Chain Transitivity and Variations of the Shadowing Property

Chain Transitivity and Variations of the Shadowing Property

Jonathan Meddaugh

Will Brian and Brian Raines

Baylor University

The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications

July 10th, 2014

Chain Transitivity and Variations of the Shadowing Property

Outline

- Preliminaries
- 2 Shadowing and Chain Transitiivity

2/23

Chain Transitivity and Variations of the Shadowing Property

Outline

- 1 Preliminaries
 - Definitions Variations on Shadowing
- Shadowing and Chain Transitiivity

Chain Transitivity and Variations of the Shadowing Property Preliminaries

Basic Terminology

• A dynamical system is a continuous map f on a compact metric space (X, d).

3 / 23

1/23

Chain Transitivity and Variations of the Shadowing Property
Preliminaries
Definitions

Basic Terminology

- A dynamical system is a continuous map f on a compact metric space (X, d).
- An *orbit* for f is a sequence of the form $\langle f^i(x) \rangle_{i \in \mathbb{N}}$ for some $x \in X$.

Chain Transitivity and Variations of the Shadowing Property

Definition

Basic Terminology

- A dynamical system is a continuous map f on a compact metric space (X, d).
- An *orbit* for f is a sequence of the form $\langle f^i(x) \rangle_{i \in \mathbb{N}}$ for some $x \in X$.
- For $\delta > 0$, a δ -pseudo-orbit is a sequence $\langle z_i \rangle_{i \in \mathbb{N}}$ in X satisfying $d(z_{i+1}, f(z_i)) < \delta$ for $i \in \mathbb{N}$.

4 / 23

4 / 23

Chain Transitivity and Variations of the Shadowing Property

Definitions

Shadowing

• A map f has shadowing provided that for all $\epsilon > 0$ there exists a $\delta > 0$ such that for every δ -pseudo-orbit $\langle z_i \rangle$ there exists $x \in X$ such that $d(z_i, f^i(x)) < \epsilon$ for all $i \in \mathbb{N}$.

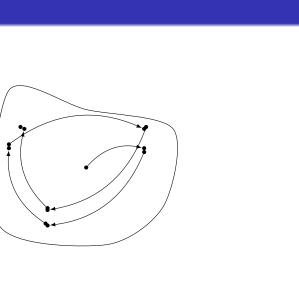
Chain Transitivity and Variations of the Shadowing Property

Definition

Shadowing

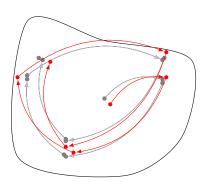
- A map f has shadowing provided that for all $\epsilon > 0$ there exists a $\delta > 0$ such that for every δ -pseudo-orbit $\langle z_i \rangle$ there exists $x \in X$ such that $d(z_i, f^i(x)) < \epsilon$ for all $i \in \mathbb{N}$.
- The point x is said to ϵ -shadow the pseudo-orbit $\langle z_i \rangle$.

5 / 23



Chain Transitivity and Variations of the Shadowing Property Preliminaries Definitions

Shadowing



6 / 23

Chain Transitivity and Variations of the Shadowing Property

Definitions

Chain Transitivity

• A δ -chain from x to y is a sequence $x = z_0, z_1, \dots z_n = y$ in X which satisfies $d(z_{i+1}, f(z_i)) < \delta$ for i < n.

Chain Transitivity and Variations of the Shadowing Property

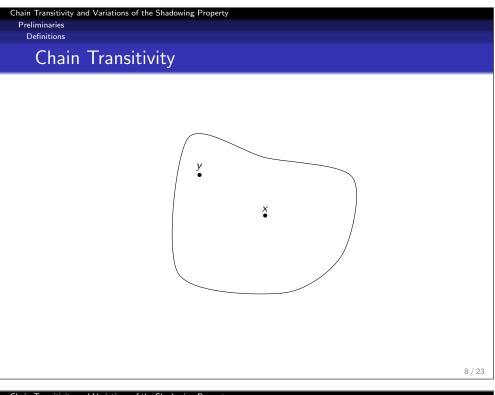
Definition

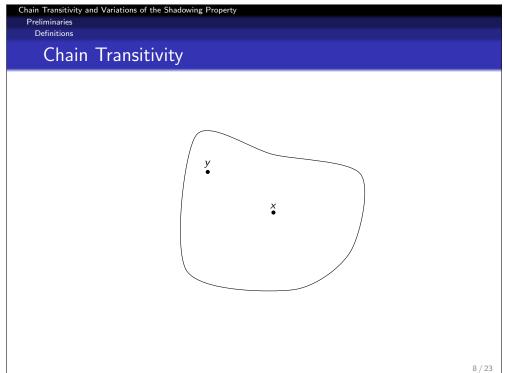
6 / 23

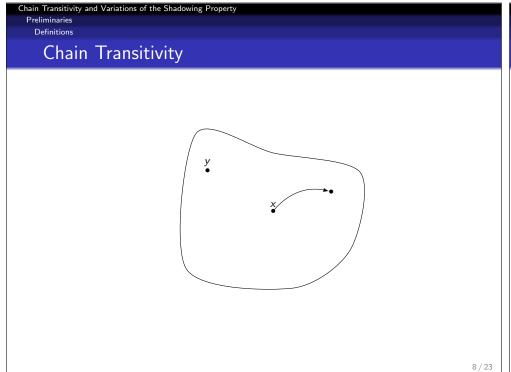
Chain Transitivity

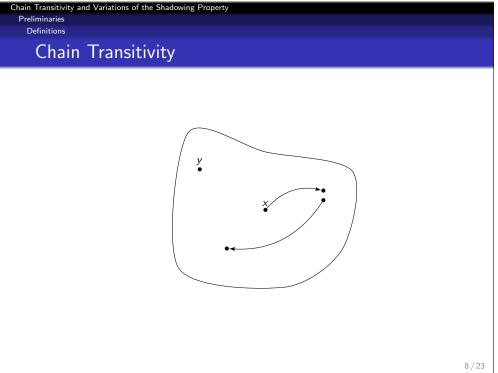
- A δ -chain from x to y is a sequence $x = z_0, z_1, \dots z_n = y$ in X which satisfies $d(z_{i+1}, f(z_i)) < \delta$ for i < n.
- A map f is *chain transitive* provided that for all $\delta > 0$ and all $x, y \in X$, there exists a δ -chain from x to y.

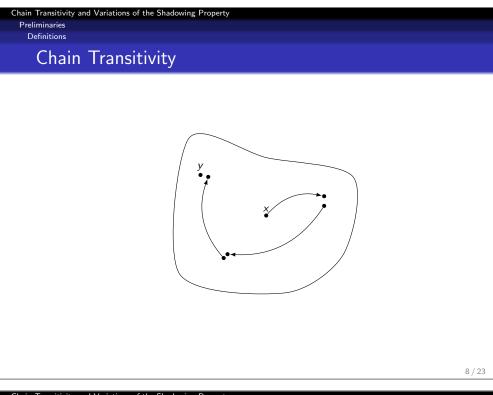
7 / 23

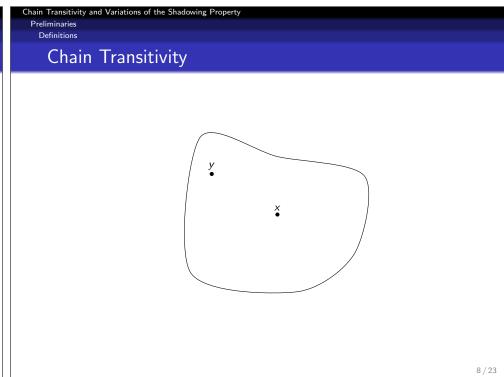


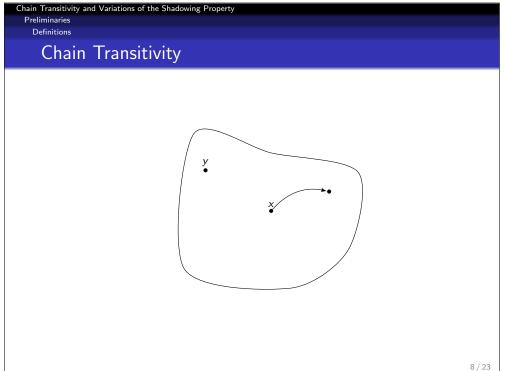


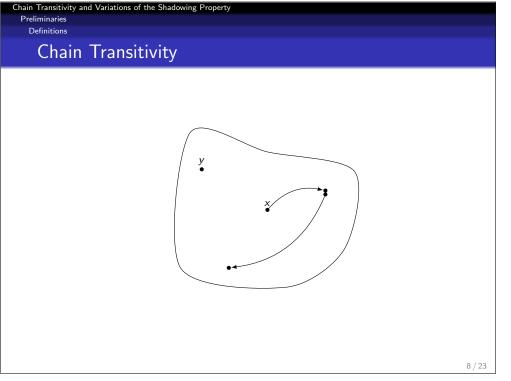


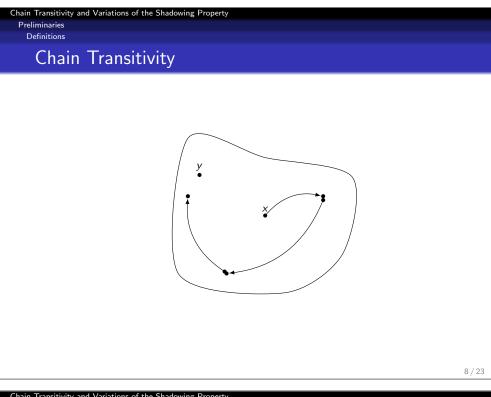


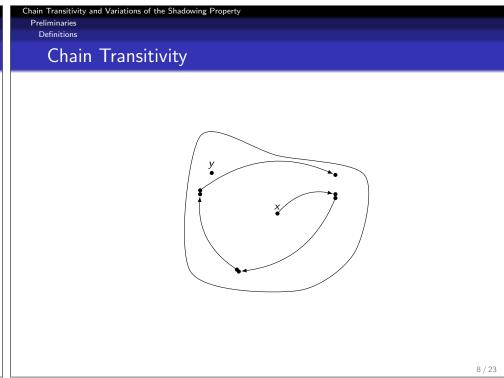




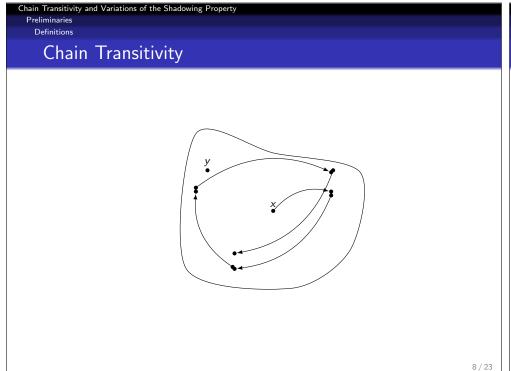


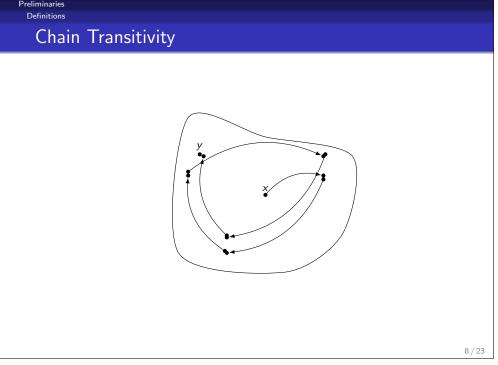






Chain Transitivity and Variations of the Shadowing Property





Chain Transitivity and Variations of the Shadowing Property Preliminaries

Variations on Shadowing

Terminology

• A sequence $\langle z_i \rangle$ is a δ -pseudo-orbit on A provided that $A \subseteq \{i \in \mathbb{N} : d(z_{i+1}, f(z_i)) < \delta\}.$

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

Terminology

- A sequence $\langle z_i \rangle$ is a δ -pseudo-orbit on A provided that $A \subseteq \{i \in \mathbb{N} : d(z_{i+1}, f(z_i)) < \delta\}.$
- A point $x \in X$ ϵ -shadows $\langle z_i \rangle$ on B provided that $B \subseteq \{i \in \mathbb{N} : d(z_i, f^i(x)) < \epsilon\}.$

9 / 23

9 / 23

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

$(\mathcal{F},\mathcal{G})$ -shadowing

• A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

$(\mathcal{F},\mathcal{G})$ -shadowing

- A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.
- For families \mathcal{F} and \mathcal{G} , a map f has $(\mathcal{F},\mathcal{G})$ -shadowing provided that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $\langle z_i \rangle$ is a δ -pseudo-orbit on a set $A \in \mathcal{F}$ then there exists a point $x \in X$ which ϵ -shadows $\langle z_i \rangle$ on a set $B \in \mathcal{G}$.

10 / 23

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

 $(\mathcal{F},\mathcal{G})$ -shadowing

- A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.
- For families \mathcal{F} and \mathcal{G} , a map f has $(\mathcal{F},\mathcal{G})$ -shadowing provided that for every $\epsilon>0$ there exists a $\delta>0$ such that if $\langle z_i\rangle$ is a δ -pseudo-orbit on a set $A\in\mathcal{F}$ then there exists a point $x\in X$ which ϵ -shadows $\langle z_i\rangle$ on a set $B\in\mathcal{G}$.

Theorem [BMR]

Suppose that $\mathcal{F} \supseteq \mathcal{F}'$ and that $\mathcal{G} \subseteq \mathcal{G}'$. Then every space with $(\mathcal{F}, \mathcal{G})$ -shadowing has $(\mathcal{F}', \mathcal{G}')$ -shadowing.

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

Variations on Shadowing

• Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G} .

11 / 23

10 / 23

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G} .
- Let \mathcal{T} denote the family of thick subsets of \mathbb{N} , i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.

Chain Transitivity and Variations of the Shadowing Property
Preliminaries

Variations on Shadowing

Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families $\mathcal F$ and $\mathcal G$.
- Let \mathcal{T} denote the family of thick subsets of \mathbb{N} , i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.
- Let $\mathcal D$ denote the family of subsets of $\mathbb N$ with lower density equal to 1.

11 / 23

Chain Transitivity and Variations of the Shadowing Property Preliminaries

Variations on Shadowing

Variations on Shadowing

• Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.
- (\mathcal{D},\mathcal{T})-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]

12 / 23

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$ -shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- $(\mathcal{D}, \mathcal{D})$ -shadowing is ergodic shadowing [Fakhari, Gane 2010]

Chain Transitivity and Variations of the Shadowing Property

Variations on Shadowing

Variations on Shadowing

- Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$ -shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- $(\mathcal{D}, \mathcal{D})$ -shadowing is ergodic shadowing [Fakhari, Gane 2010]
- Several other shadowing subtypes fit this framework (though not all.)

12 / 23

12 / 23

hain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Outline

- Preliminaries
- Shadowing and Chain Transitiivity

Lemmas

Theorem

hain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \to X$ be chain transitive and let $\delta > 0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X$, k_{δ} is te greatest common denominator of the lengths of δ -chains from x to x.

14 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \to X$ be chain transitive and let $\delta > 0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X$, k_{δ} is te greatest common denominator of the lengths of δ -chains from x to x.

• Define the relation \sim_{δ} on x by $x \sim_{\delta} y$ provided that there is a δ -chain from x to y of length a multiple of k_{δ} .

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f: X \to X$ be chain transitive and let $\delta > 0$. Then there exists $k_{\delta} \in \mathbb{N}$ such that for any $x \in X$, k_{δ} is te greatest common denominator of the lengths of δ -chains from x to x.

- Define the relation \sim_{δ} on x by $x \sim_{\delta} y$ provided that there is a δ -chain from x to y of length a multiple of k_{δ} .
- The are precisely k_{δ} many equivalence classes of \sim_{δ} which are clopen and are permuted cyclicly by f.

14 / 23

13 / 23

Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitiivity
Lemmas

Chain Lengths

Lemma [BMR]

Let $f: X \to X$ be chain transitive. For each $\delta > 0$ there exists $M \in \mathbb{N}$ such that for any $m \geq M$, and any $x, y \in X$ with $x \sim_{\delta} y$, there is a δ -chain from x to y of length exactly mk_{δ} .

Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitiivity

Lemm

Chain Lengths

Lemma [BMR]

Let $f: X \to X$ be chain transitive. For each $\delta > 0$ there exists $M \in \mathbb{N}$ such that for any $m \geq M$, and any $x, y \in X$ with $x \sim_{\delta} y$, there is a δ -chain from x to y of length exactly mk_{δ} .

• This is a straightforward application of the fact that δ -chains can be concatenated and Schur's Theorem.

15 / 23

Chain Transitivity and Variations of the Shadowing Property

Shadowing and Chain Transitiivity

Theoren

Main Theorem

Theorem [BMR]

For a chain transitive dynamical system, the following are equivalent:

- **1** shadowing, i.e. $(\{\mathbb{N}\}, \{\mathbb{N}\})$ -shadowing,
- $(\mathcal{T}, \mathcal{T})$ -shadowing,
- 3 thick shadowing, i.e. $(\mathcal{D},\mathcal{T})$ -shadowing, and
- \bullet ({ \mathbb{N} }, \mathcal{T})-shadowing.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theore

15 / 23

Sketch of Proof

• First, note that $\{\mathbb{N}\}\subset\mathcal{D}\subset\mathcal{T}$ so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).

16 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem

Sketch of Proof

- First, note that $\{\mathbb{N}\}\subset\mathcal{D}\subset\mathcal{T}$ so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).
- So, we need only establish that (1) implies (2) and (4) implies (1).

Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitiivity

(4) implies (1)

• It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ -chain in X can be ϵ -shadowed.

18 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theorem

(4) implies (1)

- It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ -chain in X can be ϵ -shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$ -shadowing.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theore

17 / 23

(4) implies (1)

- It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ -chain in X can be ϵ -shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$ -shadowing.
- Fix a δ -chain $z_0, z_1, \dots z_n$. Since f is chain transitive we can find a δ -chain $z_n, y_1, y_2, \dots y_m, z_0$ from z_n to z_0 .

18 / 23

Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitiivity
Theorem

(4) implies (1)

- It is sufficient to show that for any $\epsilon>0$ we can find $\delta>0$ such that any δ -chain in X can be ϵ -shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $(\{\mathbb{N}\}, \mathcal{T})$ -shadowing.
- Fix a δ -chain $z_0, z_1, \dots z_n$. Since f is chain transitive we can find a δ -chain $z_n, y_1, y_2, \dots y_m, z_0$ from z_n to z_0 .
- Then $z_0, z_1, \ldots, z_n, y_1, \ldots, y_m, z_0, \ldots, z_n, y_1, \ldots, y_m, \ldots$ is a δ -pseudo-orbit.

Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitiivity

(4) implies (1)

• Let $x \in X$ shadow

$$z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$$
 on a set $A \in \mathcal{T}$.

19 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theorem

(4) implies (1)

- Let $x \in X$ shadow $z_0, z_1, \dots z_n, y_1, \dots y_m, z_0, \dots z_n, y_1, \dots y_m, \dots$ on a set $A \in \mathcal{T}$.
- Since *A* is thick, it contains arbitrarily long sequences of consecutive integers.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

I heore

18 / 23

(4) implies (1)

- Let $x \in X$ shadow $z_0, z_1, \dots z_n, y_1, \dots y_m, z_0, \dots z_n, y_1, \dots y_m, \dots$ on a set $A \in \mathcal{T}$.
- Since *A* is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to gaurantee that x shadows the pseudo-orbit on some segment coinciding with z₀, z₁,...z_n.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

(4) implies (1)

- Let $x \in X$ shadow $z_0, z_1, \dots z_n, y_1, \dots y_m, z_0, \dots z_n, y_1, \dots y_m, \dots$ on a set $A \in \mathcal{T}$.
- Since *A* is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to gaurantee that x shadows the pseudo-orbit on some segment coinciding with z₀, z₁,...z_n.
- Then, the approriate iterate of x shadows the δ -chain $z_0, z_1, \ldots z_n$.

Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitiivity
Theorem

(1) implies (2)

• We must show that for any $\epsilon > 0$ we can find $\delta > 0$ such that for any δ -pseudo-orbit $\langle z_i \rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ -shadows it on a set $B \in \mathcal{T}$.

20 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theorem

(1) implies (2)

- We must show that for any $\epsilon > 0$ we can find $\delta > 0$ such that for any δ -pseudo-orbit $\langle z_i \rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ -shadows it on a set $B \in \mathcal{T}$.
- Our strategy is to construct a proper δ -pseudo-orbit $\langle q_i \rangle$ which agrees with $\langle z_i \rangle$ on a thick set and then find a point x that shadows this modified pseudo-orbit.

Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitiivity

(1) implies (2)

- We must show that for any $\epsilon > 0$ we can find $\delta > 0$ such that for any δ -pseudo-orbit $\langle z_i \rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ -shadows it on a set $B \in \mathcal{T}$.
- Our strategy is to construct a proper δ -pseudo-orbit $\langle q_i \rangle$ which agrees with $\langle z_i \rangle$ on a thick set and then find a point x that shadows this modified pseudo-orbit.
- The point x will then shadow the original pseudo-orbit on a thick set as desired.

20 / 23

19 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity Theorem

(1) implies (2)

• Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in \mathcal{T}$.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K = k_{\delta}$ and let $X_0, X_1, \dots X_K$ be the equivalence classes of \sim_{δ} named so that $f(X_i) = X_{i+1} \mod K$.

21 / 23

Chain Transitivity and Variations of the Shadowing Property

Shadowing and Chain Transitiivity

. .

(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K = k_{\delta}$ and let $X_0, X_1, \dots X_K$ be the equivalence classes of \sim_{δ} named so that $f(X_i) = X_{i+1} \mod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_K$ to be the element of \mathbb{Z}_K such that $z_i \in X_{i+m(i)}$.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theore

21 / 23

(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K = k_{\delta}$ and let $X_0, X_1, \dots X_K$ be the equivalence classes of \sim_{δ} named so that $f(X_i) = X_{i+1} \mod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_K$ to be the element of \mathbb{Z}_K such that $z_i \in X_{i+m(i)}$.
- If $d(z_{i+1}, f(z_i)) < \delta$ it follows that m(i) = m(i+1).

21 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ -pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K = k_{\delta}$ and let $X_0, X_1, \dots X_K$ be the equivalence classes of \sim_{δ} named so that $f(X_i) = X_{i+1} \mod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_K$ to be the element of \mathbb{Z}_K such that $z_i \in X_{i+m(i)}$.
- If $d(z_{i+1}, f(z_i)) < \delta$ it follows that m(i) = m(i+1).
- Let $A = \{i \in \mathbb{N} : m(i) = m(i+1)\}$, and notice that this contains T and is hence thick.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

(1) implies (2)

• Let $A_k = \{i \in A : m(i) = k\}$ and notice that for some k, A_k is thick. Without loss, A_0 .

22 / 23

21 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theorem

(1) implies (2)

- Let $A_k = \{i \in A : m(i) = k\}$ and notice that for some k, A_k is thick. Without loss, A_0 .
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_0$ there is a δ -chain of length mK from x to y.

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Theore

(1) implies (2)

- Let $A_k = \{i \in A : m(i) = k\}$ and notice that for some k, A_k is thick. Without loss, A_0 .
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_0$ there is a δ -chain of length mK from x to y.
- We can then leverage the thickness to replace segments of $\langle z_i \rangle$ for which $m(i) \neq 0$ (and some parts where m(i) = 0 as well) with δ -chains of lengths mK.

22 / 23

hain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

(1) implies (2)

- Let $A_k = \{i \in A : m(i) = k\}$ and notice that for some k, A_k is thick. Without loss, A_0 .
- By previous lemma, fix $M \in \mathbb{N}$ such that for all m > M, and any $x, y \in X_0$ there is a δ -chain of length mK from x to y.
- We can then leverage the thickness to replace segments of $\langle z_i \rangle$ for which $m(i) \neq 0$ (and some parts where m(i) = 0 as well) with δ -chains of lengths mK.
- In particular, do this in such a way that we retain subintervals of A_0 of arbitrary length.

22 / 23

Chain Transitivity and Variations of the Shadowing Property

(1) implies (2)

Shadowing and Chain Transitiivity

- Let $A_k = \{i \in A : m(i) = k\}$ and notice that for some k, A_k is thick. Without loss, A_0 .
- By previous lemma, fix $M \in \mathbb{N}$ such that for all m > M, and any $x, y \in X_0$ there is a δ -chain of length mK from x to y.
- We can then leverage the thickness to replace segments of $\langle z_i \rangle$ for which $m(i) \neq 0$ (and some parts where m(i) = 0 as well) with δ -chains of lengths mK.
- In particular, do this in such a way that we retain subintervals of A_0 of arbitrary length.
- The modified sequence $\langle q_i \rangle$ is now a proper δ -pseudo-orbit and agrees with $\langle z_i \rangle$ on a thick set.

22 / 23

Chain Transitivity and Variations of the Shadowing Property Shadowing and Chain Transitiivity

Thank you

Thank you!