Matching for discontinuous interval maps

Henk Bruin (University of Vienna)
joint with
Carlo Carminati (University of Pisa) Alessandro Profeti (University of Pisa)
Stefano Marmi (University of Pisa)
explaining observations in a paper by
V. Botella-Soler, J. A. Oteo, J. Ros, and P. Glendinning

Madrid, July 2014

The map T_{β}

$$
T_{\beta}(x)= \begin{cases}T_{\beta}^{-}(x)=x+2 & \text { if } x \leq 0 \\ T_{\beta}^{+}(x)=\beta-2 x & \text { if } x \geq 0\end{cases}
$$

T_{β} preserves the $[\beta-\max \{2, \beta\}, \max \{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

Figure: Invariant density for the T_{β} : left $\beta=\frac{1}{2}(\sqrt{5}+1)$ right: $\beta=\sqrt[3]{7}$.

The map T_{β}

$$
T_{\beta}(x)= \begin{cases}T_{\beta}^{-}(x)=x+2 & \text { if } x \leq 0, \\ T_{\beta}^{+}(x)=\beta-2 x & \text { if } x \geq 0\end{cases}
$$

T_{β} preserves the $[\beta-\max \{2, \beta\}, \max \{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

Markov Partitions and Entropy

The interval partition $\left\{P_{i}\right\}$ is a Markov partition for T if

$$
T\left(P_{i}\right) \cap P_{j} \neq \emptyset \text { implies } T\left(P_{i}\right) \supset P_{j} .
$$

Markov Partitions and Entropy

The interval partition $\left\{P_{i}\right\}$ is a Markov partition for T if

$$
T\left(P_{i}\right) \cap P_{j} \neq \emptyset \text { implies } T\left(P_{i}\right) \supset P_{j} .
$$

The transition matrix $\Pi=\Pi_{i, j}$ is defined as:

$$
\Pi_{i, j}= \begin{cases}1 & \text { if } T\left(P_{i}\right) \supset P_{j} \\ 0 & \text { if } P_{j} \cap T\left(P_{i}\right)=\emptyset \\ \text { No other possibility, because }\left\{P_{i}\right\} \text { is Markov }\end{cases}
$$

Markov partitions and Entropy

Scale Π by the slopes $t_{i}=\left|D T_{\mid P_{i}}\right|$ to obtain a matrix

$$
A_{i, j}=\frac{1}{t_{i}} \Pi_{i, j}
$$

Then $\ell_{i}=\left|P_{i}\right|$ and $\left.\rho_{i}=\frac{d \mu}{d x} \right\rvert\, P_{i}$ satisfy $\sum_{i} \rho_{i} \ell_{i}=1$ and

$$
\left(\begin{array}{c}
\rho_{1} \\
\vdots \\
\rho_{N}
\end{array}\right)^{T} \quad A=\left(\begin{array}{c}
\rho_{1} \\
\vdots \\
\rho_{N}
\end{array}\right)^{T} \quad \text { and } \quad A\left(\begin{array}{c}
\ell_{1} \\
\vdots \\
\ell_{N}
\end{array}\right)=\left(\begin{array}{c}
\ell_{1} \\
\vdots \\
\ell_{N}
\end{array}\right)
$$

Markov Partitions and Entropy

The interval partition $\left\{P_{i}\right\}$ is a Markov partition for T if

$$
T\left(P_{i}\right) \cap P_{j} \neq \emptyset \text { implies } T\left(P_{i}\right) \supset P_{j} .
$$

The transition matrix $\Pi=\Pi_{i, j}$ is defined as:

$$
\Pi_{i, j}=\left\{\begin{array}{l}
1 \quad \text { if } T\left(P_{i}\right) \supset P_{j} \\
0 \quad \text { if } P_{j} \cap T\left(P_{i}\right)=\emptyset \\
\text { No other possibility, because }\left\{P_{i}\right\} \text { is Markov }
\end{array}\right.
$$

The topological entropy is

$$
h_{\text {top }}(T)=\log \sigma
$$

for σ the leading eigenvalue of Π.

Markov partitions and Entropy

Scale Π by the slopes $t_{i}=\left|D T_{\left|P_{i}\right|}\right|$ to obtain a matrix

$$
A_{i, j}=\frac{1}{t_{i}} \Pi_{i, j}
$$

Then $\ell_{i}=\left|P_{i}\right|$ and $\left.\rho_{i}=\frac{d \mu}{d x} \right\rvert\, P_{i}$ satisfy $\sum_{i} \rho_{i} \ell_{i}=1$ and

$$
\left(\begin{array}{c}
\rho_{1} \\
\vdots \\
\rho_{N}
\end{array}\right)^{T} \quad A=\left(\begin{array}{c}
\rho_{1} \\
\vdots \\
\rho_{N}
\end{array}\right)^{T} \quad \text { and } \quad A\left(\begin{array}{c}
\ell_{1} \\
\vdots \\
\ell_{N}
\end{array}\right)=\left(\begin{array}{c}
\ell_{1} \\
\vdots \\
\ell_{N}
\end{array}\right)
$$

Rokhlin's formula gives the metric entropy:

$$
h_{\mu}(T)=\sum_{i=1}^{N} \max \left\{\log \left(t_{i}\right), 0\right\} \mu\left(P_{i}\right)
$$

Not Markov but Matching

For the family T_{β}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{ \pm}>0$ such that

$$
T^{\kappa_{-}}\left(0^{-}\right)=T^{\kappa_{+}}\left(0^{+}\right) \text {and derivatives } D T^{\kappa_{-}}\left(0^{-}\right)=D T^{\kappa_{+}}\left(0^{+}\right)
$$

Not Markov but Matching

For the family T_{β}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{ \pm}>0$ such that

$$
T^{\kappa_{-}}\left(0^{-}\right)=T^{\kappa_{+}}\left(0^{+}\right) \text {and derivatives } D T^{\kappa_{-}}\left(0^{-}\right)=D T^{\kappa_{+}}\left(0^{+}\right)
$$

The pre-matching set is

$$
\left.\left.\left\{T^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{-}-1}\right\} \cup\left\{T^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{+}-1}\right\} ;
$$

The pre-matching partition are the complementary domains of the prematching set; it plays the role of Markov partition.

Not Markov but Matching

Theorem: If T has matching, then the density $\rho=\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

Not Markov but Matching

Theorem: If T has matching, then the density $\rho=\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

Definition: The matching index is $\Delta=\kappa_{+}-\kappa_{-}$.
Theorem: On every parameter interval where matching occurs, topological and metric entropy

$$
h_{\mu}\left(T_{\beta}\right) \text { and } h_{\text {top }}\left(T_{\beta}\right) \text { are }\left\{\begin{aligned}
\text { decreasing } & \text { if } \Delta>0 ; \\
\text { constant } & \text { if } \Delta=0 ; \\
\text { increasing } & \text { if } \Delta<0,
\end{aligned}\right.
$$

as function of β.

Figure: Entropy $h_{\mu}\left(T_{\beta}\right)$ for $\beta \in[4.6,6]$ (I) and $\beta \in[5.29,5.33](\mathrm{r})$.

Entropy seems constant on the parameter interval [2,5]; it is filled with countably many intervals on which $\Delta=0$.

Remarks on the Proof

Let F be the first return map
to a nice interval $J \ni T_{\beta}^{\kappa+\left(0^{+}\right)}$
The return time is τ.

Remarks on the Proof

Let F be the first return map to a nice interval $J \ni T_{\beta}^{\kappa_{+}\left(0^{+}\right)}$. The return time is τ.

- F is independent of β, and has only linear branches, so it preserves Lebesgue measure λ.

Remarks on the Proof

Let F be the first return map to a nice interval $J \ni T_{\beta}^{\kappa_{+}\left(0^{+}\right)}$.
The return time is τ.

- F is independent of β, and has only linear branches, so it preserves Lebesgue measure λ.
- The proportion of branches using κ_{+}in their return time decreases as β increases.

Remarks on the Proof

Let F be the first return map
to a nice interval $J \ni T_{\beta}^{\kappa_{+}\left(0^{+}\right)}$
The return time is τ.

- F is independent of β, and has only linear branches, so it preserves Lebesgue measure λ.
- The proportion of branches using κ_{+}in their return time decreases as β increases.
- By Abramov's formula $h_{\mu}\left(T_{\beta}\right)=\frac{1}{\int \tau d \lambda} h_{\lambda}(F)$ is monotone in β.

Remarks on the Proof

Let F be the first return map
to a nice interval $J \ni T_{\beta}^{\kappa+}\left(0^{+}\right)$
The return time is τ.

- F is independent of β, and has only linear branches, so it preserves Lebesgue measure λ.
- The proportion of branches using κ_{+}in their return time decreases as β increases.
- By Abramov's formula $h_{\mu}\left(T_{\beta}\right)=\frac{1}{\int \tau d \lambda} h_{\lambda}(F)$ is monotone in β.
- The periods of periodic points in J change by Δ if κ_{+}is used instead of κ_{-}. This proportion decreases as β increases.
Topological entropy is the exponential growth rate

$$
h_{\text {top }}\left(T_{\beta}\right)=\lim _{n} \frac{1}{n} \#\{n \text {-periodic points }\},
$$

so it is monotone in β.

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Observations towards the proof:

- Let $r_{n}(x)=\#\left\{0 \leq i<n: T^{n}(x)>0\right\}$. If $r_{m}\left(0^{-}\right)=r_{n}\left(0^{+}\right)$ then $T^{m}\left(0^{-}\right)-T^{n}\left(0^{+}\right)$are a multiple of 2 apart.

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Observations towards the proof:

- Let $r_{n}(x)=\#\left\{0 \leq i<n: T^{n}(x)>0\right\}$. If $r_{m}\left(0^{-}\right)=r_{n}\left(0^{+}\right)$ then $T^{m}\left(0^{-}\right)-T^{n}\left(0^{+}\right)$are a multiple of 2 apart.
- Let $J_{\beta}=\left[\frac{\beta-2}{2}, 2\right]$. For $x \in J_{\beta}$, both x and $T_{\beta}(x) \in[0,2]$.

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Observations towards the proof:

- Let $r_{n}(x)=\#\left\{0 \leq i<n: T^{n}(x)>0\right\}$. If $r_{m}\left(0^{-}\right)=r_{n}\left(0^{+}\right)$ then $T^{m}\left(0^{-}\right)-T^{n}\left(0^{+}\right)$are a multiple of 2 apart.
- Let $J_{\beta}=\left[\frac{\beta-2}{2}, 2\right]$. For $x \in J_{\beta}$, both x and $T_{\beta}(x) \in[0,2]$.
- Therefore, if $T^{m}\left(0^{-}\right) \in J_{\beta}$, either $T^{m}\left(0^{-}\right)$or $T^{m+1}\left(0^{-}\right)$will match with orb $\left(0^{+}\right)$.

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Observations towards the proof:

- Let $r_{n}(x)=\#\left\{0 \leq i<n: T^{n}(x)>0\right\}$. If $r_{m}\left(0^{-}\right)=r_{n}\left(0^{+}\right)$ then $T^{m}\left(0^{-}\right)-T^{n}\left(0^{+}\right)$are a multiple of 2 apart.
- Let $J_{\beta}=\left[\frac{\beta-2}{2}, 2\right]$. For $x \in J_{\beta}$, both x and $T_{\beta}(x) \in[0,2]$.
- Therefore, if $T^{m}\left(0^{-}\right) \in J_{\beta}$, either $T^{m}\left(0^{-}\right)$or $T^{m+1}\left(0^{-}\right)$will match with orb $\left(0^{+}\right)$.
- Hence we need to estimate the measure of the set of β such that orb $\left(0^{-}\right)$avoids J_{β}, and in particular is not dense.

Non-matching?

Is there always matching?

Non－matching？

Is there always matching？
No．Eg．for $\beta=5, \beta=4 \frac{11}{12}$ and $\beta=4 \frac{15}{16}$ ，there is no matching．

Non－matching？

Is there always matching？
No．Eg．for $\beta=5, \beta=4 \frac{11}{12}$ and $\beta=4 \frac{15}{16}$ ，there is no matching． There is a sequence $\beta_{n} \searrow 5$ for which there is no matching．
There is Cantor sets in $(2,5]$ and $(5,6]$ ，accumulating on 5 resp． 6 of non－matching parameters．

Non－matching？

Is there always matching？
No．Eg．for $\beta=5, \beta=4 \frac{11}{12}$ and $\beta=4 \frac{15}{16}$ ，there is no matching． There is a sequence $\beta_{n} \searrow 5$ for which there is no matching．
There is Cantor sets in（2，5］and（5，6］，accumulating on 5 resp． 6 of non－matching parameters．

Theorem：The non－matching set E has Hausdorff dimension 1. The left neighborhood of $\beta=6$ is responsible for this：

$$
\operatorname{dim}_{H}(E \backslash(6-\varepsilon, 6))<1 \text { for every } \varepsilon>0
$$

Hausdorff dimension proof
Let $\beta=6-\varepsilon$ and $F:\left[-\frac{\varepsilon}{3}, 2-\frac{\varepsilon}{3}\right] \rightarrow\left[-\frac{\varepsilon}{3}, 2\right]$ the first entrance map．

Hausdorff dimension proof

Let $\beta=6-\varepsilon$ and $F:\left[-\frac{\varepsilon}{3}, 2-\frac{\varepsilon}{3}\right] \rightarrow\left[-\frac{\varepsilon}{3}, 2\right]$ the first entrance map.

Up to the interval $\left[-\frac{\varepsilon}{3}, 0\right]$ which moves directly into J_{β}, this is a quadrupling map.

Hausdorff dimension proof

Let K_{ε} be the set of points that remain in $\left[0,2-\frac{\varepsilon}{3}\right]$ for all iterates of F.

- $\operatorname{dim}_{H}\left(K_{\varepsilon}\right) \rightarrow 1$ as $\varepsilon \rightarrow 0$.

Hausdorff dimension proof

Let K_{ε} be the set of points that remain in $\left[0,2-\frac{\varepsilon}{3}\right]$ for all iterates of F.

Hausdorff dimension proof

Let K_{ε} be the set of points that remain in $\left[0,2-\frac{\varepsilon}{3}\right]$ for all iterates of F.

- $\operatorname{dim}_{H}\left(K_{\varepsilon}\right) \rightarrow 1$ as $\varepsilon \rightarrow 0$.
- If $\operatorname{orb}\left(0^{ \pm}\right)$remain in K_{ε}, then there is no matching.

Hausdorff dimension proof

Let K_{ε} be the set of points that remain in $\left[0,2-\frac{\varepsilon}{3}\right]$ for all iterates of F.

- $\operatorname{dim}_{H}\left(K_{\varepsilon}\right) \rightarrow 1$ as $\varepsilon \rightarrow 0$.
- If $\operatorname{orb}\left(0^{ \pm}\right)$remain in K_{ε}, then there is no matching.
- In fact, $\operatorname{orb}\left(0^{-}\right) \subset K_{\varepsilon}$ iff $\operatorname{orb}\left(0^{+}\right) \subset K_{\varepsilon}$.

Hausdorff dimension proof

Let K_{ε} be the set of points that remain in $\left[0,2-\frac{\varepsilon}{3}\right]$ for all iterates of F.

- $\operatorname{dim}_{H}\left(K_{\varepsilon}\right) \rightarrow 1$ as $\varepsilon \rightarrow 0$.
- If $\operatorname{orb}\left(0^{ \pm}\right)$remain in K_{ε}, then there is no matching.
- In fact, $\operatorname{orb}\left(0^{-}\right) \subset K_{\varepsilon}$ iff $\operatorname{orb}\left(0^{+}\right) \subset K_{\varepsilon}$.
- $\operatorname{dim}_{H}\left\{\beta: \operatorname{orb}\left(0^{-}\right) \in K_{\varepsilon}\right\}=\operatorname{dim}_{H}\left(K_{\varepsilon}\right)$.

Other slopes

Generalize to slope s
$T_{\beta}(x)= \begin{cases}T_{\beta}^{-}(x)=x+s & \text { if } x \leq 0, \\ T_{\beta}^{+}(x)=\beta-s x & \text { if } x \geq 0 .\end{cases}$

Other slopes

Generalize to slope s

$$
T_{\beta}(x)= \begin{cases}T_{\beta}^{-}(x)=x+s & \text { if } x \leq 0 \\ T_{\beta}^{+}(x)=\beta-s x & \text { if } x \geq 0\end{cases}
$$

For $s=\frac{1}{2}(\sqrt{5}+1)$ and $\sqrt{2}+1$ and some other, large intervals of matching has been observed.

Figure: $h_{\mu}\left(T_{\beta}\right)$ for $s=\frac{\sqrt{5}+1}{2}, \beta \in[4.6,6](\mathrm{I})$ and $\beta \in[5.29,5.33](\mathrm{r})$.

Other slopes

Generalize to slope s

$$
T_{\beta}(x)= \begin{cases}T_{\beta}^{-}(x)=x+s & \text { if } x \leq 0 \\ T_{\beta}^{+}(x)=\beta-s x & \text { if } x \geq 0\end{cases}
$$

For $s=\frac{1}{2}(\sqrt{5}+1)$ and $\sqrt{2}+1$ and some other, large intervals of matching has been observed.

Figure: $h_{\mu}\left(T_{\beta}\right)$ for $s=\frac{\sqrt{5}+1}{2}, \beta \in[4.6,6](\mathrm{I})$ and $\beta \in[5.29,5.33](\mathrm{r})$.

Note that these slopes are quadratic Pisot numbers.

Other slopes

This is no coincidence. T_{β} preserves the ring $H=\mathbb{Z}[\beta, \beta s, s]$.

Other slopes

This is no coincidence.

Other slopes

This is no coincidence. T_{β} preserves the ring $H=\mathbb{Z}[\beta, \beta s, s]$.
For matching, we need

$$
\#\left\{0 \leq i<\kappa^{-}: T^{i}\left(0^{-}\right)>0\right\}=\#\left\{0 \leq i<\kappa^{-}: T^{i}\left(0^{-}\right)>0\right\}
$$

so we look at the first return map F :

Figure: Return map F for $\beta<s, s<\beta<3+\sqrt{5}$, and $\beta>3+\sqrt{5}$.

Other slopes

This is no coincidence. T_{β} preserves the ring $H=\mathbb{Z}[\beta, \beta s, s]$.
For matching, we need

$$
\#\left\{0 \leq i<\kappa^{-}: T^{i}\left(0^{-}\right)>0\right\}=\#\left\{0 \leq i<\kappa^{-}: T^{i}\left(0^{-}\right)>0\right\},
$$

so we look at the first return map F :

Figure: Return map F for $\beta<s, s<\beta<3+\sqrt{5}$, and $\beta>3+\sqrt{5}$.
F acts affinely on H. Restricted to $\operatorname{orb}\left(0^{ \pm}\right)$, we need to iterate

$$
\binom{a}{b} \mapsto\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)\binom{a}{b}+\binom{\tau_{n}}{0}
$$

Other slopes

F act affinely on H. Restricted to $\operatorname{orb}\left(0^{ \pm}\right)$, we need to iterate

$$
\binom{a_{n+1}}{b_{n+1}}=\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)\binom{a_{n}}{b_{n}}+\binom{\tau_{n}\left(0^{ \pm}\right)}{0},
$$

where $\tau_{n}\left(0^{ \pm}\right)$is the branch number containing $F^{n}\left(0^{ \pm}\right)$, starting with

$$
\binom{a_{0}}{b_{0}}=\binom{1}{0} \text { for } 0^{-} \quad\binom{a_{0}}{b_{0}}=\binom{0}{0} \text { for } 0^{+}
$$

Matching occurs if there is n such that:

$$
\binom{a_{n}\left(0^{-}\right)}{b_{n}\left(0^{-}\right)}=\binom{a_{n}\left(0^{+}\right)}{b_{n}\left(0^{+}\right)}
$$

Other slopes

F act affinely on H. Restricted to $\operatorname{orb}\left(0^{ \pm}\right)$, we need to iterate

$$
\binom{a_{n+1}}{b_{n+1}}=\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)\binom{a_{n}}{b_{n}}+\binom{\tau_{n}\left(0^{ \pm}\right)}{0},
$$

where $\tau_{n}\left(0^{ \pm}\right)$is the branch number containing $F^{n}\left(0^{ \pm}\right)$, starting with

$$
\binom{a_{0}}{b_{0}}=\binom{1}{0} \text { for } 0^{-} \quad\binom{a_{0}}{b_{0}}=\binom{0}{0} \text { for } 0^{+}
$$

Other slopes

F act affinely on H. Restricted to $\operatorname{orb}\left(0^{ \pm}\right)$, we need to iterate

$$
\binom{a_{n+1}}{b_{n+1}}=\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)\binom{a_{n}}{b_{n}}+\binom{\tau_{n}\left(0^{ \pm}\right)}{0},
$$

where $\tau_{n}\left(0^{ \pm}\right)$is the branch number containing $F^{n}\left(0^{ \pm}\right)$, starting with

$$
\binom{a_{0}}{b_{0}}=\binom{1}{0} \text { for } 0^{-} \quad\binom{a_{0}}{b_{0}}=\binom{0}{0} \text { for } 0^{+}
$$

Matching occurs if there is n such that:

$$
\binom{a_{n}\left(0^{-}\right)}{b_{n}\left(0^{-}\right)}=\binom{a_{n}\left(0^{+}\right)}{b_{n}\left(0^{+}\right)}
$$

Question: Does this happen Lebesgue typically for $s=\frac{\sqrt{5}+1}{2}$?C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, Dynamics of continued fractions and kneading sequences of unimodal maps, Discrete Contin. Dyn. Syst. 33 (2013), no. 4, 1313-1332.

国 V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, Families of piecewise linear maps with constant Lyapunov exponents, J. Phys. A: Math. Theor. 46125101
: C. Carminati, G. Tiozzo, Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), no. 4, 1049-1070.
(H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399-426

固 H. Nakada, R. Natsui, The non-monotonicity of the entropy of α-continued fraction transformations, Nonlinearity, 21 (2008), 1207-1225.

