I maps every [ar, br] onto [a%(r), b%(r)]

I % : Qm → (Qm ∪ Qm−1) is such that every r ∈ Qm eventually
falls into Qm−1

I limn f n
m(br) = b for every r ∈ Qm

I limn f n
m(x) = a for every x 6= b, br (r ∈ Q1 ∪ · · · ∪ Qm)
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3. Proof of the main result

Step 3: The map f : X → X
f : X → X X =

⋃
m Xm ∪ X∞, X∞ = {br : r ∈ Q∞}

f (x) =

{
fm(x) if x ∈ Xm, m ≥ 0
b%(r) if x = br, r ∈ Q∞

I % : Q∞ → Q∞ is determined by %|Qm (m ≥ 1)

I X∞ is an f -invariant (not closed) set
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3. Proof of the main result

Step 4: Properties of f : X → X
f is a continuous surjection

I every Xm is a closed invariant set with “trivial” dynamics
I X∞ is an invariant set with “shift-like” dynamics
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Step 4: Properties of f : X → X
f is a continuous surjection

I every Xm is a closed invariant set with “trivial” dynamics
I X∞ is an invariant set with “shift-like” dynamics

f “agrees” with the shift σ
I f maps D(γ) onto D(σ(γ))
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3. Proof of the main result

Step 4: Properties of f : X → X
f is a continuous surjection

I every Xm is a closed invariant set with “trivial” dynamics
I X∞ is an invariant set with “shift-like” dynamics

f “agrees” with the shift σ
I f maps D(γ) onto D(σ(γ))

f has the “same” return time sets as σ
I . . .
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3. Proof of the main result

Step 4: Properties of f : X → X
Subshifts σ̃ : Σ̃→ Σ̃ (Σ̃ ⊆ Σ)

I correspond to subsystems

f̃ = f |D(Σ̃) : D(Σ̃)→ D(Σ̃)
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Thanks for your attention!


