

A continuum X is a compact and connected metric space that contains at least two points. A continuum is **decomposable** if it can be written as the union of two proper subcontinua. It is **hereditarily decomposable** if every subcontinuum is decomposable. An **indecomposable** continuum is a continuum that is not decomposable, and it is **hereditarily indecomposable** if every subcontinuum is indecomposable. Suppose a map $f: I \to I$ is given. The inverse limit space $I_f = \varprojlim \{f, I\}$ is the space given by

$$I_f = \{ (x_1, x_2, x_3, \ldots) \in I^{\mathbb{N}} : f(x_{i+1}) = x_i \}.$$

The topology of I_f is induced from the product topology of $I^{\mathbb{N}}$, with the basic open sets in I_f given by

$$U_{\leftarrow} = (f^{i-1}(U), f^{i-2}(U), \dots, U, f^{-1}(U), f^{-2}(U), \dots),$$

where U is an open subset of the *i*th factor space I.

IRAEM J. P. Boroński, Jiří Kupka (IRAFM J. P. Boroński, Jiří Kupka (IRAFM 7 / 25 8 / 25 Preliminaries Preliminaries Let ρ denote the metric on I. A map $f: I \to I$ is Li-Yorke chaotic if There is a natural homeomorphism $\sigma_f: I_f \to I_f$, called the *shift* there is an uncountable set $S \subset I$ such that homeomorphism, given by $\liminf_{n \to \infty} \rho(f^n(x), f^n(y)) = 0$ $\sigma_f(x_1, x_2, x_3, \ldots) = (f(x_1), f(x_2), f(x_3), \ldots) = (f(x_1), x_1, x_2, \ldots).$ The shift homeomorphism σ_f preserves topological entropy of f, as well and $\limsup_{n \to \infty} \rho(f^n(x), f^n(y)) > 0$ as many other dynamical properties such as existence of periodic orbits of given period, shadowing property, and topological mixing [Chen, Li, 1993]. for any distinct points $x, y \in S$. IRAFM IRAFM

9 / 25

Preliminaries	Preliminaries
Let us recall Bowen's definition of the topological entropy. Let $K \subset X$ be a compact subset, and fix $\varepsilon > 0$ and $n \in \mathbb{N}$. We say that a set $E \subset K$ is (n, ε, K, f) -separated (by the map f) if for any $x, y \in E, x \neq y$, there is $k \in \{0, 1,, n - 1\}$ such that $\rho(f^k(x), f^k(y)) > \varepsilon$. Denote by $s_n(\varepsilon, K, f)$ the cardinality of any maximal (n, ε, K, f) -separated set in K and define $s(\varepsilon, K, f) = \limsup_{n \to \infty} \frac{1}{n} \log s_n(\varepsilon, K, f)$. Then, the topological entropy of f is $h(f) = \sup \lim_{n \to \infty} s(\varepsilon, K, f)$	An interval map f is called unimodal if there exists a turning point $c \in I$, $0 < c < 1$, such that $f _{[0,c]}$ is strictly increasing and $f _{[c,1]}$ is strictly decreasing. A map f is weakly unimodal if there exists a $c \in I$, $0 < c < 1$, such that $f _{[0,c]}$ is nondecreasing and $f _{[c,1]}$ is nonincreasing. We say that an interval map (or graph map) $f : G \to f(G)$ is monotone if $f^{-1}(x)$ is connected for every $x \in f(G)$. We say that f is piecewise monotone on G if there is a finite set of points $A = \{a_1, \ldots, a_n\} \subseteq G$ such that f is monotone on each component of $G \setminus A$.
$h(f) = \sup_{K} \lim_{\varepsilon \to 0} s(\varepsilon, K, f).$	
IRAFM	IRAFM
J. P. Boronski, Jiri Kupka (IKAPM) 11 / 25	J. P. Boroński, Jiri Kupka (IRAFM) 12 / 25
J. P. Boronski, Jiri Kupka (IKAFM) 11 / 25 Solutions	J. P. Boroński, Jiři Kupka (IRAFM) 12 / 25 Solutions
Solutions Lemma (Barge & Diamond, 1994) Suppose $f: G \rightarrow G$ is a piecewise monotone graph map. f has zero topological entropy if and only if $\lim_{\leftarrow} \{f, G\}$ does not contain an indecomposable subcontinuum. Note that every weakly unimodal map is piecewise monotone.	Solutions Let us consider a system $\mathcal{F} \subseteq C(I)$ of weakly unimodal interval maps satisfying the following conditions 1 the set $J_f := \{x \in I \mid f(y) \leq f(x) \text{ for every } y \in I\}$ consists of more than one point, 2 for each $n \in \mathbb{N}$, f has a periodic point of period 2^n , 3 f has no periodic points of other periods. It is well known that the family \mathcal{F} is nonempty and any map that satisfies the properties (2) and (3) is said to be of type 2^{∞} .

Solutions	Solutions
Lemma (Misiurewicz, Smítal, 1988) Any map $f \in \mathcal{F}$ has zero topological entropy and is chaotic in the sense of Li and Yorke. Lemma (Misiurewicz, Smítal, 1988) Let $\mathcal{F}_0 \subseteq \mathcal{F}$ be a family of C^{∞} interval maps f satisfying $f(0) = f(1) = 0$. Then $\mathcal{F}_0 \neq \emptyset$.	Lemma For every positive integer k there exists a weakly unimodal map $f: [0,1] \rightarrow [0,1]$ such that (i) $f(0) = f(1) = 0$. (ii) f is C^k -smooth, (iii) f is not C^{k+1} -smooth Moreover, for any $c \in (0,1]$, the map $c \cdot f$ satisfies (i)-(iii) and (iv) there exists $\bar{c} \in (0,1]$ such that $\bar{c} \cdot f \in \mathcal{F}$. Remark Differentiability is important here.
RAFM	IRAFM
J. P. Boroński, Jiří Kupka (IRAFM) 15 / 25	J. P. Boroński, Jiří Kupka (IRAFM) 16 / 25
Main Theorem For every positive integer k there exists an interval map $f: I \to I$ such that 1 f is Li-Yorke chaotic, 2 $I_f = \lim_{\leftarrow} \{f, I\}$ does not contain an indecomposable subcontinuum, 3 f is C^k -smooth, 4 f is not C^{k+1} -smooth. Main Theorem There exists a C^{∞} -smooth interval map $f: I \to I$ such that 1 f is Li-Yorke chaotic, 2 $I_f = \lim_{\leftarrow} \{f, I\}$ does not contain an indecomposable subcontinuum,	A (topological) ray is a homeomorphic image of the half-line $[0, +\infty)$ and a (topological) line is a homeomorphic image of $(-\infty, +\infty)$. Theorem (Bennett) (the proof can be found in [Ingram, 1995]) Suppose that $g: [a,b] \rightarrow [a,b]$ is continuous and $d \in (a,b)$ is such that $\blacksquare g([d,b]) \subset [d,b]$, $\blacksquare g _{[a,d]}$ is monotone, and \blacksquare there is $n \in \mathbb{N}$ such that $g^n([a,d]) = [a,b]$. Then continuum $K = \lim_{\leftarrow} \{g, [a,b]\}$ is the union of a topological ray R and a continuum $C = \lim_{\leftarrow} \{g, [d,b]\}$ such that $\overline{R} \setminus R = C$.
RAFM	IRAFM

A (topological) ray is a homeomorphic image of the half-line $[0, +\infty)$ and a (topological) line is a homeomorphic image of $(-\infty, +\infty)$. Theorem (Bennett) (the proof can be found in [Ingram, 1995]) Suppose that $g: [a, b] \rightarrow [a, b]$ is continuous and $d \in (a, b)$ is such that $\exists g([d, b]) \subset [d, b]$, $\exists g([d, b]) \subset [d, b]$, $\exists g([a,d] \text{ is monotone, and}$ $\exists there is n \in \mathbb{N} such that g^n([a, d]) = [a, b].Then continuum K = \lim_{\leftarrow} \{g, [a, b]\} is the union of a topological ray Rand a continuum C = \lim_{\leftarrow} \{g, [d, b]\} such that \overline{R} \setminus R = C.$	Lemma For every $f \in \mathcal{F}$ with $f(0) = 0$ there are $a, b, d \in I$ such that 1 $f([d, b]) \subset [d, b]$, 2 $f _{[a,d]}$ is monotone, and 3 there is an $n \in \mathbb{N}$ such that $f^n([a,d]) = [a,b]$. Remark The assumption $f(0) = 0$ is necessary.
Theorem For every $f \in \mathcal{F}$ with $f(0) = 0$, there is a topological ray L such that $\overline{L} = I_f$. We are able to specify inner structure inside those inverse limit spaces. Theorem Suppose $f : I \rightarrow I$ is a map of type 2^{∞} . Then the shift homeomorphism σ_f has a 2^i -periodic subcontinuum of I_f , for every integer $i > 0$.	Topological structure of inverse limit spaces Theorem For every $f \in \mathcal{F}$ with $f(0) = 0$, there is a topological ray L such that $\overline{L} = I_f$. We are able to specify inner structure inside those inverse limit spaces. Theorem Suppose $f : I \rightarrow I$ is a map of type 2^{∞} . Then the shift homeomorphism σ_f has a 2^i -periodic subcontinuum of I_f , for every integer $i > 0$.
RAFM	

Topological structure of inverse limit spaces

Topological structure of inverse limit spaces

$$\bar{\omega} \subseteq \bigcap_{i \in \mathbb{N}} \bigcup_{n=1}^{2^i} f^n(J_i),$$

where each J_i is a nondegenerate 2^i -periodic interval (i.e. $f^{2^i}(J_i) = J_i$). Intervals J_i are called *generating*.

J. P. Boroński, Jiří Kupka (IRAFM

Any map $f \in \mathcal{F}$ possesses the unique infinite ω -limit set $\bar{\omega}$ such that

$$\bar{\omega} \subseteq \bigcap_{i \in \mathbb{N}} \bigcup_{n=1}^{2^i} f^n(J_i),$$

where each J_i is a nondegenerate 2^i -periodic interval (i.e. $f^{2^i}(J_i) = J_i$). Intervals J_i are called *generating*.

Theorem

21 / 2

Let $f \in \mathcal{F}$. Then there exists a system $\{J_i\}_{i\geq 0}$ of generating intervals such that, for any $i \ge 0$, $\lim_{\leftarrow} \{f^{2^i}|_{J_i}, J_i\}$ is a compactification of a topological ray.

J. P. Boroński, Jiří Kupka (IRAFM

Topological structure of inverse limit spaces

Main Theorem

Suppose $f: I \rightarrow I$ is a Li-Yorke chaotic zero entropy weakly unimodal map. Then I_f contains, for every i, a subcontinuum C_i with the following two properties:

- (i) C_i is 2^i -periodic under the shift homeomorphism, and
- (ii) C_i is a compactification of a topological ray.

IRAFM

21 / 25

indecomposable subcontinuum.We found smooth maps within this class.We described periodic structure of those inverse limit spaces.	indecomposable subcontinuum.We found smooth maps within this class.We described periodic structure of those inverse limit spaces.
 Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. 	 Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear].
uestion	Question
uppose f and g are two Li-Yorke chaotic weakly unimodal maps of type $^{\circ}$, that are in two different differentiability classes, as guaranteed by our lain theorems. Are I_f and I_g homeomorphic?	Suppose f and g are two Li-Yorke chaotic weakly unimodal maps of type 2^{∞} , that are in two different differentiability classes, as guaranteed by our Main theorems. Are I_f and I_g homeomorphic?
uestion	Question
appose g is a Li-Yorke chaotic weakly unimodal map of type 2^{∞} . Is I_g pomeomorphic to a ray limiting onto one of the attractors described in Boroński, Oprocha, to appear] or a subcontinuum of one of them?	Suppose g is a Li-Yorke chaotic weakly unimodal map of type 2^{∞} . Is I_g homeomorphic to a ray limiting onto one of the attractors described in [Boroński, Oprocha, to appear] or a subcontinuum of one of them?
Boroński, Jiří Kupka (IRAFM) 24 / 25	J. P. Boroński, Jiří Kupka (IRAFM) 24 /
Boroński, Jiří Kupka (IRAFM) 24 / 25 Conclusions	J. P. Boroński, Jiří Kupka (IRAFM) 24 / Conclusions
Boroński, Jiří Kupka (IRAFM) 24 / 25 Conclusions Image: We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. Image: We found smooth maps within this class. We found smooth maps within this class. Image: We described periodic structure of those inverse limit spaces. Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]	J. P. Boroński, Jiří Kupka (IRAFM) 24 / Conclusions We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. We found smooth maps within this class. We described periodic structure of those inverse limit spaces. Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Onrocha, to appear]
Boroński, Jiří Kupka (IRAFM) 24 / 25 Conclusions We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. We found smooth maps within this class. We described periodic structure of those inverse limit spaces. Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. 	J. P. Boroński, Jiří Kupka (IRAFM) 24 / Conclusions We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. We found smooth maps within this class. We described periodic structure of those inverse limit spaces. Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear].
 Boroński, Jiří Kupka (IRAFM) 24 / 25 Conclusions We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. We found smooth maps within this class. We described periodic structure of those inverse limit spaces. Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. Destion Uppose f and g are two Li-Yorke chaotic weakly unimodal maps of type 9, that are in two different differentiability classes, as guaranteed by our lain theorems. Are I_f and I_g homeomorphic? 	J. P. Boroński, Jiří Kupka (IRAFM) 24 / ■ We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. ■ We found smooth maps within this class. ■ We described periodic structure of those inverse limit spaces. ■ Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. Question Suppose f and g are two Li-Yorke chaotic weakly unimodal maps of type 2 [∞] , that are in two different differentiability classes, as guaranteed by our Main theorems. Are I _f and I _g homeomorphic?
 Boroński, Jiři Kupka (IRAFM) 24 / 25 Conclusions We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. We found smooth maps within this class. We described periodic structure of those inverse limit spaces. Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. Inestion uppose f and g are two Li-Yorke chaotic weakly unimodal maps of type 9, that are in two different differentiability classes, as guaranteed by our ain theorems. Are I_f and I_g homeomorphic? 	J. P. Boroński, Jiří Kupka (IRAFM) 24 / Conclusions ■ We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. We found smooth maps within this class. ■ We found smooth maps within this class. We described periodic structure of those inverse limit spaces. ■ Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. Question Suppose f and g are two Li-Yorke chaotic weakly unimodal maps of type 2 [∞] , that are in two different differentiability classes, as guaranteed by our Main theorems. Are I _f and I _g homeomorphic? Question
Boroński, Jiří Kupka (IRAFM) 24 / 25 Conclusions ■ We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. ■ We found smooth maps within this class. ■ We described periodic structure of those inverse limit spaces. ■ Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. Uestion uppose f and g are two Li-Yorke chaotic weakly unimodal maps of type %, that are in two different differentiability classes, as guaranteed by our ain theorems. Are I _f and I _g homeomorphic? uestion uppose g is a Li-Yorke chaotic weakly unimodal map of type 2 [∞] . Is I _g pomeomorphic to a ray limiting onto one of the attractors described in Roroński, Oprocha, to appear] or a subcontinuum of one of them?	J. P. Boroński, Jiři Kupka (IRAFM) 24 / Conclusions ■ We found a class of weakly chaotic interval maps with zero topological entropy whose inverse limit spaces do not contain an indecomposable subcontinuum. We found smooth maps within this class. ■ We found smooth maps within this class. We described periodic structure of those inverse limit spaces. ■ Inverse limit spaces constructed within this work are topologically distinct from those mentioned in [Boroński, Oprocha, to appear]. Question Suppose f and g are two Li-Yorke chaotic weakly unimodal maps of type 2 [∞] , that are in two different differentiability classes, as guaranteed by our Main theorems. Are I _f and I _g homeomorphic? Question Suppose g is a Li-Yorke chaotic weakly unimodal map of type 2 [∞] . Is I _g homeomorphic to a ray limiting onto one of the attractors described in [Boroński, Oprocha, to appear] or a subcontinuum of one of them?

24 / 25

J. P.

Conclusions

• We found a class of weakly chaotic interval maps with zero

topological entropy whose inverse limit spaces do not contain an

Conclusions

• We found a class of weakly chaotic interval maps with zero

topological entropy whose inverse limit spaces do not contain an

 \mathbb{N}

24 / 25

