

 T_{β} preserves the $[\beta - \max\{2, \beta\}, \max\{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

 $T(P_i) \cap P_i \neq \emptyset$ implies $T(P_i) \supset P_i$.

Markov Partitions and Entropy

The interval partition $\{P_i\}$ is a Markov partition for T if

 $T(P_i) \cap P_i \neq \emptyset$ implies $T(P_i) \supset P_i$.

The transition matrix $\Pi = \Pi_{i,j}$ is defined as:

 $\Pi_{i,j} = \begin{cases} 1 & \text{if } T(P_i) \supset P_j, \\ 0 & \text{if } P_j \cap T(P_i) = \emptyset, \\ \text{No other possibility, because } \{P_i\} \text{ is Markov} \end{cases}$

Markov Partitions and Entropy

The interval partition $\{P_i\}$ is a Markov partition for T if

 $T(P_i) \cap P_j \neq \emptyset$ implies $T(P_i) \supset P_j$.

The transition matrix $\Pi = \Pi_{i,j}$ is defined as:

 $\Pi_{i,j} = \begin{cases} 1 & \text{if } T(P_i) \supset P_j, \\ 0 & \text{if } P_j \cap T(P_i) = \emptyset, \\ \text{No other possibility, because } \{P_i\} \text{ is Markov} \end{cases}$

The topological entropy is

$$h_{top}(T) = \log \sigma$$

for σ the leading eigenvalue of Π .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のんで

Markov partitions and Entropy

Scale Π by the slopes $t_i = |DT_{|P_i|}|$ to obtain a matrix

 $A_{i,j} = \frac{1}{t_i} \Pi_{i,j}.$

Then $\ell_i = |P_i|$ and $\rho_i = \frac{d\mu}{dx}|_{P_i}$ satisfy $\sum_i \rho_i \ell_i = 1$ and

$$\begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T A = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T \quad \text{and} \quad A \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix} = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix}$$

Markov partitions and Entropy

Scale Π by the slopes $t_i = |DT_{|P_i}|$ to obtain a matrix

$$A_{i,j}=\frac{1}{t_i}\Pi_{i,j}.$$

Then $\ell_i = |P_i|$ and $\rho_i = rac{d\mu}{dx}_{|P_i|}$ satisfy $\sum_i \rho_i \ell_i = 1$ and

$$\begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T A = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T \quad \text{and} \quad A \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix} = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix}$$

Rokhlin's formula gives the metric entropy:

$$h_{\mu}(T) = \sum_{i=1}^{N} \max\{\log(t_i), 0\}\mu(P_i)\}$$

Not Markov but Matching

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

```
T^{\kappa_{-}}(0^{-}) = T^{\kappa_{+}}(0^{+}) and derivatives DT^{\kappa_{-}}(0^{-}) = DT^{\kappa_{+}}(0^{+})
```

Theorem: If T has matching, then the density $\rho = \frac{d\mu}{dx}$ is constant

on each element of the pre-matching partition.

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

 $T^{\kappa_{-}}(0^{-}) = T^{\kappa_{+}}(0^{+})$ and derivatives $DT^{\kappa_{-}}(0^{-}) = DT^{\kappa_{+}}(0^{+})$

The pre-matching set is

 $\{T^{j}(0^{-})\}_{i=0}^{\kappa_{-}-1}\} \cup \{T^{j}(0^{-})\}_{j=0}^{\kappa_{+}-1}\};$

The pre-matching partition are the complementary domains of the prematching set; it plays the role of Markov partition.

- ◆ □ ▶ → ● ▶ → ● ▶ → ● ● ● ● ● ● ●

Not Markov but Matching

Theorem: If T has matching, then the density $\rho = \frac{d\mu}{dx}$ is constant on each element of the pre-matching partition.

Definition: The matching index is $\Delta = \kappa_{+} - \kappa_{-}$.

Theorem: On every parameter interval where matching occurs, topological and metric entropy

 $h_{\mu}(T_{\beta}) ext{ and } h_{top}(T_{\beta}) ext{ are } \left\{ egin{array}{ll} ext{decreasing} & ext{if } \Delta > 0; \\ ext{constant} & ext{if } \Delta = 0; \\ ext{increasing} & ext{if } \Delta < 0, \end{array}
ight.$

as function of β .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Remarks on the Proof

Let *F* be the first return map to a nice interval $J \ni T_{\beta}^{\kappa_{+}(0^{+})}$. The return time is τ .

- F is independent of β, and has only linear branches, so it preserves Lebesgue measure λ.
- The proportion of branches using κ₊ in their return time decreases as β increases.
- By Abramov's formula $h_{\mu}(T_{\beta}) = \frac{1}{\int \tau d\lambda} h_{\lambda}(F)$ is monotone in β .

Remarks on the Proof

Let *F* be the first return map to a nice interval $J \ni T_{\beta}^{\kappa_{+}(0^{+})}$. The return time is τ .

- F is independent of β, and has only linear branches, so it preserves Lebesgue measure λ.
- The proportion of branches using κ₊ in their return time decreases as β increases.
- By Abramov's formula $h_{\mu}(T_{\beta}) = \frac{1}{\int \tau d\lambda} h_{\lambda}(F)$ is monotone in β .
- The periods of periodic points in J change by Δ if κ₊ is used instead of κ₋. This proportion decreases as β increases.
 Topological entropy is the exponential growth rate

$$h_{top}(T_{\beta}) = \lim_{n} \frac{1}{n} \# \{n \text{-periodic points}\},\$$

so it is monotone in β .

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Observations towards the proof:

▶ Let $r_n(x) = \#\{0 \le i < n : T^n(x) > 0\}$. If $r_m(0^-) = r_n(0^+)$ then $T^m(0^-) - T^n(0^+)$ are a multiple of 2 apart.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Observations towards the proof:

- ▶ Let $r_n(x) = \#\{0 \le i < n : T^n(x) > 0\}$. If $r_m(0^-) = r_n(0^+)$ then $T^m(0^-) T^n(0^+)$ are a multiple of 2 apart.
- Let $J_{\beta} = [\frac{\beta-2}{2}, 2]$. For $x \in J_{\beta}$, both x and $T_{\beta}(x) \in [0, 2]$.

Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and dense and has full Lebesgue measure.

Observations towards the proof:

- ► Let $r_n(x) = \#\{0 \le i < n : T^n(x) > 0\}$. If $r_m(0^-) = r_n(0^+)$ then $T^m(0^-) T^n(0^+)$ are a multiple of 2 apart.
- Let $J_{\beta} = [\frac{\beta-2}{2}, 2]$. For $x \in J_{\beta}$, both x and $T_{\beta}(x) \in [0, 2]$.
- Therefore, if $T^m(0^-) \in J_\beta$, either $T^m(0^-)$ or $T^{m+1}(0^-)$ will match with $orb(0^+)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Non-matching?	Non-matching?
Is there always matching?	Is there always matching?
No. Eg. for $\beta = 5$, $\beta = 4\frac{11}{12}$ and $\beta = 4\frac{15}{16}$, there is no matching.	No. Eg. for $\beta = 5$, $\beta = 4\frac{11}{12}$ and $\beta = 4\frac{15}{16}$, there is no matching.
	There is a sequence $\beta_n \searrow 5$ for which there is no matching.
	There is Cantor sets in (2,5] and (5,6], accumulating on 5 resp. 6 of non-matching parameters.
< ロ > < 置 > < 置 > < 置 > うへで	(ロ) (同) (目) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
Non-matching?	Hausdorff dimension proof
	Let $\beta = 6 - \varepsilon$ and $F : \left[-\frac{\varepsilon}{3}, 2 - \frac{\varepsilon}{3}\right] \to \left[-\frac{\varepsilon}{3}, 2\right]$ the first entrance map.
Is there always matching?	
No. Eg. for $\beta = 5$, $\beta = 4\frac{11}{12}$ and $\beta = 4\frac{15}{16}$, there is no matching.	
There is a sequence $\beta_n \searrow 5$ for which there is no matching.	
There is Cantor sets in $(2, 5]$ and $(5, 6]$, accumulating on 5 resp. 6 of non-matching parameters.	
Theorem: The non-matching set <i>E</i> has Hausdorff dimension 1. The left neighborhood of $\beta = 6$ is responsible for this:	
$\dim_{H}(E \setminus (6 - \varepsilon, 6)) < 1$ for every $\varepsilon > 0$.	

Other slopes

This is no coincidence. T_{β} preserves the ring $H = \mathbb{Z}[\beta, \beta s, s]$. For matching, we need

$$\#\{0 \le i < \kappa^- : T^i(0^-) > 0\} = \#\{0 \le i < \kappa^- : T^i(0^-) > 0\},\$$

so we look at the first return map F:

Other slopes

F act affinely on *H*. Restricted to $orb(0^{\pm})$, we need to iterate

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix} + \begin{pmatrix} \tau_n(0^{\pm}) \\ 0 \end{pmatrix},$$

where $\tau_n(0^{\pm})$ is the branch number containing $F^n(0^{\pm})$, starting with

 $\begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ for } 0^- \qquad \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ for } 0^+$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少�?

Other slopes

F act affinely on H. Restricted to $\operatorname{orb}(0^{\pm})$, we need to iterate

$$egin{pmatrix} a_{n+1}\ b_{n+1} \end{pmatrix} = egin{pmatrix} 0 & -1\ -1 & -1 \end{pmatrix} egin{pmatrix} a_n\ b_n \end{pmatrix} + egin{pmatrix} au_n(0^\pm)\ 0 \end{pmatrix},$$

where $\tau_n(0^{\pm})$ is the branch number containing $F^n(0^{\pm})$, starting with

 $\begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for $0^ \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ for 0^+

Matching occurs if there is n such that:

$$\begin{pmatrix} a_n(0^-) \\ b_n(0^-) \end{pmatrix} = \begin{pmatrix} a_n(0^+) \\ b_n(0^+) \end{pmatrix}$$

Other slopes

F act affinely on H. Restricted to $\operatorname{orb}(0^{\pm})$, we need to iterate

$$egin{pmatrix} a_{n+1} \ b_{n+1} \end{pmatrix} = egin{pmatrix} 0 & -1 \ -1 & -1 \end{pmatrix} egin{pmatrix} a_n \ b_n \end{pmatrix} + egin{pmatrix} au_n(0^{\pm}) \ 0 \end{pmatrix} .$$

where $\tau_n(0^{\pm})$ is the branch number containing $F^n(0^{\pm})$, starting with

$$\begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ for } 0^- \qquad \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ for } 0^+$$

Matching occurs if there is n such that:

 $\binom{a_n(0^-)}{b_n(0^-)} = \binom{a_n(0^+)}{b_n(0^+)}$

Question: Does this happen Lebesgue typically for $s = \frac{\sqrt{5}+1}{2}$?

- C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, *Dynamics of continued fractions and kneading sequences of unimodal maps,* Discrete Contin. Dyn. Syst. **33** (2013), no. 4, 1313–1332.
- V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, *Families of piecewise linear maps with constant Lyapunov exponents*, J. Phys. A: Math. Theor. **46** 125101
- C. Carminati, G. Tiozzo, Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), no. 4, 1049–1070.
- H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399–426
- H. Nakada, R. Natsui, *The non-monotonicity of the entropy of* α *-continued fraction transformations*, Nonlinearity, **21** (2008), 1207–1225.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ