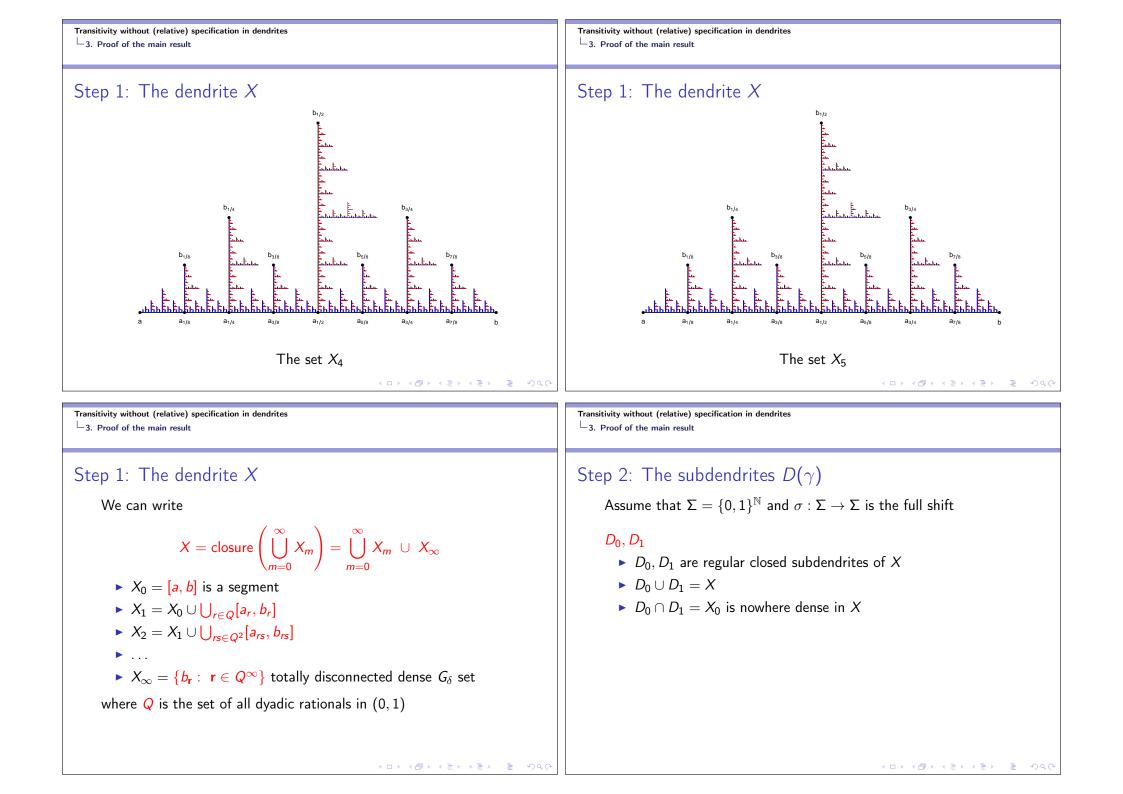
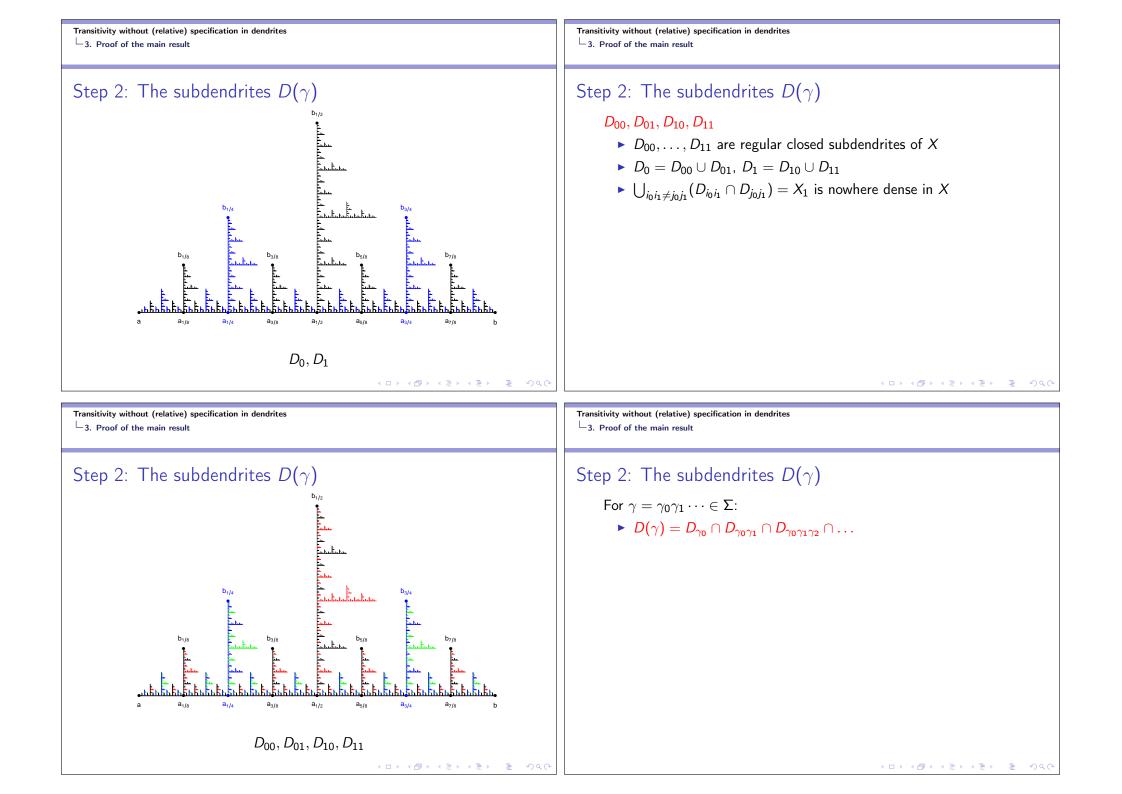
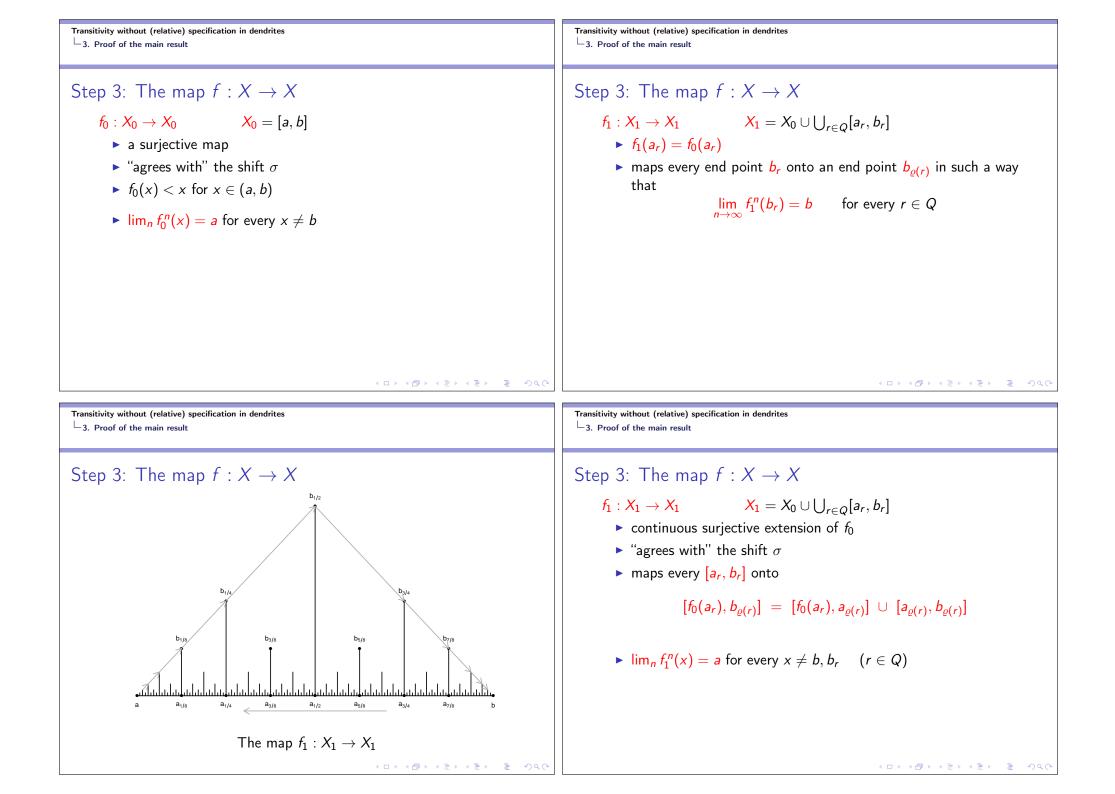
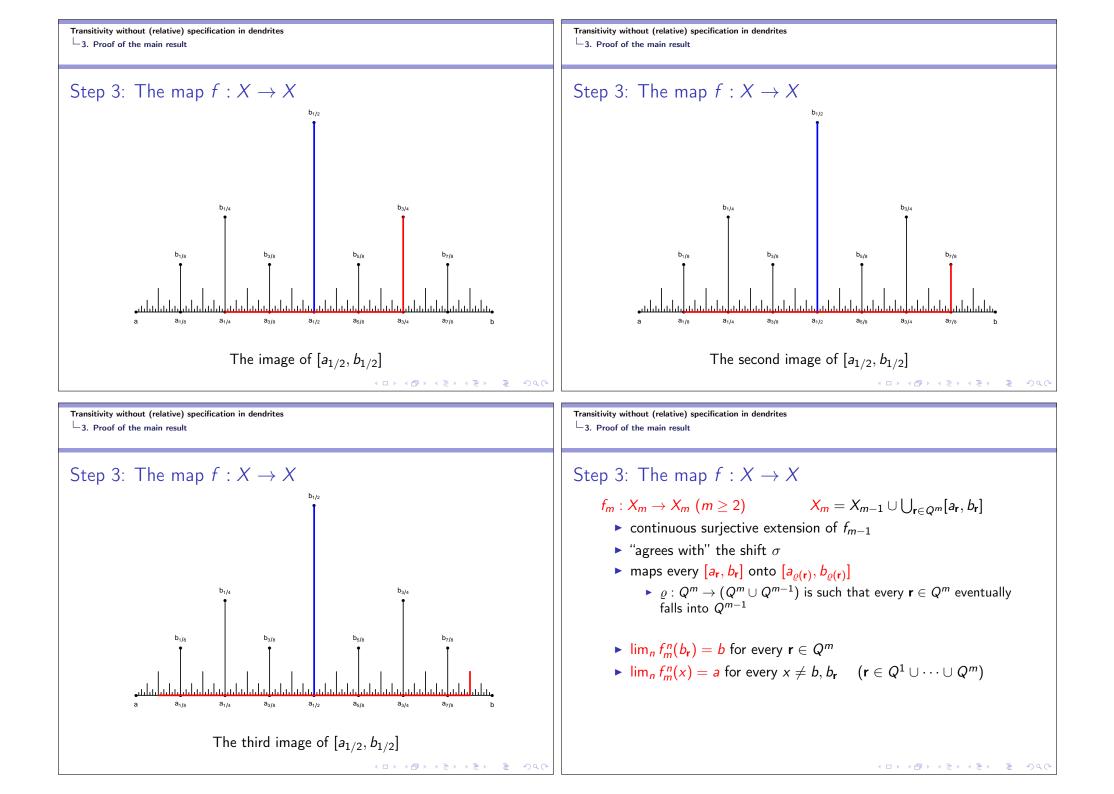

Transitivity without (relative) specification in dendrites	Transitivity without (relative) specification in dendrites
Transitivity without (relative) specification in dendrites	Contents
	1. Transitivity on trees
Vladimír Špitalský	
Matej Bel University, Banská Bystrica, Slovakia	2. Transitivity on dendrites
10th AIMS Conference on Dynamical Systems, Differential Equations and Applications	3. Proof of the main result
July 7–11, 2014 Madrid, Spain	< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 < 切 < つ < つ < つ < つ < つ < つ < つ < つ < つ
Transitivity without (relative) specification in dendrites	Transitivity without (relative) specification in dendrites
Transitivity on trees	Transitivity on trees
Theorem (Blokh 1987)	Theorem (Blokh 1987)
If X is a tree and $f: X \to X$ is transitive, then	If X is a tree and $f: X \to X$ is transitive, then
f has the relative specification property	f has the relative specification property
	$f: X \to X$ is transitive if
	► $\forall U, V$ – nonempty open $\exists n \in \mathbb{N} : f^n(U) \cap V \neq \emptyset$




Transitivity without (relative) specification in dendrites 2. Transitivity on dendrites	Transitivity without (relative) specification in dendrites
Dendrites	Dendrites
Dendrite	An arc $A = [a, b]$ in a dendrite X is called free if
 a locally connected metric continuum which contains no circle 	• $A \setminus \{a, b\}$ is open in X
A point x of a dendrite X is	For a dendrite X the following are equivalent
• end point if $X \setminus \{x\}$ is connected	X does not contain a free arc
• cut point if $X \setminus \{x\}$ is not connected	branch points of X are dense in X
• branch point if $X \setminus \{x\}$ has at least 3 components	end points of X are dense (i.e. residual) in X
E(X) and $B(X)$	
the sets of all end points and branch points	
Tree	
► a dendrite with finitely many end points	 < □> < @> < ≥> < ≥ < □> < @> < ≥> < ≥
Transitivity without (relative) specification in dendrites \square 2. Transitivity on dendrites	Transitivity without (relative) specification in dendrites
Transitivity on dendrites: Positive results	Transitivity on dendrites: Positive results
Theorem (Alsedà-Kolyada-Llibre-Snoha 1999; Kwietniak 2011;	
I heorem (Alseda-Kolvada-Llibre-Snoha 1999; Kwietniak 2011;	
Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012)	Theorem (Alsedà-Kolyada-Llibre-Snoha 1999; Kwietniak 2011; Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012)
Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and $f : X \rightarrow X$ is transitive,	Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and $f : X \rightarrow X$ is transitive,
Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and $f : X \rightarrow X$ is transitive, then	Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and $f : X \rightarrow X$ is transitive, then
 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing 	 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing
Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and $f : X \rightarrow X$ is transitive, then	Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and $f : X \rightarrow X$ is transitive, then
 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy 	 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy f has dense periodic points
 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy 	 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy f has dense periodic points Theorem (Acosta-Hernández-Naghmouchi-Oprocha 2013)
 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy 	 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy f has dense periodic points
 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy 	 Harańczyk-Kwietniak-Oprocha 2011; Dirbák-Snoha-Š. 2012) If X is a dendrite containing a free arc and f : X → X is transitive, then f is relatively mixing f has positive entropy f has dense periodic points Theorem (Acosta-Hernández-Naghmouchi-Oprocha 2013) If X is a dendrite and f : X → X has a transitive cut point, then


Transitivity without (relative) specification in dendrites $\square2$. Transitivity on dendrites	Transitivity without (relative) specification in dendrites
Transitivity on dendrites: Negative results Theorem (Hoehn-Mouron 2013) There is a dendrite X (with dense $B(X)$) admitting a map $f: X \to X$ which is • weakly mixing but • not mixing Moreover, [Acosta-Hernández-Naghmouchi-Oprocha 2013] • f is proximal, and thus • it has a unique periodic (= fixed) point	<pre>Transitivity on dendrites: Negative results Theorem (Š.) There is a dendrite X (with dense B(X)) admitting a map f : X → X such that • f is transitive • f has infinite decomposition ideal (that is, f is not relatively totally transitive) • f has a unique periodic (= fixed) point</pre>
イロト イラト イミト イミト ミー つくで Transitivity without (relative) specification in dendrites └2. Transitivity on dendrites	<ロト < 合ト < 言ト くきト くきト き つへへ Transitivity without (relative) specification in dendrites └2. Transitivity on dendrites
Transitivity on dendrites: The main theorem C(X) • the space of all subcontinua (= subdendrites) of X equipped with the Hausdorff metric $N_f(U, V)$ • the return time set $\{n \in \mathbb{N} : f^n(U) \cap V \neq \emptyset\}$	Transitivity on dendrites: The main theorem Theorem (Š.) Let $\sigma : \Sigma \to \Sigma$ be a subshift. Then there are a dendrite X (with dense $B(X)$) and maps $f = f_{\sigma} : X \to X$ and $D : \Sigma \to C(X)$ s.t. • $f \circ D = D \circ \sigma$; i.e. $f(D(\gamma)) = D(\sigma(\gamma))$ for every $\gamma \in \Sigma$ • for every cylinders $[\alpha], [\beta]$ in Σ and every non-empty open sets $U \subseteq D[\alpha], V \subseteq D[\beta]$ in X there is $n_0 \in \mathbb{N}$ such that, for every $n \ge n_0$,
< ロ > 〈 豆 > 〈 ◯ > ◇ < ◯ > 〈 ◯ > < ◯ > 〈 ◯ > ◇ < ◯ > ◇ < ◯ > 〈 ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ < ◯ > ◇ > ◇ < ◯ ◇ ◯ > ◇ < ◯ ◇ ◯ > ◇ < ◯ ◇ ◯ > ◇ ◯ > ◇ <	n ∈ N _σ ([α], [β]) ⇔ n ∈ N _f (U, V) consequently, f is transitive (totally transitive, weakly mixing, mixing) if and only if σ is • if σ is aperiodic then f has a unique periodic (= fixed) point


Transitivity without (relative) specification in dendrites -2. Transitivity on dendrites	Transitivity without (relative) specification in dendrites
Transitivity on dendrites: The main theorem	3. Proof of the main result
 Corollary There is a dendrite X and maps f, g, h : X → X such that f is transitive and has infinite decomposition ideal g is weakly mixing but not mixing 	1. Transitivity on trees
 h is mixing but has not dense periodic points 	2. Transitivity on dendrites
	3. Proof of the main result
	(ロト 4回) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三
Transitivity without (relative) specification in dendrites - 3. Proof of the main result	Transitivity without (relative) specification in dendrites
└─3. Proof of the main result	-3. Proof of the main result
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map	$rac{1}{3}$. Proof of the main result Step 1: The dendrite X
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that	□3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that • $f \circ D = D \circ \sigma$	 □3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 branch points are dense every branch point has order 3
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that • $f \circ D = D \circ \sigma$ • $N_f(U, V) \approx N_\sigma([\alpha], [\beta])$ for every	 □ 3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 branch points are dense every branch point has order 3 We can write
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that • $f \circ D = D \circ \sigma$	□ 3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 • branch points are dense • every branch point has order 3 We can write $X = \bigcup_{m=0}^{\infty} X_m \cup X_{\infty}$
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that • $f \circ D = D \circ \sigma$ • $N_f(U, V) \approx N_\sigma([\alpha], [\beta])$ for every	□3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 • branch points are dense • every branch point has order 3 We can write $X = \bigcup_{m=0}^{\infty} X_m \cup X_{\infty}$ • $X_0 = [a, b]$ is a segment
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that $f \circ D = D \circ \sigma$ $N_f(U, V) \approx N_\sigma([\alpha], [\beta])$ for every $if \sigma$ is aperiodic then Per(f) = Fix(f) is a singleton	□3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 • branch points are dense • every branch point has order 3 We can write $X = \bigcup_{m=0}^{\infty} X_m \cup X_{\infty}$ • $X_0 = [a, b]$ is a segment • $X_1 = X_0 \cup \bigcup_{r \in Q} [a_r, b_r]$
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that • $f \circ D = D \circ \sigma$ • $N_f(U, V) \approx N_\sigma([\alpha], [\beta])$ for every • if σ is aperiodic then Per(f) = Fix(f) is a singleton Main steps of the proof.	L-3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 ► branch points are dense ► every branch point has order 3 We can write $X = \bigcup_{m=0}^{\infty} X_m \cup X_{\infty}$ $X_0 = [a, b] \text{ is a segment}$ $X_1 = X_0 \cup \bigcup_{r \in Q} [a_r, b_r]$ $X_2 = X_1 \cup \bigcup_{r \in Q^2} [a_{rs}, b_{rs}]$
□ 3. Proof of the main result Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that • $f \circ D = D \circ \sigma$ • $N_f(U, V) \approx N_\sigma([\alpha], [\beta])$ for every • if σ is aperiodic then Per(f) = Fix(f) is a singleton Main steps of the proof. 1. construct the dendrite X	→3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 • branch points are dense • every branch point has order 3 We can write $X = \bigcup_{m=0}^{\infty} X_m \cup X_{\infty}$ • $X_0 = [a, b]$ is a segment • $X_1 = X_0 \cup \bigcup_{r \in Q} [a_r, b_r]$ • $X_2 = X_1 \cup \bigcup_{r \in Q^2} [a_{rs}, b_{rs}]$ •
Structure of the proof Theorem For a subshift $\sigma : \Sigma \to \Sigma$ there is a dendrite X, a continuous map $f : X \to X$ and a map $D : \Sigma \to C(X)$ such that $\models f \circ D = D \circ \sigma$ $\models N_f(U, V) \approx N_\sigma([\alpha], [\beta])$ for every $\models if \sigma$ is aperiodic then Per(f) = Fix(f) is a singleton Main steps of the proof. 1. construct the dendrite X 2. define $D : \Sigma \to C(X)$	L-3. Proof of the main result Step 1: The dendrite X The dendrite X: the universal dendrite of order 3 ► branch points are dense ► every branch point has order 3 We can write $X = \bigcup_{m=0}^{\infty} X_m \cup X_{\infty}$ $X_0 = [a, b] \text{ is a segment}$ $X_1 = X_0 \cup \bigcup_{r \in Q} [a_r, b_r]$ $X_2 = X_1 \cup \bigcup_{r \in Q^2} [a_{rs}, b_{rs}]$

Transitivity without (relative) specification in dendrites -3. Proof of the main result	Transitivity without (relative) specification in dendrites
Step 3: The map $f : X \to X$ $f : X \to X$ $X = \bigcup_m X_m \cup X_\infty, X_\infty = \{b_r : r \in Q^\infty\}$ $f(x) = \begin{cases} f_m(x) & \text{if } x \in X_m, m \ge 0 \\ b_{\varrho(r)} & \text{if } x = b_r, r \in Q^\infty \end{cases}$ $\varrho : Q^\infty \to Q^\infty \text{ is determined by } \varrho _{Q^m} (m \ge 1)$ $X_\infty \text{ is an } f\text{-invariant (not closed) set}$	Step 4: Properties of $f : X \to X$ f is a continuous surjection • every X_m is a closed invariant set with "trivial" dynamics • X_{∞} is an invariant set with "shift-like" dynamics
<日> <聞> <加> <加> <加> (加> <	· · · · · · · · · · · · · · · · · · ·
Transitivity without (relative) specification in dendrites └─3. Proof of the main result	Transitivity without (relative) specification in dendrites
Step 4: Properties of $f: X \to X$	Step 4: Properties of $f: X \to X$
f is a continuous surjection	f is a continuous surjection
 every X_m is a closed invariant set with "trivial" dynamics X_∞ is an invariant set with "shift-like" dynamics 	 every X_m is a closed invariant set with "trivial" dynamics X_∞ is an invariant set with "shift-like" dynamics
f "agrees" with the shift σ	f "agrees" with the shift σ
• f maps $D(\gamma)$ onto $D(\sigma(\gamma))$	F maps $D(\gamma)$ onto $D(\sigma(\gamma))$
	f has the "same" actumentions actor as
	f has the "same" return time sets as σ
(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

