Jonathan Meddaugh

Will Brian and Brian Raines

Baylor University

The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications July 10th, 2014

Outline

Preliminaries

2 Shadowing and Chain Transitiivity

Preliminaries

Outline

Preliminaries Definitions Variations on Shadowing

2 Shadowing and Chain Transitiivity

Preliminaries

Definitions

Basic Terminology

• A dynamical system is a continuous map f on a compact metric space (X, d).

Preliminaries

Definitions

Basic Terminology

- A *dynamical system* is a continuous map *f* on a compact metric space (*X*, *d*).
- An orbit for f is a sequence of the form ⟨fⁱ(x)⟩_{i∈N} for some x ∈ X.

Preliminaries

Definitions

Basic Terminology

- A dynamical system is a continuous map f on a compact metric space (X, d).
- An *orbit* for f is a sequence of the form $\langle f^i(x) \rangle_{i \in \mathbb{N}}$ for some $x \in X$.
- For δ > 0, a δ-pseudo-orbit is a sequence ⟨z_i⟩_{i∈N} in X satisfying d(z_{i+1}, f(z_i)) < δ for i ∈ N.

Preliminaries

Definitions

Shadowing

 A map f has shadowing provided that for all ε > 0 there exists a δ > 0 such that for every δ-pseudo-orbit (z_i) there exists x ∈ X such that d(z_i, fⁱ(x)) < ε for all i ∈ N.

Preliminaries

Definitions

Shadowing

- A map f has shadowing provided that for all ε > 0 there exists a δ > 0 such that for every δ-pseudo-orbit (z_i) there exists x ∈ X such that d(z_i, fⁱ(x)) < ε for all i ∈ N.
- The point x is said to ϵ -shadow the pseudo-orbit $\langle z_i \rangle$.

Preliminaries

Definitions

Shadowing

Preliminaries

Definitions

Shadowing

Preliminaries

Definitions

Chain Transitivity

• A δ -chain from x to y is a sequence $x = z_0, z_1, \dots z_n = y$ in X which satisfies $d(z_{i+1}, f(z_i)) < \delta$ for i < n.

Preliminaries

Definitions

- A δ -chain from x to y is a sequence $x = z_0, z_1, \dots z_n = y$ in X which satisfies $d(z_{i+1}, f(z_i)) < \delta$ for i < n.
- A map f is chain transitive provided that for all $\delta > 0$ and all $x, y \in X$, there exists a δ -chain from x to y.

Preliminaries

Definitions

Preliminaries

Variations on Shadowing

Terminology

• A sequence $\langle z_i \rangle$ is a δ -pseudo-orbit on A provided that $A \subseteq \{i \in \mathbb{N} : d(z_{i+1}, f(z_i)) < \delta\}.$

Preliminaries

Variations on Shadowing

Terminology

- A sequence $\langle z_i \rangle$ is a δ -pseudo-orbit on A provided that $A \subseteq \{i \in \mathbb{N} : d(z_{i+1}, f(z_i)) < \delta\}.$
- A point $x \in X$ ϵ -shadows $\langle z_i \rangle$ on B provided that $B \subseteq \{i \in \mathbb{N} : d(z_i, f^i(x)) < \epsilon\}.$

Preliminaries

Variations on Shadowing

A family *F* is a collection of subsets of N for which *A* ∈ *F* and *A* ⊆ *B* implies *B* ∈ *F*.

Preliminaries

Variations on Shadowing

$(\mathcal{F},\mathcal{G})$ -shadowing

- A *family F* is a collection of subsets of N for which *A* ∈ *F* and *A* ⊆ *B* implies *B* ∈ *F*.
- For families *F* and *G*, a map *f* has (*F*, *G*)-shadowing provided that for every *ε* > 0 there exists a *δ* > 0 such that if ⟨*z_i*⟩ is a *δ*-pseudo-orbit on a set *A* ∈ *F* then there exists a point *x* ∈ *X* which *ε*-shadows ⟨*z_i*⟩ on a set *B* ∈ *G*.

Preliminaries

Variations on Shadowing

$(\mathcal{F},\mathcal{G})$ -shadowing

- A *family F* is a collection of subsets of N for which *A* ∈ *F* and *A* ⊆ *B* implies *B* ∈ *F*.
- For families *F* and *G*, a map *f* has (*F*, *G*)-shadowing provided that for every *ε* > 0 there exists a *δ* > 0 such that if ⟨*z_i*⟩ is a *δ*-pseudo-orbit on a set *A* ∈ *F* then there exists a point *x* ∈ *X* which *ε*-shadows ⟨*z_i*⟩ on a set *B* ∈ *G*.

Theorem [BMR]

Suppose that $\mathcal{F} \supseteq \mathcal{F}'$ and that $\mathcal{G} \subseteq \mathcal{G}'$. Then every space with $(\mathcal{F}, \mathcal{G})$ -shadowing has $(\mathcal{F}', \mathcal{G}')$ -shadowing.

Preliminaries

Variations on Shadowing

Variations on Shadowing

• Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G} .

Preliminaries

Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G} .
- Let \mathcal{T} denote the family of thick subsets of \mathbb{N} , i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.

Preliminaries

Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G} .
- Let \mathcal{T} denote the family of thick subsets of \mathbb{N} , i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.
- Let $\mathcal D$ denote the family of subsets of $\mathbb N$ with lower density equal to 1.

Preliminaries

Variations on Shadowing

Variations on Shadowing

• Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.

Preliminaries

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$ -shadowing is thick shadowing [Dastjerdi, Hosseini 2010]

Preliminaries

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$ -shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- $(\mathcal{D}, \mathcal{D})$ -shadowing is ergodic shadowing [Fakhari, Gane 2010]

Preliminaries

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.
- (\mathcal{D}, \mathcal{T})-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- $(\mathcal{D}, \mathcal{D})$ -shadowing is ergodic shadowing [Fakhari, Gane 2010]
- Several other shadowing subtypes fit this framework (though not all.)

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Outline

Preliminaries

2 Shadowing and Chain Transitiivity

Lemmas

Theorem

Shadowing and Chain Transitiivity

Lemmas

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \to X$ be chain transitive and let $\delta > 0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X$, k_{δ} is te greatest common denominator of the lengths of δ -chains from x to x.

Shadowing and Chain Transitiivity

Lemmas

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f : X \to X$ be chain transitive and let $\delta > 0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X$, k_{δ} is te greatest common denominator of the lengths of δ -chains from x to x.

Define the relation ~_δ on x by x ~_δ y provided that there is a δ-chain from x to y of length a multiple of k_δ.

Shadowing and Chain Transitiivity

Lemmas

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \to X$ be chain transitive and let $\delta > 0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X$, k_{δ} is te greatest common denominator of the lengths of δ -chains from x to x.

- Define the relation \sim_{δ} on x by $x \sim_{\delta} y$ provided that there is a δ -chain from x to y of length a multiple of k_{δ} .
- The are precisely k_{δ} many equivalence classes of \sim_{δ} which are clopen and are permuted cyclicly by *f*.

Shadowing and Chain Transitiivity

Lemmas

Chain Lengths

Lemma [BMR]

Let $f: X \to X$ be chain transitive. For each $\delta > 0$ there exists $M \in \mathbb{N}$ such that for any $m \ge M$, and any $x, y \in X$ with $x \sim_{\delta} y$, there is a δ -chain from x to y of length exactly mk_{δ} .

Shadowing and Chain Transitiivity

Lemmas

Chain Lengths

Lemma [BMR]

Let $f: X \to X$ be chain transitive. For each $\delta > 0$ there exists $M \in \mathbb{N}$ such that for any $m \ge M$, and any $x, y \in X$ with $x \sim_{\delta} y$, there is a δ -chain from x to y of length exactly mk_{δ} .

• This is a straightforward application of the fact that δ -chains can be concatenated and Schur's Theorem.

Shadowing and Chain Transitiivity

Theorem

Main Theorem

Theorem [BMR]

For a chain transitive dynamical system, the following are equivalent:

- 1 shadowing, i.e. $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing,
- **2** $(\mathcal{T}, \mathcal{T})$ -shadowing,
- ${f 3}$ thick shadowing, i.e. $({\cal D},{\cal T})$ -shadowing, and
- 4 ($\{\mathbb{N}\}, \mathcal{T}$)-shadowing.

Shadowing and Chain Transitiivity

Theorem

Sketch of Proof

First, note that {ℕ} ⊂ D ⊂ T so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).

Shadowing and Chain Transitiivity

Theorem

Sketch of Proof

- First, note that {ℕ} ⊂ D ⊂ T so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).
- So, we need only establish that (1) implies (2) and (4) implies (1).

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem (4) implies (1)

> It is sufficient to show that for any ε > 0 we can find δ > 0 such that any δ-chain in X can be ε-shadowed.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem

- It is sufficient to show that for any $\epsilon > 0$ we can find $\delta > 0$ such that any δ -chain in X can be ϵ -shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$ -shadowing.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theorem

- It is sufficient to show that for any ε > 0 we can find δ > 0 such that any δ-chain in X can be ε-shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$ -shadowing.
- Fix a δ-chain z₀, z₁,... z_n. Since f is chain transitive we can find a δ-chain z_n, y₁, y₂,... y_m, z₀ from z_n to z₀.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theorem

- It is sufficient to show that for any ε > 0 we can find δ > 0 such that any δ-chain in X can be ε-shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$ -shadowing.
- Fix a δ-chain z₀, z₁,... z_n. Since f is chain transitive we can find a δ-chain z_n, y₁, y₂,... y_m, z₀ from z_n to z₀.
- Then z₀, z₁,... z_n, y₁,... y_m, z₀,... z_n, y₁,... y_m,... is a δ-pseudo-orbit.

Shadowing and Chain Transitiivity

Theorem

• Let $x \in X$ shadow

 $z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$ on a set $A \in \mathcal{T}$.

Shadowing and Chain Transitiivity

Theorem

Let x ∈ X shadow

 $z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$ on a set $A \in \mathcal{T}$.

 Since A is thick, it contains arbitrarily long sequences of consecutive integers.

Shadowing and Chain Transitiivity

Theorem

(4) implies (1)

Let x ∈ X shadow

 $z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$ on a set $A \in \mathcal{T}$.

- Since A is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to gaurantee that x shadows the pseudo-orbit on some segment coinciding with

 $z_0, z_1, \ldots z_n$.

Shadowing and Chain Transitiivity

Theorem

(4) implies (1)

Let x ∈ X shadow

 $z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$ on a set $A \in \mathcal{T}$.

- Since A is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to gaurantee that x shadows the pseudo-orbit on some segment coinciding with z₀, z₁,... z_n.
- Then, the approviate iterate of x shadows the δ -chain $z_0, z_1, \ldots z_n$.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem (1) implies (2)

> We must show that for any ε > 0 we can find δ > 0 such that for any δ-pseudo-orbit (z_i) on a set A ∈ T, there is an x ∈ X that ε-shadows it on a set B ∈ T.

Shadowing and Chain Transitiivity

Theorem

- We must show that for any ε > 0 we can find δ > 0 such that for any δ-pseudo-orbit (z_i) on a set A ∈ T, there is an x ∈ X that ε-shadows it on a set B ∈ T.
- Our strategy is to construct a proper δ-pseudo-orbit (q_i) which agrees with (z_i) on a thick set and then find a point x that shadows this modified pseudo-orbit.

Shadowing and Chain Transitiivity

Theorem

- We must show that for any ε > 0 we can find δ > 0 such that for any δ-pseudo-orbit (z_i) on a set A ∈ T, there is an x ∈ X that ε-shadows it on a set B ∈ T.
- Our strategy is to construct a proper δ-pseudo-orbit (q_i) which agrees with (z_i) on a thick set and then find a point x that shadows this modified pseudo-orbit.
- The point x will then shadow the original pseudo-orbit on a thick set as desired.

• Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in T$.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in T$.
- Let K = k_δ and let X₀, X₁,... X_K be the equivalence classes of ∼_δ named so that f(X_i) = X_{i+1} mod K.

Shadowing and Chain Transitiivity

Theorem

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in T$.
- Let K = k_δ and let X₀, X₁,... X_K be the equivalence classes of ∼_δ named so that f(X_i) = X_{i+1} mod K.
- Define for each *i* ∈ N the number *m*(*i*) ∈ Z_K to be the element of Z_K such that *z_i* ∈ *X_{i+m(i)}*.

Shadowing and Chain Transitiivity

Theorem

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in T$.
- Let K = k_δ and let X₀, X₁,... X_K be the equivalence classes of ∼_δ named so that f(X_i) = X_{i+1} mod K.
- Define for each *i* ∈ N the number *m*(*i*) ∈ Z_K to be the element of Z_K such that *z_i* ∈ *X_{i+m(i)}*.
- If $d(z_{i+1}, f(z_i)) < \delta$ it follows that m(i) = m(i+1).

Shadowing and Chain Transitiivity

Theorem

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in T$.
- Let K = k_δ and let X₀, X₁,... X_K be the equivalence classes of ∼_δ named so that f(X_i) = X_{i+1} mod K.
- Define for each *i* ∈ N the number *m*(*i*) ∈ Z_K to be the element of Z_K such that *z_i* ∈ *X_{i+m(i)}*.
- If $d(z_{i+1}, f(z_i)) < \delta$ it follows that m(i) = m(i+1).
- Let $A = \{i \in \mathbb{N} : m(i) = m(i+1)\}$, and notice that this contains T and is hence thick.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem (1) implies (2)

Let A_k = {i ∈ A : m(i) = k} and notice that for some k, A_k is thick. Without loss, A₀.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem

- Let A_k = {i ∈ A : m(i) = k} and notice that for some k, A_k is thick. Without loss, A₀.
- By previous lemma, fix M ∈ N such that for all m ≥ M, and any x, y ∈ X₀ there is a δ-chain of length mK from x to y.

Shadowing and Chain Transitiivity

Theorem

- Let A_k = {i ∈ A : m(i) = k} and notice that for some k, A_k is thick. Without loss, A₀.
- By previous lemma, fix M ∈ N such that for all m ≥ M, and any x, y ∈ X₀ there is a δ-chain of length mK from x to y.

Shadowing and Chain Transitiivity

Theorem

- Let A_k = {i ∈ A : m(i) = k} and notice that for some k, A_k is thick. Without loss, A₀.
- By previous lemma, fix M ∈ N such that for all m ≥ M, and any x, y ∈ X₀ there is a δ-chain of length mK from x to y.
- In particular, do this in such a way that we retain subintervals of A₀ of arbitrary length.

Shadowing and Chain Transitiivity

Theorem

- Let A_k = {i ∈ A : m(i) = k} and notice that for some k, A_k is thick. Without loss, A₀.
- By previous lemma, fix M ∈ N such that for all m ≥ M, and any x, y ∈ X₀ there is a δ-chain of length mK from x to y.
- In particular, do this in such a way that we retain subintervals of A₀ of arbitrary length.
- The modified sequence (q_i) is now a proper δ-pseudo-orbit and agrees with (z_i) on a thick set.

Shadowing and Chain Transitiivity

Theorem

Thank you!