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Random perturbations of discrete-time dynamics
Stochastic stability

Markov chain model

We consider f : M ! M to be Cr for r � 0 and a small perturbation
parameter " > 0.
The Markov chain model is a family fp"( � jx)g of Borel probability
measures.

Every p"( � jx) is supported inside an "-neighbourhood of f (x).

Random orbit: fxjg where each xj+1 has distribution p"( � jxj).

Jumps xj 7! f (xj) and disperses with distribution p"( � jxj).

xj 7! p"( � jxj) continuous w.r.t. weak* topology in compact
spaces ) existence of invariant measures:

�"(E) =

Z
p"(E jx)d�"(x)

for every Borel set E � U.
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Iteration of random maps

We consider f : M ! M to be Cr for r � 0 and a small perturbation
parameter " > 0. The random iteration of maps is given by

Assuming the existence of a family of probability distributions
f�"g on the space of Cr -maps.

Support of �" is in a "-neighbourhood of f (x).

Random orbit: xj = f!j � � � � � f!1(x0), where f!j are i.i.d. random
variables with distribution �".

The random orbits generated by the random maps indeed give
rise to a discrete time Markov chain.

For continuous maps invariant measures exists:

�"(E) =

Z
�"(f�1

!
(E))d�"(f!)

for every Borel E � U.
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Stochastic stability

Physical measures: � is physical if for a set of x with positive
Lebesgue measure

lim
n!1

1
n

n�1X
j=1

'(f j(x)) =
Z

'd�;

for every continuous function ' : M ! R.
The randomly perturbed dynamics: supposing existence of a unique
�" for every small " > 0

lim
n!1

1
n

n�1X
j=1

'(f j
!
(x))!

Z
'd�"

for almost every random orbit and every ' : M ! R.
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Stochastic stability

A system (f ; �) is stochastically stable under the perturbation scheme
fp"( � jx)g or f�" : " > 0g if

lim
"!0

Z
'd�" =

Z
'd� for every continuous ' : U ! R:

Several contributions proving stochastic stability of different
systems: Sinai, Kifer, L.-S. Young, Keller, Araújo, Alves, Viana,
etc.

Arguments: assume existence of probability in the space of
maps, control of distortion, hyperbolic times, thermodynamics
formalism, etc.

Questions: dependence of the probability distributions of the
Markov chains, relation with structural properties, shadowing,
etc.
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Representation of Markov chains

The sequence of random maps is a representation of the Markov
chain if for any Borel U

p"(Ujx) = �"(ff! : f!(x) 2 Ug):

Some contributions: Blumenthal and Corso ’70, Kifer ’86, Quas
’91, Araújo ’00, Benedicks and Viana ’06, ...

We tackled the general case in terms of a transportation problem.
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Theorem (Jost, Kell, R.)

Let M and N be compact Riemannian Cr -manifolds without boundary,
and let m be the normalised volume measure on N. Let fp"( � jx)g for
x 2 M be a continuous family of probability measures on N such that
each p"( � jx) is absolutely continuous with respect to m, has positive
density and convex support. Suppose that there is a
Cr -diffeomorphism f : M ! N, for r � 1, such that for each x , the
support of p"( � jx) is contained in a small neighbourhood of f (x).
Then fp"( � jx)g can be represented by a family (f!)!2Ω of Cr -random
diffeomorphisms.

Theorems (Jost, Kell, R.)

Measurable (continuous) abs cont probability measures can be
represented by measurable (continuous) random maps.
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On optimal transport

Basic problem (G. Monge, 1781): moving a distribution like a pile
of sand from a place to another at minimum cost.

In probability terms: M;N are probability spaces, � 2 P(M),
� 2 P(N), we seek a coupling connecting the measures.

Example: a transport map (measurable) T : M ! N s.t. 8 Borel
E � N, one has �(T�1(E)) = �(E) (deterministic coupling).
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On optimal transport

Basic problem (G. Monge, 1781): moving a distribution like a pile
of sand from a place to another at minimum cost.

In probability terms: M;N are probability spaces, � 2 P(M),
� 2 P(N), we seek a coupling connecting the measures.

Example: a transport map (measurable) T : M ! N s.t. 8 Borel
E � N, one has �(T�1(E)) = �(E) (deterministic coupling).

Alternatively: weak solutions (Kantorovich): 
 2 P(M � N), with
�P(M)�
 = � and �P(N)�
 = �,

Minimisation problem:

C(�; �) = inf

2P(M�N)

Z
M�N

c(x ; y)d
(x ; y);

c : M � N ! [0;+1].
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Using optimal transport

Monge problem: find deterministic optimal couplings minimising

C(�; �) = inf

2P(M�N)

Z
M�N

c(x ; y)d
(x ; y);

c : M � N ! [0;+1].

1 Translate the problem in terms of Monge problem.

Existence and stability results.
Regularity theory on Rn (Loeper ’09).
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Lifting measures

2 Measures on bundles.

The map x 7! p"( � jx) 2 P(N) implicitly lifts locally to
x 7! q"( � jx) 2 P(Tf (x)N), where f : M ! N is the centre of mass,
via exponential map

(exp�1
f (x))�p"( � jx) = q"( � jx):

For parallelizable tangent bundles TN �= N � Rn we consider
x 7! q";x as a pair

x 7! (f (x); q";x) 2 N � Rn
:

then
f!(x) = expf (x)(X!(x)):

Christian S. Rodrigues Representation of Markov chains



Motivation
Representation of Markov chains

Glimpse of the proof

On optimal transport
Idea of the proof

Finally...

2 Measures on bundles

General case: lift the measures to the tangent bundles and
construct fiber bundles using isometric embeddings.

3 Perturbation in the space of diffeomorphisms.

Diffr (M; N) of diffeomorphisms is open in Cr (M; N), for r � 1.
Using regularity theory to control the distributions on the fiber
bundles and projections lead to the result.
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Thanks for your attention!

Reference: Pre-print [arXiv:1207.5003]
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