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Tβ(x) =

{
T−β (x) = x + 2 if x ≤ 0,
T+
β (x) = β − 2x if x ≥ 0.

Tβ preserves the [β −max{2, β},max{2, β}] and some iterate is
uniformly expanding. Therefore Tβ admits an acip.
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Generically, dµ
dx IS locally constant
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Markov Partitions and Entropy

The interval partition {Pi} is a Markov partition for T if

T (Pi ) ∩ Pj 6= ∅ implies T (Pi ) ⊃ Pj .

The transition matrix Π = Πi ,j is defined as:

Πi ,j =


1 if T (Pi ) ⊃ Pj ,

0 if Pj ∩ T (Pi ) = ∅,
No other possibility, because {Pi} is Markov

The topological entropy is

htop(T ) = log σ

for σ the leading eigenvalue of Π.



Markov Partitions and Entropy

The interval partition {Pi} is a Markov partition for T if

T (Pi ) ∩ Pj 6= ∅ implies T (Pi ) ⊃ Pj .

The transition matrix Π = Πi ,j is defined as:

Πi ,j =


1 if T (Pi ) ⊃ Pj ,

0 if Pj ∩ T (Pi ) = ∅,
No other possibility, because {Pi} is Markov

The topological entropy is

htop(T ) = log σ

for σ the leading eigenvalue of Π.



Markov Partitions and Entropy

The interval partition {Pi} is a Markov partition for T if

T (Pi ) ∩ Pj 6= ∅ implies T (Pi ) ⊃ Pj .

The transition matrix Π = Πi ,j is defined as:

Πi ,j =


1 if T (Pi ) ⊃ Pj ,

0 if Pj ∩ T (Pi ) = ∅,
No other possibility, because {Pi} is Markov

The topological entropy is

htop(T ) = log σ

for σ the leading eigenvalue of Π.



Markov partitions and Entropy

Scale Π by the slopes ti = |DT|Pi | to obtain a matrix

Ai ,j =
1
ti

Πi ,j .

Then `i = |Pi | and ρi = dµ
dx |Pi

satisfy
∑

i ρi`i = 1 and

ρ1
...
ρN


T

A =

ρ1
...
ρN


T

and A

`1...
`N

 =

`1...
`N



Rokhlin’s formula gives the metric entropy:

hµ(T ) =
N∑

i=1

max{log(ti ), 0}µ(Pi )
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Not Markov but Matching

For the family Tβ , there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates κ± > 0 such that

Tκ−(0−) = Tκ+(0+) and derivatives DTκ−(0−) = DTκ+(0+)

The pre-matching set is

{T j(0−)}κ−−1
j=0 } ∪ {T

j(0−)}κ+−1
j=0 };

The pre-matching partition are the complementary domains of the
prematching set; it plays the role of Markov partition.



Not Markov but Matching

For the family Tβ , there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates κ± > 0 such that

Tκ−(0−) = Tκ+(0+) and derivatives DTκ−(0−) = DTκ+(0+)

The pre-matching set is

{T j(0−)}κ−−1
j=0 } ∪ {T

j(0−)}κ+−1
j=0 };

The pre-matching partition are the complementary domains of the
prematching set; it plays the role of Markov partition.



Not Markov but Matching

Theorem: If T has matching, then the density ρ = dµ
dx is constant

on each element of the pre-matching partition.

Definition: The matching index is ∆ = κ+ − κ−.

Theorem: On every parameter interval where matching occurs,
topological and metric entropy

hµ(Tβ) and htop(Tβ) are


decreasing if ∆ > 0;

constant if ∆ = 0;

increasing if ∆ < 0,

as function of β.
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Figure: Entropy hµ(Tβ) for β ∈ [4.6, 6] (l) and β ∈ [5.29, 5.33] (r).

Entropy seems constant on the parameter interval [2, 5]; it is filled
with countably many intervals on which ∆ = 0.



Remarks on the Proof
Let F be the first return map
to a nice interval J 3 Tκ+(0+)

β .
The return time is τ .
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I F is independent of β, and has only linear branches, so it
preserves Lebesgue measure λ.

I The proportion of branches using κ+ in their return time
decreases as β increases.

I By Abramov’s formula hµ(Tβ) = 1∫
τdλhλ(F ) is monotone in β.

I The periods of periodic points in J change by ∆ if κ+ is used
instead of κ−. This proportion decreases as β increases.
Topological entropy is the exponential growth rate

htop(Tβ) = lim
n

1
n

#{n-periodic points},

so it is monotone in β.
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Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and
dense and has full Lebesgue measure.

Observations towards the proof:
I Let rn(x) = #{0 ≤ i < n : T n(x) > 0}. If rm(0−) = rn(0+)

then Tm(0−)− T n(0+) are a multiple of 2 apart.
I Let Jβ = [β−2

2 , 2]. For x ∈ Jβ , both x and Tβ(x) ∈ [0, 2].
I Therefore, if Tm(0−) ∈ Jβ , either Tm(0−) or Tm+1(0−) will

match with orb(0+).
I Hence we need to estimate the measure of the set of β such

that orb(0−) avoids Jβ , and in particular is not dense.



Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and
dense and has full Lebesgue measure.

Observations towards the proof:
I Let rn(x) = #{0 ≤ i < n : T n(x) > 0}. If rm(0−) = rn(0+)

then Tm(0−)− T n(0+) are a multiple of 2 apart.

I Let Jβ = [β−2
2 , 2]. For x ∈ Jβ , both x and Tβ(x) ∈ [0, 2].

I Therefore, if Tm(0−) ∈ Jβ , either Tm(0−) or Tm+1(0−) will
match with orb(0+).

I Hence we need to estimate the measure of the set of β such
that orb(0−) avoids Jβ , and in particular is not dense.



Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and
dense and has full Lebesgue measure.

Observations towards the proof:
I Let rn(x) = #{0 ≤ i < n : T n(x) > 0}. If rm(0−) = rn(0+)

then Tm(0−)− T n(0+) are a multiple of 2 apart.
I Let Jβ = [β−2

2 , 2]. For x ∈ Jβ , both x and Tβ(x) ∈ [0, 2].

I Therefore, if Tm(0−) ∈ Jβ , either Tm(0−) or Tm+1(0−) will
match with orb(0+).

I Hence we need to estimate the measure of the set of β such
that orb(0−) avoids Jβ , and in particular is not dense.



Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and
dense and has full Lebesgue measure.

Observations towards the proof:
I Let rn(x) = #{0 ≤ i < n : T n(x) > 0}. If rm(0−) = rn(0+)

then Tm(0−)− T n(0+) are a multiple of 2 apart.
I Let Jβ = [β−2

2 , 2]. For x ∈ Jβ , both x and Tβ(x) ∈ [0, 2].
I Therefore, if Tm(0−) ∈ Jβ , either Tm(0−) or Tm+1(0−) will

match with orb(0+).

I Hence we need to estimate the measure of the set of β such
that orb(0−) avoids Jβ , and in particular is not dense.



Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and
dense and has full Lebesgue measure.

Observations towards the proof:
I Let rn(x) = #{0 ≤ i < n : T n(x) > 0}. If rm(0−) = rn(0+)

then Tm(0−)− T n(0+) are a multiple of 2 apart.
I Let Jβ = [β−2

2 , 2]. For x ∈ Jβ , both x and Tβ(x) ∈ [0, 2].
I Therefore, if Tm(0−) ∈ Jβ , either Tm(0−) or Tm+1(0−) will

match with orb(0+).
I Hence we need to estimate the measure of the set of β such

that orb(0−) avoids Jβ , and in particular is not dense.



Non-matching?

Is there always matching?

No. Eg. for β = 5, β = 411
12 and β = 415

16 , there is no matching.

There is a sequence βn ↘ 5 for which there is no matching.

There is Cantor sets in (2, 5] and (5, 6], accumulating on 5 resp. 6
of non-matching parameters.

Theorem: The non-matching set E has Hausdorff dimension 1.
The left neighborhood of β = 6 is responsible for this:

dimH(E \ (6− ε, 6)) < 1 for every ε > 0.
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Hausdorff dimension proof

Let β = 6− ε and F : [− ε
3 , 2−

ε
3 ]→ [− ε

3 , 2] the first entrance map.
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Up to the interval [− ε
3 , 0] which moves directly into Jβ , this is a

quadrupling map.
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Let Kε be the set of points
that remain in [0, 2− ε

3 ]
for all iterates of F .

I dimH(Kε)→ 1 as ε→ 0.
I If orb(0±) remain in Kε, then there is no matching.
I In fact, orb(0−) ⊂ Kε iff orb(0+) ⊂ Kε.
I dimH{β : orb(0−) ∈ Kε} = dimH(Kε).
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Other slopes
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Generalize to slope s

Tβ(x) =

{
T−β (x) = x + s if x ≤ 0,
T+
β (x) = β − sx if x ≥ 0.

For s = 1
2(
√
5 + 1) and

√
2 + 1 and some other, large intervals of

matching has been observed.

Figure: hµ(Tβ) for s =
√

5+1
2 , β ∈ [4.6, 6] (l) and β ∈ [5.29, 5.33] (r).

Note that these slopes are quadratic Pisot numbers.
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Other slopes
This is no coincidence.

Tβ preserves the ring H = Z[β, βs, s].
For matching, we need

#{0 ≤ i < κ− : T i (0−) > 0} = #{0 ≤ i < κ− : T i (0−) > 0},
so we look at the first return map F :

�
�
�
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matching

F : [0, s]→ [0, s]
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β

F : [0, β]→ [0, β]J
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any matching??
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typical matching?

F : [0, s]→ [0, s]
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Figure: Return map F for β < s, s < β < 3 +
√

5, and β > 3 +
√

5.

F acts affinely on H. Restricted to orb(0±), we need to iterate(
a
b

)
7→
(

0 −1
−1 −1

)(
a
b

)
+

(
τn
0

)
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