Chain Transitivity and Variations of the Shadowing Property

Jonathan Meddaugh
Will Brian and Brian Raines
Baylor University

The 10th AIMS Conference on Dynamical Systems, Differential
Equations and Applications
July 10th, 2014

Outline

(1) Preliminaries
(2) Shadowing and Chain Transitiivity

Outline

(1) Preliminaries

Definitions
Variations on Shadowing
(2) Shadowing and Chain Transitiivity

Basic Terminology

- A dynamical system is a continuous map f on a compact metric space (X, d).

Basic Terminology

- A dynamical system is a continuous map f on a compact metric space (X, d).
- An orbit for f is a sequence of the form $\left\langle f^{i}(x)\right\rangle_{i \in \mathbb{N}}$ for some $x \in X$.

Basic Terminology

- A dynamical system is a continuous map f on a compact metric space (X, d).
- An orbit for f is a sequence of the form $\left\langle f^{i}(x)\right\rangle_{i \in \mathbb{N}}$ for some $x \in X$.
- For $\delta>0$, a δ-pseudo-orbit is a sequence $\left\langle z_{i}\right\rangle_{i \in \mathbb{N}}$ in X satisfying $d\left(z_{i+1}, f\left(z_{i}\right)\right)<\delta$ for $i \in \mathbb{N}$.

Shadowing

- A map f has shadowing provided that for all $\epsilon>0$ there exists a $\delta>0$ such that for every δ-pseudo-orbit $\left\langle z_{i}\right\rangle$ there exists $x \in X$ such that $d\left(z_{i}, f^{i}(x)\right)<\epsilon$ for all $i \in \mathbb{N}$.

Shadowing

- A map f has shadowing provided that for all $\epsilon>0$ there exists a $\delta>0$ such that for every δ-pseudo-orbit $\left\langle z_{i}\right\rangle$ there exists $x \in X$ such that $d\left(z_{i}, f^{i}(x)\right)<\epsilon$ for all $i \in \mathbb{N}$.
- The point x is said to ϵ-shadow the pseudo-orbit $\left\langle z_{i}\right\rangle$.

Definitions

Shadowing

Preliminaries
Definitions

Shadowing

Chain Transitivity

- A δ-chain from x to y is a sequence $x=z_{0}, z_{1}, \ldots z_{n}=y$ in X which satisfies $d\left(z_{i+1}, f\left(z_{i}\right)\right)<\delta$ for $i<n$.

Chain Transitivity

- A δ-chain from x to y is a sequence $x=z_{0}, z_{1}, \ldots z_{n}=y$ in X which satisfies $d\left(z_{i+1}, f\left(z_{i}\right)\right)<\delta$ for $i<n$.
- A map f is chain transitive provided that for all $\delta>0$ and all $x, y \in X$, there exists a δ-chain from x to y.

Definitions

Chain Transitivity

Terminology

- A sequence $\left\langle z_{i}\right\rangle$ is a δ-pseudo-orbit on A provided that $A \subseteq\left\{i \in \mathbb{N}: d\left(z_{i+1}, f\left(z_{i}\right)\right)<\delta\right\}$.

Terminology

- A sequence $\left\langle z_{i}\right\rangle$ is a δ-pseudo-orbit on A provided that $A \subseteq\left\{i \in \mathbb{N}: d\left(z_{i+1}, f\left(z_{i}\right)\right)<\delta\right\}$.
- A point $x \in X \in$-shadows $\left\langle z_{i}\right\rangle$ on B provided that $B \subseteq\left\{i \in \mathbb{N}: d\left(z_{i}, f^{i}(x)\right)<\epsilon\right\}$.

$(\mathcal{F}, \mathcal{G})$-shadowing

- A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.

$(\mathcal{F}, \mathcal{G})$-shadowing

- A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.
- For families \mathcal{F} and \mathcal{G}, a map f has $(\mathcal{F}, \mathcal{G})$-shadowing provided that for every $\epsilon>0$ there exists a $\delta>0$ such that if $\left\langle z_{i}\right\rangle$ is a δ-pseudo-orbit on a set $A \in \mathcal{F}$ then there exists a point $x \in X$ which ϵ-shadows $\left\langle z_{i}\right\rangle$ on a set $B \in \mathcal{G}$.

$(\mathcal{F}, \mathcal{G})$-shadowing

- A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.
- For families \mathcal{F} and \mathcal{G}, a map f has $(\mathcal{F}, \mathcal{G})$-shadowing provided that for every $\epsilon>0$ there exists a $\delta>0$ such that if $\left\langle z_{i}\right\rangle$ is a δ-pseudo-orbit on a set $A \in \mathcal{F}$ then there exists a point $x \in X$ which ϵ-shadows $\left\langle z_{i}\right\rangle$ on a set $B \in \mathcal{G}$.

Theorem [BMR]

Suppose that $\mathcal{F} \supseteq \mathcal{F}^{\prime}$ and that $\mathcal{G} \subseteq \mathcal{G}^{\prime}$. Then every space with $(\mathcal{F}, \mathcal{G})$-shadowing has $\left(\mathcal{F}^{\prime}, \mathcal{G}^{\prime}\right)$-shadowing.

Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G}.

Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G}.
- Let \mathcal{T} denote the family of thick subsets of \mathbb{N}, i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.

Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G}.
- Let \mathcal{T} denote the family of thick subsets of \mathbb{N}, i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.
- Let \mathcal{D} denote the family of subsets of \mathbb{N} with lower density equal to 1 .

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\},\{\mathbb{N}\})$-shadowing is the usual shadowing.

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\},\{\mathbb{N}\})$-shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]

Variations on Shadowing

- Immediately, (\{N\},\{N\})-shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- $(\mathcal{D}, \mathcal{D})$-shadowing is ergodic shadowing [Fakhari, Gane 2010]

Variations on Shadowing

- Immediately, (\{N\},\{N\})-shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- ($\mathcal{D}, \mathcal{D})$-shadowing is ergodic shadowing [Fakhari, Gane 2010]
- Several other shadowing subtypes fit this framework (though not all.)

Outline

(1) Preliminaries

(2) Shadowing and Chain Transitiivity

Lemmas
Theorem

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \rightarrow X$ be chain transitive and let $\delta>0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X, k_{\delta}$ is te greatest common denominator of the lengths of δ-chains from x to x.

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \rightarrow X$ be chain transitive and let $\delta>0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X, k_{\delta}$ is te greatest common denominator of the lengths of δ-chains from x to x.

- Define the relation \sim_{δ} on x by $x \sim_{\delta} y$ provided that there is a δ-chain from x to y of length a multiple of k_{δ}.

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \rightarrow X$ be chain transitive and let $\delta>0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X, k_{\delta}$ is te greatest common denominator of the lengths of δ-chains from x to x.

- Define the relation \sim_{δ} on x by $x \sim_{\delta} y$ provided that there is a δ-chain from x to y of length a multiple of k_{δ}.
- The are precisely k_{δ} many equivalence classes of \sim_{δ} which are clopen and are permuted cyclicly by f.

Chain Lengths

Lemma [BMR]

Let $f: X \rightarrow X$ be chain transitive. For each $\delta>0$ there exists $M \in \mathbb{N}$ such that for any $m \geq M$, and any $x, y \in X$ with $x \sim_{\delta} y$, there is a δ-chain from x to y of length exactly $m k_{\delta}$.

Chain Lengths

Lemma [BMR]

Let $f: X \rightarrow X$ be chain transitive. For each $\delta>0$ there exists $M \in \mathbb{N}$ such that for any $m \geq M$, and any $x, y \in X$ with $x \sim_{\delta} y$, there is a δ-chain from x to y of length exactly $m k_{\delta}$.

- This is a straightforward application of the fact that δ-chains can be concatenated and Schur's Theorem.

Main Theorem

Theorem [BMR]

For a chain transitive dynamical system, the following are equivalent:
(1) shadowing, i.e. $(\{\mathbb{N}\},\{\mathbb{N}\})$-shadowing,
(2) $\mathcal{T}, \mathcal{T})$-shadowing,
(3) thick shadowing, i.e. $(\mathcal{D}, \mathcal{T})$-shadowing, and
(4) $(\{\mathbb{N}\}, \mathcal{T})$-shadowing.

Sketch of Proof

- First, note that $\{\mathbb{N}\} \subset \mathcal{D} \subset \mathcal{T}$ so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).

Sketch of Proof

- First, note that $\{\mathbb{N}\} \subset \mathcal{D} \subset \mathcal{T}$ so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).
- So, we need only establish that (1) implies (2) and (4) implies (1).

(4) implies (1)

- It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ-chain in X can be ϵ-shadowed.

(4) implies (1)

- It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ-chain in X can be ϵ-shadowed.
- Let $\epsilon>0$ and let $\delta>0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$-shadowing.

(4) implies (1)

- It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ-chain in X can be ϵ-shadowed.
- Let $\epsilon>0$ and let $\delta>0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$-shadowing.
- Fix a δ-chain $z_{0}, z_{1}, \ldots z_{n}$. Since f is chain transitive we can find a δ-chain $z_{n}, y_{1}, y_{2}, \ldots y_{m}, z_{0}$ from z_{n} to z_{0}.

(4) implies (1)

- It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ-chain in X can be ϵ-shadowed.
- Let $\epsilon>0$ and let $\delta>0$ be given by ($\{\mathbb{N}\}, \mathcal{T}$)-shadowing.
- Fix a δ-chain $z_{0}, z_{1}, \ldots z_{n}$. Since f is chain transitive we can find a δ-chain $z_{n}, y_{1}, y_{2}, \ldots y_{m}, z_{0}$ from z_{n} to z_{0}.
- Then $z_{0}, z_{1}, \ldots z_{n}, y_{1}, \ldots y_{m}, z_{0}, \ldots z_{n}, y_{1}, \ldots y_{m}, \ldots$ is a δ-pseudo-orbit.

(4) implies (1)

- Let $x \in X$ shadow
$z_{0}, z_{1}, \ldots z_{n}, y_{1}, \ldots y_{m}, z_{0}, \ldots z_{n}, y_{1}, \ldots y_{m}, \ldots$ on a set $A \in \mathcal{T}$.

(4) implies (1)

- Let $x \in X$ shadow $z_{0}, z_{1}, \ldots z_{n}, y_{1}, \ldots y_{m}, z_{0}, \ldots z_{n}, y_{1}, \ldots y_{m}, \ldots$ on a set $A \in \mathcal{T}$.
- Since A is thick, it contains arbitrarily long sequences of consecutive integers.

(4) implies (1)

- Let $x \in X$ shadow
$z_{0}, z_{1}, \ldots z_{n}, y_{1}, \ldots y_{m}, z_{0}, \ldots z_{n}, y_{1}, \ldots y_{m}, \ldots$ on a set $A \in \mathcal{T}$.
- Since A is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to gaurantee that x shadows the pseudo-orbit on some segment coinciding with $z_{0}, z_{1}, \ldots z_{n}$.

(4) implies (1)

- Let $x \in X$ shadow $z_{0}, z_{1}, \ldots z_{n}, y_{1}, \ldots y_{m}, z_{0}, \ldots z_{n}, y_{1}, \ldots y_{m}, \ldots$ on a set $A \in \mathcal{T}$.
- Since A is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to gaurantee that x shadows the pseudo-orbit on some segment coinciding with $z_{0}, z_{1}, \ldots z_{n}$.
- Then, the approriate iterate of x shadows the δ-chain $z_{0}, z_{1}, \ldots z_{n}$.

(1) implies (2)

- We must show that for any $\epsilon>0$ we can find $\delta>0$ such that for any δ-pseudo-orbit $\left\langle z_{i}\right\rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ-shadows it on a set $B \in \mathcal{T}$.

(1) implies (2)

- We must show that for any $\epsilon>0$ we can find $\delta>0$ such that for any δ-pseudo-orbit $\left\langle z_{i}\right\rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ-shadows it on a set $B \in \mathcal{T}$.
- Our strategy is to construct a proper δ-pseudo-orbit $\left\langle q_{i}\right\rangle$ which agrees with $\left\langle z_{i}\right\rangle$ on a thick set and then find a point x that shadows this modified pseudo-orbit.

(1) implies (2)

- We must show that for any $\epsilon>0$ we can find $\delta>0$ such that for any δ-pseudo-orbit $\left\langle z_{i}\right\rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ-shadows it on a set $B \in \mathcal{T}$.
- Our strategy is to construct a proper δ-pseudo-orbit $\left\langle q_{i}\right\rangle$ which agrees with $\left\langle z_{i}\right\rangle$ on a thick set and then find a point x that shadows this modified pseudo-orbit.
- The point x will then shadow the original pseudo-orbit on a thick set as desired.

(1) implies (2)

- Let $\epsilon>0$ and fix $\delta>0$ as given by shadowing. Let $\left\langle z_{i}\right\rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.

(1) implies (2)

- Let $\epsilon>0$ and fix $\delta>0$ as given by shadowing. Let $\left\langle z_{i}\right\rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K=k_{\delta}$ and let $X_{0}, X_{1}, \ldots X_{K}$ be the equivalence classes of \sim_{δ} named so that $f\left(X_{i}\right)=X_{i+1} \bmod K$.

(1) implies (2)

- Let $\epsilon>0$ and fix $\delta>0$ as given by shadowing. Let $\left\langle z_{i}\right\rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K=k_{\delta}$ and let $X_{0}, X_{1}, \ldots X_{K}$ be the equivalence classes of \sim_{δ} named so that $f\left(X_{i}\right)=X_{i+1} \bmod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_{K}$ to be the element of \mathbb{Z}_{K} such that $z_{i} \in X_{i+m(i)}$.

(1) implies (2)

- Let $\epsilon>0$ and fix $\delta>0$ as given by shadowing. Let $\left\langle z_{i}\right\rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K=k_{\delta}$ and let $X_{0}, X_{1}, \ldots X_{K}$ be the equivalence classes of \sim_{δ} named so that $f\left(X_{i}\right)=X_{i+1} \bmod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_{K}$ to be the element of \mathbb{Z}_{K} such that $z_{i} \in X_{i+m(i)}$.
- If $d\left(z_{i+1}, f\left(z_{i}\right)\right)<\delta$ it follows that $m(i)=m(i+1)$.

(1) implies (2)

- Let $\epsilon>0$ and fix $\delta>0$ as given by shadowing. Let $\left\langle z_{i}\right\rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K=k_{\delta}$ and let $X_{0}, X_{1}, \ldots X_{K}$ be the equivalence classes of \sim_{δ} named so that $f\left(X_{i}\right)=X_{i+1} \bmod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_{K}$ to be the element of \mathbb{Z}_{K} such that $z_{i} \in X_{i+m(i)}$.
- If $d\left(z_{i+1}, f\left(z_{i}\right)\right)<\delta$ it follows that $m(i)=m(i+1)$.
- Let $A=\{i \in \mathbb{N}: m(i)=m(i+1)\}$, and notice that this contains T and is hence thick.

(1) implies (2)

- Let $A_{k}=\{i \in A: m(i)=k\}$ and notice that for some k, A_{k} is thick. Without loss, A_{0}.

(1) implies (2)

- Let $A_{k}=\{i \in A: m(i)=k\}$ and notice that for some k, A_{k} is thick. Without loss, A_{0}.
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_{0}$ there is a δ-chain of length $m K$ from x to y.

(1) implies (2)

- Let $A_{k}=\{i \in A: m(i)=k\}$ and notice that for some k, A_{k} is thick. Without loss, A_{0}.
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_{0}$ there is a δ-chain of length $m K$ from x to y.
- We can then leverage the thickness to replace segments of $\left\langle z_{i}\right\rangle$ for which $m(i) \neq 0$ (and some parts where $m(i)=0$ as well) with δ-chains of lengths $m K$.

(1) implies (2)

- Let $A_{k}=\{i \in A: m(i)=k\}$ and notice that for some k, A_{k} is thick. Without loss, A_{0}.
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_{0}$ there is a δ-chain of length $m K$ from x to y.
- We can then leverage the thickness to replace segments of $\left\langle z_{i}\right\rangle$ for which $m(i) \neq 0$ (and some parts where $m(i)=0$ as well) with δ-chains of lengths $m K$.
- In particular, do this in such a way that we retain subintervals of A_{0} of arbitrary length.

(1) implies (2)

- Let $A_{k}=\{i \in A: m(i)=k\}$ and notice that for some k, A_{k} is thick. Without loss, A_{0}.
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_{0}$ there is a δ-chain of length $m K$ from x to y.
- We can then leverage the thickness to replace segments of $\left\langle z_{i}\right\rangle$ for which $m(i) \neq 0$ (and some parts where $m(i)=0$ as well) with δ-chains of lengths $m K$.
- In particular, do this in such a way that we retain subintervals of A_{0} of arbitrary length.
- The modified sequence $\left\langle q_{i}\right\rangle$ is now a proper δ-pseudo-orbit and agrees with $\left\langle z_{i}\right\rangle$ on a thick set.

Thank you!

