Entropy and Switching Systems

José M. Amigó¹, Peter Kloeden², Ángel Giménez¹

¹Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain)
²Fachbereich Mathematik, Johan Wolfgang Goethe Universität, Frankfurt (Germany)

Madrid, July 2014

OUTLINE

- Introduction
- Switching systems
- **Simple case: 1D affine constituent maps**
- General case
- Conclusion
- References

Given

- ullet two dissipative, continuous maps $f_{\pm 1}: \mathbb{R}^d
 ightarrow \mathbb{R}^d$,
- a switching or control sequence

$$\mathbf{s} = (..., s_{-n}, ..., s_0, ...s_n, ...) \in \{-1, +1\}^{\mathbb{Z}},$$

the corresponding (discrete) time-switched system is defined as

$$x_{n+1} = f_{s_n}(x_n).$$

Time-switched systems (or switching systems) are an instance of non-autonomous dynamical systems.

Remark. $S = \{-1, +1\}^{\mathbb{Z}}$ endowed with

$$\operatorname{dist}_{\mathcal{S}}(\mathbf{s},\mathbf{s}') = \sum_{n \in \mathbb{Z}} 2^{-|n|} |s_n - s'_n|,$$

is a compact metric space.

Set

$$\mathsf{Complexity}(\mathsf{control}) := h_{top}(\sigma)$$

where

$$\sigma:(\cdots,s_n,s_{n+1},\cdots)\mapsto(\cdots,s_{n+1},s_{n+2},\cdots).$$

is the shift on \mathcal{S} .

Let $\tilde{\Sigma}$ be the shift on the "entire solutions" of the switched dynamics. Set

$$\mathsf{Complexity}(\mathsf{switched} \ \mathsf{dynamics}) \ := h_{top}(ilde{\Sigma}).$$

Result. Under some provisos,

 $Complexity(control) \le Complexity(switched dynamics)$

Corollary. (Complexity increase via switching) If

$$Complexity(control) > h_{top}(f_+), h_{top}(f_-)$$

then

Complexity(switched dynamics) $> h(f_+), h(f_-).$

In general, the emergence of different properties to those of the constituent maps via switching is called *Parrondo's paradox*.

- Original version¹: Switching two loosing games can produce a winning game.
- Dynamical version²: Periodic switching of chaotic maps can produce order.
- A possible topological version: Switching of noncomplex dynamics can produce a complex dynamics.

¹J.M.R. Parrondo, G.P. Harner, D. Abbott, Phys. Rev. Lett. 85 (2000).

²J. Almeida, D. Peralta-Salas, M. Romera, Physica D 200 (2006). Entropy

Switching systems can be studied by means of *cocycle maps*, which are continuous maps

$$\varphi: \mathbb{N}_0 \times \{-1, +1\}^{\mathbb{Z}} \times \mathbb{R}^d \to \mathbb{R}^d$$

with

$$\varphi(0, \mathbf{s}, x_0) = x_0
\varphi(n, \mathbf{s}, x_0) = f_{s_{n-1}} \circ \cdots \circ f_{s_1} \circ f_{s_0}(x_0), \quad n \ge 1.$$

Then (cocycle property)

$$\varphi(n+k,\mathbf{s},x_0)=\varphi(n,\sigma^k\mathbf{s},\varphi(k,\mathbf{s},x_0)), \ \forall n,k\geq 0.$$

Def.³ (σ, φ) is a skew product flow on $\{-1, +1\}^{\mathbb{Z}} \times \mathbb{R}^d$

J.M. Amigó (CIO) Entropy Madrid, July 2014 7 / 24

³P.E. Kloeden, M. Rasmussen, *Nonautonomous Dynamical Systems*, AMS, 2010.

Def. An *entire solution* of (σ, φ) is a map $\chi: \mathcal{S} \to \mathbb{R}^d$ such that

$$\chi(\sigma^n\mathbf{s})=\varphi(n,\mathbf{s},\chi(\mathbf{s}))$$
 for all $n\geq 0$.

More generally,

$$\chi(\sigma^n \mathbf{s}) = \varphi(n-k, \sigma^k \mathbf{s}, \chi(\sigma^k \mathbf{s})),$$

for all $\mathbf{s} \in \mathcal{S}$ and $n, k \in \mathbb{Z}$ with $k \leq n$.

Interpretation. $\chi(\mathbf{s})$ is the point of the *orbit*

$$\{\chi(\sigma^n\mathbf{s}):n\in\mathbb{Z}\}$$

at time n=0.

Def. The space $\mathcal K$ of compact subsets of $\mathbb R^d$ is a complete metric space with the *Hausdorff metric*

$$dist_H(A,B) := \max\{\rho(A,B), \rho(B,A)\}$$

where $\rho(A,B)$ is the Hausdorff semi-distance defined by

$$\rho(A,B) := \max_{a \in A} \operatorname{dist}(a,B), \qquad \operatorname{dist}(a,B) := \min_{b \in B} |a - b|.$$

J.M. Amigó (CIO) Entropy Madrid, July 2014 9 / 24

Def. A pullback attractor is a family of nonempty compact subsets,

$$\mathfrak{A} = \{A(\mathbf{s}), \mathbf{s} \in \mathcal{S}\} \subset \mathcal{K},$$

which

(i) is φ -invariant, i.e.,

$$\varphi(n, \mathbf{s}, A(\mathbf{s})) = A(\sigma^n \mathbf{s}), \qquad n \ge 0,$$

(ii) pullback attracts, i.e.

$$\operatorname{dist}_{H}\left(\varphi(n,\sigma^{-n}\mathbf{s},D),A(\mathbf{s})\right)\to 0 \qquad \text{for } n\to\infty$$

for every nonempty bounded subset $D \subset \mathbb{R}^d$.

The $A(\mathbf{s})$ are called the *component sets* of the attractor \mathfrak{A} .

Remarks.

- The component sets $A(\mathbf{s})$ consist of entire solutions bounded in the past.
- Pullback attractors exist under more general conditions than forward attractors.

Constituent maps: $f_{\pm 1}: \mathbb{R} \to \mathbb{R}$,

$$f_{\pm 1}(x) = \theta_{\pm}x \pm 1 \ (0 < \theta_+, \theta_- < 1, \theta_+ \neq \theta_-).$$

Remark: $h_{top}(f_{\pm 1}) = 0$.

• The component sets of the attractor $\mathfrak{A} = \{A(\mathbf{s}) : \mathbf{s} \in \mathcal{S}\}$ are singletons:

$$A(\mathbf{s}) = \{\chi(\mathbf{s})\} \;\; ext{with} \; \chi(\mathbf{s}) \in \left[rac{-1}{1- heta_-}, rac{1}{1- heta_+}
ight]$$
 ,

where $\chi(\mathbf{s})$ are the *entire solutions* of the skew product (σ, φ) .

• Thus, Hausdorff distance = Hausdorff semidistance = Euclidean distance:

$$\operatorname{dist}_{H}(\chi(\mathbf{s}), \chi(\mathbf{s}^{*})) = \rho(\chi(\mathbf{s}), \chi(\mathbf{s}^{*})) = |\chi(\mathbf{s}) - \chi(\mathbf{s}^{*})|.$$

It follows that the mapping

$$egin{array}{lcl} \mathcal{S} &
ightarrow & \mathfrak{A} = \left[rac{-1}{1- heta_-}, rac{1}{1- heta_+}
ight] \ \mathbf{s} & \mapsto & \chi(\mathbf{s}) \end{array}$$

is continuous.

Proposition. Define

$$\Phi: \quad \mathcal{S} \quad \to \quad \mathfrak{A}^{\mathbb{Z}}$$

$$\mathbf{s} \quad \mapsto \quad (\chi(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}}$$

- (a) Then Φ is 1-to-1 and bicontinuous.
- (b) If Σ is the shift on $\mathfrak{A}^{\mathbb{Z}}$, then

$$\begin{array}{ccc} \mathcal{S} & \stackrel{\sigma}{\rightarrow} & \mathcal{S} \\ \Phi \downarrow & & \downarrow \Phi \\ \mathfrak{A}^{\mathbb{Z}} & \stackrel{\Sigma}{\rightarrow} & \mathfrak{A}^{\mathbb{Z}} \end{array}$$

14 / 24

commutes.

Here

$$\operatorname{dist}\left((\chi(\sigma^n\mathbf{s}))_{n\in\mathbb{Z}},(\chi(\sigma^n\mathbf{s}^*))_{n\in\mathbb{Z}}\right):=\sum_{n\in\mathbb{Z}}\frac{|\chi(\sigma^n\mathbf{s})-\chi(\sigma^n\mathbf{s}^*)|}{2^{|n|}}$$

Therefore

$$h_{top}(\Sigma|_{\Phi(\mathcal{S})}) = h_{top}(\sigma) := \mathsf{Complexity}(\mathsf{control}).$$

Call

Complexity(switched dynamics)
$$:= h_{top}(\Sigma|_{\Phi(\mathcal{S})}).$$

Thus:

$${\sf Complexity}({\sf switched\ dynamics}) = {\sf Complexity}({\sf control}).$$

Corollary. Sufficient condition for entropy increase via switching: If

$$h_{top}(\sigma) > 0$$

then

Complexity(switched dynamics)
$$> 0 = h_{top}(f_{\pm})$$
.

General assumptions for switched dynamics on \mathbb{R}^d , $d \geq 1$:

- The constituent mappings have attractors.
- The switched dynamics has a pullback attractor

$$\mathfrak{A} = \{ A(\mathbf{s}) : \mathbf{s} \in \mathcal{S} \}$$

such that $A(\mathbf{s})$ are nonempty, uniformly bounded compact subsets of \mathbb{R}^d , i.e., there is a closed ball $\bar{B}_R(0) \subset R^d$, such that

$$A(\mathbf{s}) \subset \bar{B}_R(0), \ \forall \mathbf{s} \in \mathcal{S}.$$

Call \mathcal{K}_R the family of nonempty compact subsets of \mathbb{R}^d contained in $\bar{B}_R(0)$.

J.M. Amigó (CIO) Entropy Madrid, July 2014 16 / 24

Technical difficulties:

- ullet The component sets $A(\mathbf{s})$ are not singletons in general.
- $\operatorname{dist}_H(A(\mathbf{s}), A(\mathbf{s}^*))$ is not continuous.

Proposition⁴. The map $\mathbf{s}\mapsto A(\mathbf{s})$ is upper semi-continuous in $(\mathcal{K}_R, \mathrm{dist}_H)$, i.e.,

$$ho\left(A(\mathbf{s}),A(\mathbf{s}^*)
ight)
ightarrow 0$$
 as $\mathrm{dist}_{\mathcal{S}}(\mathbf{s},\mathbf{s}^*)
ightarrow 0$,

here $\rho\left(\cdot,\cdot\right)$ is the Hausdorff semi-distance.

⁴P.E. Kloeden, M. Rasmussen, *Nonautonomous Dynamical Systems*, AMS, 2010.

J.M. Amigó (CIO) Entropy Madrid, July 2014 17 / 24

To replicate the approach in the affine case, some additional assumptions seem necessary:

First possibility. Guarantee that

$$\Phi: \mathbf{s} \mapsto (A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}}$$

is Borel bimeasurable.

2 Second possibility. Guarantee that $s \to A(s)$ is continuous.

Remarks.

- There are several sufficient conditions for (1). For example, (2) implies (1).
- There are several sufficient conditions for (2). For example, suppose that

$$\operatorname{dist}_{H}(\varphi(n,\sigma^{-n}\mathbf{s},D),A(\mathbf{s}))\to 0$$

uniformly in s for some nonempty set $D \subset \mathbb{R}^d$.

Consider

$$\Phi: \quad \mathcal{S} \quad \to \quad \mathcal{K}_R^{\mathbb{Z}}$$
$$\mathbf{s} \quad \mapsto \quad (A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}}$$

where

$$\operatorname{dist}_{\mathfrak{A}\mathbb{Z}}((A(\sigma^n\mathbf{s}))_{n\in\mathbb{Z}},(A(\sigma^n\mathbf{s}^*))_{n\in\mathbb{Z}}=\sum_{n\in\mathbb{Z}}\frac{\operatorname{dist}_H(A(\sigma^n\mathbf{s}),A(\sigma^n\mathbf{s}^*))}{2^{|n|}}$$

Remark. If $\chi(\mathbf{s})$ is an entire solution and $\chi(\mathbf{s}) \in A(\mathbf{s})$, then

$$(\chi(\sigma^n\mathbf{s}))_{n\in\mathbb{Z}}\in (A(\sigma^n\mathbf{s}))_{n\in\mathbb{Z}}.$$

We call $(A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}}$ the *lumped trajectory*.

Proposition. If one of the assumptions (1) or (2) holds and

$$\Phi: \quad \mathcal{S} \quad \to \quad \mathcal{K}_{R}^{\mathbb{Z}}$$
$$\mathbf{s} \quad \mapsto \quad (A(\sigma^{n}\mathbf{s}))_{n \in \mathbb{Z}}$$

is 1-to-1, then Φ a homeomorphism from $\mathcal S$ to $\Phi(\mathcal S)$, and the diagram

$$\begin{array}{ccc} \mathcal{S} & \stackrel{\sigma}{\rightarrow} & \mathcal{S} \\ \Phi \downarrow & & \downarrow \Phi \\ \mathcal{K}_R^{\mathbb{Z}} & \stackrel{\Sigma}{\rightarrow} & \mathcal{K}_R^{\mathbb{Z}} \end{array}$$

commutes, where σ is the shift on S and Σ is the shift on $\mathcal{K}_R^{\mathbb{Z}}$ (the lumped dynamics).

• There are several sufficient conditions 5 for the injectivity of Φ .

J.M. Amigó (CIO) Entropy Madrid, July 2014 20 / 24

⁵J.M.A., P.E. Kloeden, A. Giménez, *Entropy* 15 (2013).

Hence (as in the 1D affine case)

$$h_{top}(\sigma) = h_{top}(\Sigma|_{\Phi(\mathcal{S})}) =: \mathsf{Complexity}(\mathsf{lumped\ dynamics}).$$

Consider the shift on the lumped trajectories

$$\Sigma : (A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}} \mapsto (A(\sigma^{n+1} \mathbf{s}))_{n \in \mathbb{Z}}$$

and the shift on the sharp trajectories

$$\tilde{\Sigma}: (\chi(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}} \mapsto (\chi(\sigma^{n+1} \mathbf{s}))_{n \in \mathbb{Z}}.$$

Then

$$h_{top}(\Sigma|_{\Phi(\mathcal{S})}) \leq h_{top}(\tilde{\Sigma}|_{\Phi(\mathcal{S})}) =: \mathsf{Complexity}(\mathsf{switched\ dynamics}).$$

J.M. Amigó (CIO) Entropy Madrid, July 2014 21 / 24

In sum:

Complexity(control) = Complexity(lumped dynamics)

and

 ${\sf Complexity}({\sf lumped dynamics}) \leq {\sf Complexity}({\sf switched dynamics}).$

Thus

 ${\sf Complexity}({\sf control}) \leq {\sf Complexity}({\sf switched dynamics}).$

Corollary. (Entropy increase via switching) If $h_{top}(\sigma) > h_{top}(f_{\pm})$, then

 ${\sf Complexity}({\sf switched dynamics}) \geq h_{top}(f_\pm)$

5. Conclusion

- We provided a sufficient condition for the topological entropy of a switching system to increase wrt to the topological entropy of its two constituent maps.
- Generalization to more than two constituent maps possible.
- The complexity of non-autonomous systems, as measured by the topological entropy, can be studied via pullback attractors.

J.M. Amigó (CIO) Entropy Madrid, July 2014 23 / 24

References

- J.M. Amigó, P.E. Kloeden, and A. Giménez, Switching systems and entropy. J. Diff. Eq. Appl. 19 (2013) 1872-1888.
- 2 J.M. Amigó, P.E. Kloeden, and A. Giménez, Entropy increase in switching systems, *Entropy* 15 (2013) 2363-2383.
- P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, AMS (2010).
- S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comp. Dyn. 4 (1996) 205-233.