Representation of Markov chains

Christian S. Rodrigues

Max Planck Institute for Mathematics in the Sciences Leipzig

10th July 2014

AIMS 2014

Joint with J. Jost and M. Kell

Motivation resentation of Markov chains

Random perturbations of discrete-time dynamics Stochastic stability

Iteration of random maps

We consider $f: M \to M$ to be C^r for $r \ge 0$ and a small perturbation parameter $\varepsilon > 0$. The random iteration of maps is given by

- Assuming the existence of a family of probability distributions $\{\nu_{\varepsilon}\}$ on the space of C^{r} -maps.
- Support of ν_{ε} is in a ε -neighbourhood of f(x).
- Random orbit: $x_j = f_{\omega_j} \circ \cdots \circ f_{\omega_1}(x_0)$, where f_{ω_j} are i.i.d. random variables with distribution ν_{ε} .
- The random orbits generated by the random maps indeed give rise to a discrete time Markov chain.

For continuous maps invariant measures exists:

$$\mu_{arepsilon}(E) = \int \mu_{arepsilon}(f_{\omega}^{-1}(E)) d
u_{arepsilon}(f_{\omega})$$

for every Borel $E \subset U$.

|ロ▶∢御▶∢逹▶∢逹▶ | 逹 | 幻久の

Motivatio
Representation of Markov chain
Glimpse of the proc

Random perturbations of discrete-time dynamics Stochastic stability

Markov chain model

We consider $f: M \to M$ to be C^r for $r \ge 0$ and a small perturbation parameter $\varepsilon > 0$.

The Markov chain model is a family $\{p_{\varepsilon}(\cdot | x)\}$ of Borel probability measures.

- Every $p_{\varepsilon}(\cdot | x)$ is supported inside an ε -neighbourhood of f(x).
- Random orbit: $\{x_i\}$ where each x_{i+1} has distribution $p_{\varepsilon}(\cdot | x_i)$.
- Jumps $x_i \mapsto f(x_i)$ and disperses with distribution $p_{\varepsilon}(\cdot | x_i)$.
- $x_j \mapsto p_{\varepsilon}(\cdot | x_j)$ continuous w.r.t. weak* topology in compact spaces \Rightarrow existence of invariant measures:

$$\mu_{arepsilon}(E) = \int
ho_{arepsilon}(E|X) d\mu_{arepsilon}(X)$$

for every Borel set $E \subset U$.

Christian S. Rodrigues

Representation of Markov chains

Motivation
Representation of Markov chain

Random perturbations of discrete-time dynam Stochastic stability

Stochastic stability

Physical measures: μ is *physical* if for a set of x with positive Lebesgue measure

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n-1}\varphi(f^j(x))=\int\varphi d\mu,$$

for every continuous function $\varphi: M \to \mathbb{R}$.

The randomly perturbed dynamics: supposing existence of a unique μ_{ε} for every small $\varepsilon > 0$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n-1}\varphi(f_{\omega}^{j}(x))\to\int\varphi d\mu_{\varepsilon}$$

or almost every random orbit and every $arphi:M o\mathbb{R}$

Stochastic stability

Physical measures: μ is *physical* if for a set of x with positive Lebesgue measure

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n-1}\varphi(f^j(x))=\int\varphi\,d\mu,$$

for every continuous function $\varphi: M \to \mathbb{R}$.

The randomly perturbed dynamics: supposing existence of a unique μ_{ε} for every small $\varepsilon>0$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n-1}\varphi(f_{\omega}^{j}(x))\to\int\varphi d\mu_{\varepsilon}$$

for almost every random orbit and every $\varphi: M \to \mathbb{R}$.

Christian S. Rodrigues

Representation of Markov chains

Motivation
Representation of Markov chains
Glimpse of the proof

Representation proble Main results

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel U

$$p_{\varepsilon}(U|X) = \nu_{\varepsilon}(\{f_{\omega} : f_{\omega}(X) \in U\}).$$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem.

Stochastic stability

A system (f, μ) is stochastically stable under the perturbation scheme $\{p_{\varepsilon}(\,\cdot\,|x)\}$ or $\{\nu_{\varepsilon}: \varepsilon>0\}$ if

$$\lim_{arepsilon o 0} \int arphi extsf{d} \mu_arepsilon = \int arphi extsf{d} \mu \quad ext{for every continuous } arphi: U o \mathbb{R}.$$

- Several contributions proving stochastic stability of different systems: Sinai, Kifer, L.-S. Young, Keller, Araújo, Alves, Viana, etc.
- Arguments: assume existence of probability in the space of maps, control of distortion, hyperbolic times, thermodynamics formalism, etc.
- Questions: dependence of the probability distributions of the Markov chains, relation with structural properties, shadowing, etc.

◆□▶◆□▶◆臺▶◆臺▶ 臺 め900

Christian S. Rodrigues

Representation of Markov chains

Motivation
Representation of Markov chains
Glimpse of the proof

Representation problem Main results

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel $\it U$

$$p_{\varepsilon}(U|X) = \nu_{\varepsilon}(\{f_{\omega} : f_{\omega}(X) \in U\}).$$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem.

Representation of Markov chains Glimpse of the proof Representation probler
Main results

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel *U*

$$p_{\varepsilon}(U|X) = \nu_{\varepsilon}(\{f_{\omega} : f_{\omega}(X) \in U\}).$$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem.

Christian S. Rodrigues

Representation of Markov chain

Motivation
Representation of Markov chains
Glimpse of the proof

Representation problem Main results

Representation of Markov chains

Theorem (Jost, Kell, R.)

Let M and N be compact Riemannian C^r -manifolds without boundary, and let m be the normalised volume measure on N. Let $\{p_{\varepsilon}(\,\cdot\,|x)\}$ for $x\in M$ be a continuous family of probability measures on N such that each $p_{\varepsilon}(\,\cdot\,|x)$ is absolutely continuous with respect to m, has positive density and convex support. Suppose that there is a C^r -diffeomorphism $f:M\to N$, for $r\geq 1$, such that for each x, the support of $p_{\varepsilon}(\,\cdot\,|x)$ is contained in a small neighbourhood of f(x). Then $\{p_{\varepsilon}(\,\cdot\,|x)\}$ can be represented by a family $(f_{\omega})_{\omega\in\Omega}$ of C^r -random diffeomorphisms.

Theorems (Jost, Kell, R.)

Measurable (continuous) abs cont probability measures can be represented by measurable (continuous) random maps.

<□▶ <┛▶ < ≧▶ < ≧▶ < ≧ ▶ 9 Q(

Representation of Markov chains

Theorem (Jost, Kell, R.)

Let M and N be compact Riemannian C^r -manifolds without boundary, and let m be the normalised volume measure on N. Let $\{p_{\varepsilon}(\,\cdot\,|x)\}$ for $x\in M$ be a continuous family of probability measures on N such that each $p_{\varepsilon}(\,\cdot\,|x)$ is absolutely continuous with respect to m, has positive density and convex support. Suppose that there is a C^r -diffeomorphism $f:M\to N$, for $r\geq 1$, such that for each x, the support of $p_{\varepsilon}(\,\cdot\,|x)$ is contained in a small neighbourhood of f(x). Then $\{p_{\varepsilon}(\,\cdot\,|x)\}$ can be represented by a family $(f_{\omega})_{\omega\in\Omega}$ of C^r -random diffeomorphisms.

Theorems (Jost, Kell, R.)

Measurable (continuous) abs cont probability measures can be represented by measurable (continuous) random maps.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の Q (

Christian S. Rodrigues

Representation of Markov chains

Motivation
Representation of Markov chains
Glimpse of the proof

On optimal transpo

On optimal transport

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- In probability terms: M, N are probability spaces, $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, we seek a coupling connecting the measures. Example: a transport map (measurable) $T: M \to N$ s.t. \forall Bore $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).

Motivation
Representation of Markov chains
Glimpse of the proof

On optimal transport

Motivatio Representation of Markov chain Glimpse of the production On optimal transport

On optimal transport

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- In probability terms: M, N are probability spaces, $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, we seek a coupling connecting the measures.

Example: a transport map (measurable) $T: M \to N$ s.t. \forall Bore $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).

Christian S. Rodrigues

Representation of Markov chains

Motivation
Representation of Markov chains
Glimpse of the proof

On optimal transport

On optimal transport

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- In probability terms: M, N are probability spaces, $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, we seek a coupling connecting the measures. Example: a transport map (measurable) $T: M \to N$ s.t. \forall Borel $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).
- Alternatively: weak solutions (Kantorovich): $\gamma \in \mathcal{P}(M \times N)$, with $\pi_{\mathcal{P}(M)*} \gamma = \mu$ and $\pi_{\mathcal{P}(N)*} \gamma = \nu$, Minimisation problem:

$$C(\mu, \nu) = \inf_{\gamma \in \mathcal{P}(M \times N)} \int_{M \times N} c(x, y) d\gamma(x, y),$$

 $c: M \times N \rightarrow [0, +\infty].$

On optimal transport

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- In probability terms: M, N are probability spaces, $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, we seek a coupling connecting the measures. Example: a transport map (measurable) $T: M \to N$ s.t. \forall Borel $E \subset N$, one has $\mu(T^{-1}(E)) = \nu(E)$ (deterministic coupling).

Christian S. Rodrigues

Representation of Markov chains

Motivatio Representation of Markov chain Glimpse of the production On optimal transpo

Using optimal transport

Monge problem: find deterministic optimal couplings minimising

$$C(\mu, \nu) = \inf_{\gamma \in \mathcal{P}(M \times N)} \int_{M \times N} c(x, y) d\gamma(x, y),$$

 $c: M \times N \rightarrow [0, +\infty].$

- Translate the problem in terms of Monge problem.
 - Existence and stability results.
 - Regularity theory on \mathbb{R}^n (Loeper '09).

Lifting measures

Measures on bundles.

The map $x \mapsto p_{\varepsilon}(\cdot|x) \in \mathcal{P}(N)$ implicitly lifts locally to $x \mapsto q_{\varepsilon}(\cdot|x) \in \mathcal{P}(T_{f(x)}N)$, where $f: M \to N$ is the centre of mass, via exponential map

$$(exp_{f(x)}^{-1})_*p_{\varepsilon}(\cdot|x)=q_{\varepsilon}(\cdot|x).$$

• For parallelizable tangent bundles $TN \cong N \times \mathbb{R}^n$ we consider $x \mapsto q_{\varepsilon,x}$ as a pair

$$x \mapsto (f(x), q_{\varepsilon,x}) \in \mathbb{N} \times \mathbb{R}^n$$
.

then

$$f_{\omega}(x) = \exp_{f(x)}(X_{\omega}(x)).$$

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ り へ ○

Christian S. Rodrigues

Glimpse of the proof

ivation

On optimal transport

Representation of Markov chains

Thanks for your attention!

Reference: Pre-print [arXiv:1207.5003]

Finally...

- Measures on bundles
 - General case: lift the measures to the tangent bundles and construct fiber bundles using isometric embeddings.
- Perturbation in the space of diffeomorphisms.
 - Diff^r(M, N) of diffeomorphisms is open in $C^r(M, N)$, for $r \ge 1$.
 - Using regularity theory to control the distributions on the fiber bundles and projections lead to the result.

Christian S. Rodrigues

Representation of Markov chains