Representation of Markov chains

Christian S. Rodrigues

Max Planck Institute for Mathematics in the Sciences Leipzig

10th July 2014

AIMS 2014

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ = □

Joint with J. Jost and M. Kell

Representation of Markov chains Glimpse of the proof Random perturbations of discrete-time dynamics Stochastic stability

< 口 > < 同 > < 回 > < 回 > .

Markov chain model

We consider $f: M \to M$ to be C^r for $r \ge 0$ and a small perturbation parameter $\varepsilon > 0$.

The Markov chain model is a family $\{p_{\varepsilon}(\,\cdot\,|x)\}$ of Borel probability measures.

- Every p_ε(· |x) is supported inside an ε-neighbourhood of f(x).
- Random orbit: $\{x_j\}$ where each x_{j+1} has distribution $p_{\varepsilon}(\cdot | x_j)$.
- Jumps $x_j \mapsto f(x_j)$ and disperses with distribution $p_{\varepsilon}(\cdot | x_j)$.
- x_j → p_ε(· |x_j) continuous w.r.t. weak* topology in compact spaces ⇒ existence of invariant measures:

$$\mu_arepsilon(E) = \int p_arepsilon(E|x) d\mu_arepsilon(x)$$

for every Borel set $E \subset U$.

Iteration of random maps

We consider $f : M \to M$ to be C^r for $r \ge 0$ and a small perturbation parameter $\varepsilon > 0$. The random iteration of maps is given by

- Assuming the existence of a family of probability distributions $\{\nu_{\varepsilon}\}$ on the space of C^{r} -maps.
- Support of ν_{ε} is in a ε -neighbourhood of f(x).
- Random orbit: $x_j = f_{\omega_j} \circ \cdots \circ f_{\omega_1}(x_0)$, where f_{ω_j} are i.i.d. random variables with distribution ν_{ε} .
- The random orbits generated by the random maps indeed give rise to a discrete time Markov chain.

For continuous maps invariant measures exists:

$$\mu_{arepsilon}(E) = \int \mu_{arepsilon}(f_{\omega}^{-1}(E)) d
u_{arepsilon}(f_{\omega})$$

for every Borel $E \subset U$.

Representation of Markov chains Glimpse of the proof Random perturbations of discrete-time dynamics Stochastic stability

Stochastic stability

Physical measures: μ is *physical* if for a set of *x* with positive Lebesgue measure

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n-1}\varphi(f^j(x))=\int\varphi d\mu,$$

for every continuous function $\varphi: M \to \mathbb{R}$.

The randomly perturbed dynamics: supposing existence of a unique μ_{ε} for every small $\varepsilon > 0$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n-1}\varphi(f_{\omega}^j(x))\to\int\varphi d\mu_{\varepsilon}$$

for almost every random orbit and every $\varphi : M \to \mathbb{R}$.

Representation of Markov chains Glimpse of the proof Random perturbations of discrete-time dynamics Stochastic stability

Stochastic stability

Physical measures: μ is *physical* if for a set of *x* with positive Lebesgue measure

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n-1}\varphi(f^j(x))=\int\varphi d\mu,$$

for every continuous function $\varphi: M \to \mathbb{R}$.

The randomly perturbed dynamics: supposing existence of a unique μ_{ε} for every small $\varepsilon>0$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n-1}\varphi(f^j_{\omega}(x))\to\int\varphi d\mu_{\varepsilon}$$

for almost every random orbit and every $\varphi: M \to \mathbb{R}$.

Representation of Markov chains Glimpse of the proof Random perturbations of discrete-time dynamics Stochastic stability

Stochastic stability

A system (f, μ) is stochastically stable under the perturbation scheme $\{p_{\varepsilon}(\cdot | x)\}$ or $\{\nu_{\varepsilon} : \varepsilon > 0\}$ if

$$\lim_{arepsilon
ightarrow 0}\int arphi d\mu \mu_arepsilon = \int arphi d\mu \;\;\;\;\; ext{for every continuous } arphi: U
ightarrow \mathbb{R}.$$

- Several contributions proving stochastic stability of different systems: Sinai, Kifer, L.-S. Young, Keller, Araújo, Alves, Viana, etc.
- Arguments: assume existence of probability in the space of maps, control of distortion, hyperbolic times, thermodynamics formalism, etc.
- Questions: dependence of the probability distributions of the Markov chains, relation with structural properties, shadowing, etc.

Representation problem Main results

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel *U*

$p_{\varepsilon}(U|x) = \nu_{\varepsilon}(\{f_{\omega}: f_{\omega}(x) \in U\}).$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem.

A (1) > A (2) > A

Representation problem Main results

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel *U*

$$p_{\varepsilon}(U|x) = \nu_{\varepsilon}(\{f_{\omega} : f_{\omega}(x) \in U\}).$$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem.

A (1) > A (2) > A

Representation problem Main results

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel *U*

$$p_{\varepsilon}(U|x) = \nu_{\varepsilon}(\{f_{\omega} : f_{\omega}(x) \in U\}).$$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem.

Representation of Markov chains

Theorem (Jost, Kell, R.)

Let *M* and *N* be compact Riemannian *C*^{*r*}-manifolds without boundary, and let *m* be the normalised volume measure on *N*. Let $\{p_{\varepsilon}(\cdot|x)\}$ for $x \in M$ be a continuous family of probability measures on *N* such that each $p_{\varepsilon}(\cdot|x)$ is absolutely continuous with respect to *m*, has positive density and convex support. Suppose that there is a *C*^{*r*}-diffeomorphism $f : M \to N$, for $r \ge 1$, such that for each *x*, the support of $p_{\varepsilon}(\cdot|x)$ is contained in a small neighbourhood of f(x). Then $\{p_{\varepsilon}(\cdot|x)\}$ can be represented by a family $(f_{\omega})_{\omega \in \Omega}$ of *C*^{*r*}-random diffeomorphisms.

Theorems (Jost, Kell, R.)

Measurable (continuous) abs cont probability measures can be represented by measurable (continuous) random maps.

Representation of Markov chains

Theorem (Jost, Kell, R.)

Let *M* and *N* be compact Riemannian *C*^{*r*}-manifolds without boundary, and let *m* be the normalised volume measure on *N*. Let $\{p_{\varepsilon}(\cdot|x)\}$ for $x \in M$ be a continuous family of probability measures on *N* such that each $p_{\varepsilon}(\cdot|x)$ is absolutely continuous with respect to *m*, has positive density and convex support. Suppose that there is a *C*^{*r*}-diffeomorphism $f : M \to N$, for $r \ge 1$, such that for each *x*, the support of $p_{\varepsilon}(\cdot|x)$ is contained in a small neighbourhood of f(x). Then $\{p_{\varepsilon}(\cdot|x)\}$ can be represented by a family $(f_{\omega})_{\omega \in \Omega}$ of *C*^{*r*}-random diffeomorphisms.

Theorems (Jost, Kell, R.)

Measurable (continuous) abs cont probability measures can be represented by measurable (continuous) random maps.

< ロ > < 同 > < 回 > < 回 >

• Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.

In probability terms: *M*, *N* are probability spaces, µ ∈ P(M),
 ν ∈ P(N), we seek a coupling connecting the measures.

Example: a transport map (measurable) $T : M \to N$ s.t. \forall Borel $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).

< ロ > < 同 > < 回 > < 回 >

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- In probability terms: *M*, *N* are probability spaces, μ ∈ P(M), ν ∈ P(N), we seek a coupling connecting the measures.

Example: a transport map (measurable) $T : M \to N$ s.t. \forall Borel $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- In probability terms: *M*, *N* are probability spaces, μ ∈ *P*(*M*), ν ∈ *P*(*N*), we seek a coupling connecting the measures.

Example: a transport map (measurable) $T : M \to N$ s.t. \forall Borel $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- In probability terms: *M*, *N* are probability spaces, μ ∈ P(M), ν ∈ P(N), we seek a coupling connecting the measures.

Example: a transport map (measurable) $T : M \to N$ s.t. \forall Borel $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).

• Alternatively: weak solutions (Kantorovich): $\gamma \in \mathcal{P}(M \times N)$, with $\pi_{\mathcal{P}(M)*}\gamma = \mu$ and $\pi_{\mathcal{P}(N)*}\gamma = \nu$,

Minimisation problem:

$$C(\mu,
u) = \inf_{\gamma \in \mathcal{P}(M \times N)} \int_{M \times N} c(x, y) d\gamma(x, y),$$

 $c: M imes N o [0, +\infty].$

< 口 > < 同 > < 回 > < 回 > .

On optimal transport Idea of the proof

Using optimal transport

Monge problem: find deterministic optimal couplings minimising

$$\mathcal{C}(\mu,
u) = \inf_{\gamma\in\mathcal{P}(M imes N)} \int_{M imes N} \mathcal{C}(x,y) d\gamma(x,y),$$

 $c: M \times N \rightarrow [0, +\infty].$

Translate the problem in terms of Monge problem.

- Existence and stability results.
- Regularity theory on \mathbb{R}^n (Loeper '09).

Lifting measures

Measures on bundles.

The map $x \mapsto p_{\varepsilon}(\cdot | x) \in \mathcal{P}(N)$ implicitly lifts locally to $x \mapsto q_{\varepsilon}(\cdot | x) \in \mathcal{P}(T_{f(x)}N)$, where $f : M \to N$ is the centre of mass, via exponential map

$$(exp_{f(x)}^{-1})_*p_{\varepsilon}(\cdot | x) = q_{\varepsilon}(\cdot | x).$$

• For parallelizable tangent bundles $TN \cong N \times \mathbb{R}^n$ we consider $x \mapsto q_{\varepsilon,x}$ as a pair

$$x\mapsto (f(x),q_{\varepsilon,x})\in N\times\mathbb{R}^n.$$

then

$$f_{\omega}(x) = \exp_{f(x)}(X_{\omega}(x)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Finally...

2 Measures on bundles

- General case: lift the measures to the tangent bundles and construct fiber bundles using isometric embeddings.
- Perturbation in the space of diffeomorphisms.
 - Diff^r(M, N) of diffeomorphisms is open in $C^{r}(M, N)$, for $r \ge 1$.
 - Using regularity theory to control the distributions on the fiber bundles and projections lead to the result.

• • • • • • • • • • • •

Thanks for your attention!

Reference: Pre-print [arXiv:1207.5003]

イロト イポト イヨト イヨト

æ