Entropy and Switching Systems

José M. Amigó ${ }^{1}$, Peter Kloeden ${ }^{2}$, Ángel Giménez ${ }^{1}$

${ }^{1}$ Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain)
${ }^{2}$ Fachbereich Mathematik, Johan Wolfgang Goethe Universität, Frankfurt (Germany)
Madrid, July 2014

OUTLINE

(1) Introduction
(2) Switching systems
(3) Simple case: 1D affine constituent maps
(1) General case
© Conclusion
(0) References

1. Introduction

Given

- two dissipative, continuous maps $f_{ \pm 1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$,
- a switching or control sequence

$$
\mathbf{s}=\left(\ldots, s_{-n}, \ldots, s_{0}, \ldots s_{n}, \ldots\right) \in\{-1,+1\}^{\mathbb{Z}}
$$

the corresponding (discrete) time-switched system is defined as

$$
x_{n+1}=f_{s_{n}}\left(x_{n}\right)
$$

Time-switched systems (or switching systems) are an instance of non-autonomous dynamical systems.

1. Introduction

Remark. $\mathcal{S}=\{-1,+1\}^{\mathbb{Z}}$ endowed with

$$
\operatorname{dist}_{\mathcal{S}}\left(\mathbf{s}, \mathbf{s}^{\prime}\right)=\sum_{n \in \mathbb{Z}} 2^{-|n|}\left|s_{n}-s_{n}^{\prime}\right|
$$

is a compact metric space.
Set

$$
\text { Complexity(control) }:=h_{\text {top }}(\sigma)
$$

where

$$
\sigma:\left(\cdots, s_{n}, s_{n+1}, \cdots\right) \mapsto\left(\cdots, s_{n+1}, s_{n+2}, \cdots\right)
$$

is the shift on \mathcal{S}.

1. Introduction

Let $\tilde{\Sigma}$ be the shift on the "entire solutions" of the switched dynamics. Set Complexity(switched dynamics) $:=h_{\text {top }}(\tilde{\Sigma})$.

Result. Under some provisos,

$$
\text { Complexity (control) } \leq \text { Complexity(switched dynamics) }
$$

Corollary. (Complexity increase via switching) If

$$
\text { Complexity }(\text { control })>h_{\text {top }}\left(f_{+}\right), h_{\text {top }}\left(f_{-}\right)
$$

then
Complexity (switched dynamics) $>h\left(f_{+}\right), h\left(f_{-}\right)$.

1. Introduction

In general, the emergence of different properties to those of the constituent maps via switching is called Parrondo's paradox.

- Original version ${ }^{1}$: Switching two loosing games can produce a winning game.
- Dynamical version ${ }^{2}$: Periodic switching of chaotic maps can produce order.
- A possible topological version: Switching of noncomplex dynamics can produce a complex dynamics.

[^0]
2. Switching systems

Switching systems can be studied by means of cocycle maps, which are continuous maps

$$
\varphi: \mathbb{N}_{0} \times\{-1,+1\}^{\mathbb{Z}} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

with

$$
\begin{aligned}
\varphi\left(0, \mathbf{s}, x_{0}\right) & =x_{0} \\
\varphi\left(n, \mathbf{s}, x_{0}\right) & =f_{s_{n-1}} \circ \cdots \circ f_{s_{1}} \circ f_{s_{0}}\left(x_{0}\right), \quad n \geq 1
\end{aligned}
$$

Then (cocycle property)

$$
\varphi\left(n+k, \mathbf{s}, x_{0}\right)=\varphi\left(n, \sigma^{k} \mathbf{s}, \varphi\left(k, \mathbf{s}, x_{0}\right)\right), \forall n, k \geq 0
$$

Def. ${ }^{3}(\sigma, \varphi)$ is a skew product flow on $\{-1,+1\}^{\mathbb{Z}} \times \mathbb{R}^{d}$
${ }^{3}$ P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, AMS, 2010.

2. Switching systems

Def. An entire solution of (σ, φ) is a map $\chi: \mathcal{S} \rightarrow \mathbb{R}^{d}$ such that

$$
\chi\left(\sigma^{n} \mathbf{s}\right)=\varphi(n, \mathbf{s}, \chi(\mathbf{s})) \text { for all } n \geq 0
$$

More generally,

$$
\chi\left(\sigma^{n} \mathbf{s}\right)=\varphi\left(n-k, \sigma^{k} \mathbf{s}, \chi\left(\sigma^{k} \mathbf{s}\right)\right)
$$

for all $\mathbf{s} \in \mathcal{S}$ and $n, k \in \mathbb{Z}$ with $k \leq n$.
Interpretation. $\chi(\mathbf{s})$ is the point of the orbit

$$
\left\{\chi\left(\sigma^{n} \mathbf{s}\right): n \in \mathbb{Z}\right\}
$$

at time $n=0$.

2. Switching systems

Def. The space \mathcal{K} of compact subsets of \mathbb{R}^{d} is a complete metric space with the Hausdorff metric

$$
\operatorname{dist}_{H}(A, B):=\max \{\rho(A, B), \rho(B, A)\}
$$

where $\rho(A, B)$ is the Hausdorff semi-distance defined by

$$
\rho(A, B):=\max _{a \in A} \operatorname{dist}(a, B), \quad \operatorname{dist}(a, B):=\min _{b \in B}|a-b| .
$$

2. Switching systems

Def. A pullback attractor is a family of nonempty compact subsets,

$$
\mathfrak{A}=\{A(\mathbf{s}), \mathbf{s} \in \mathcal{S}\} \subset \mathcal{K},
$$

which
(i) is φ-invariant, i.e.,

$$
\varphi(n, \mathbf{s}, A(\mathbf{s}))=A\left(\sigma^{n} \mathbf{s}\right), \quad n \geq 0
$$

(ii) pullback attracts, i.e.

$$
\operatorname{dist}_{H}\left(\varphi\left(n, \sigma^{-n} \mathbf{s}, D\right), A(\mathbf{s})\right) \rightarrow 0 \quad \text { for } n \rightarrow \infty
$$

for every nonempty bounded subset $D \subset \mathbb{R}^{d}$.
The $A(\mathbf{s})$ are called the component sets of the attractor \mathfrak{A}.

2. Switching systems

Remarks.

- The component sets $A(\mathbf{s})$ consist of entire solutions bounded in the past.
- Pullback attractors exist under more general conditions than forward attractors.

3. Simple case: 1D affine constituent maps

Constituent maps: $f_{ \pm 1}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f_{ \pm 1}(x)=\theta_{ \pm} x \pm 1 \quad\left(0<\theta_{+}, \theta_{-}<1, \theta_{+} \neq \theta_{-}\right)
$$

Remark: $h_{\text {top }}\left(f_{ \pm 1}\right)=0$.

3. Simple case: 1D affine constituent maps

- The component sets of the attractor $\mathfrak{A}=\{A(\mathbf{s}): \mathbf{s} \in \mathcal{S}\}$ are singletons:

$$
A(\mathbf{s})=\{\chi(\mathbf{s})\} \text { with } \chi(\mathbf{s}) \in\left[\frac{-1}{1-\theta_{-}}, \frac{1}{1-\theta_{+}}\right]
$$

where $\chi(\mathbf{s})$ are the entire solutions of the skew product (σ, φ).

- Thus, Hausdorff distance $=$ Hausdorff semidistance $=$ Euclidean distance:

$$
\operatorname{dist}_{H}\left(\chi(\mathbf{s}), \chi\left(\mathbf{s}^{*}\right)\right)=\rho\left(\chi(\mathbf{s}), \chi\left(\mathbf{s}^{*}\right)\right)=\left|\chi(\mathbf{s})-\chi\left(\mathbf{s}^{*}\right)\right|
$$

It follows that the mapping

$$
\begin{array}{ccc}
\mathcal{S} & \rightarrow & \mathfrak{A}=\left[\frac{-1}{1-\theta_{-}}, \frac{1}{1-\theta_{+}}\right] \\
\mathbf{s} & \mapsto & \chi(\mathbf{s})
\end{array}
$$

is continuous.

3. Simple case: 1D affine constituent maps

Proposition. Define

$$
\begin{array}{rccc}
\Phi: \mathcal{S} & \rightarrow & \mathfrak{A}^{\mathbb{Z}} \\
& \mathbf{s} & \mapsto\left(\chi\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}
\end{array}
$$

(a) Then Φ is 1-to-1 and bicontinuous.
(b) If Σ is the shift on $\mathfrak{A}^{\mathbb{Z}}$, then

$$
\begin{array}{ccc}
\mathcal{S} & \xrightarrow{\sigma} & \mathcal{S} \\
\Phi \downarrow & & \downarrow \Phi \\
\mathfrak{A}^{\mathbb{Z}} & \xrightarrow{\Sigma} & \mathfrak{A}^{\mathbb{Z}}
\end{array}
$$

commutes.
Here

$$
\operatorname{dist}\left(\left(\chi\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}\left(\chi\left(\sigma^{n} \mathbf{s}^{*}\right)\right)_{n \in \mathbb{Z}}\right):=\sum_{n \in \mathbb{Z}} \frac{\left|\chi\left(\sigma^{n} \mathbf{s}\right)-\chi\left(\sigma^{n} \mathbf{s}^{*}\right)\right|}{2^{|n|}}
$$

3. Simple case: 1D affine constituent maps

Therefore
$h_{\text {top }}\left(\left.\Sigma\right|_{\Phi(\mathcal{S})}\right)=h_{\text {top }}(\sigma):=$ Complexity (control).
Call
Complexity(switched dynamics) $:=h_{\text {top }}\left(\left.\Sigma\right|_{\Phi(\mathcal{S})}\right)$.
Thus:
Complexity(switched dynamics) = Complexity(control).

Corollary. Sufficient condition for entropy increase via switching: If

$$
h_{\text {top }}(\sigma)>0
$$

then
Complexity(switched dynamics) $>0=h_{\text {top }}\left(f_{ \pm}\right)$.

4. General case

General assumptions for switched dynamics on $\mathbb{R}^{d}, d \geq 1$:

- The constituent mappings have attractors.
- The switched dynamics has a pullback attractor

$$
\mathfrak{A}=\{A(\mathbf{s}): \mathbf{s} \in \mathcal{S}\}
$$

such that $A(\mathbf{s})$ are nonempty, uniformly bounded compact subsets of \mathbb{R}^{d}, i.e., there is a closed ball $\bar{B}_{R}(0) \subset R^{d}$, such that

$$
A(\mathbf{s}) \subset \bar{B}_{R}(0), \quad \forall \mathbf{s} \in \mathcal{S}
$$

Call \mathcal{K}_{R} the family of nonempty compact subsets of \mathbb{R}^{d} contained in $\bar{B}_{R}(0)$.

4. General case

Technical difficulties:

- The component sets $A(\mathbf{s})$ are not singletons in general.
- $\operatorname{dist}_{H}\left(A(\mathbf{s}), A\left(\mathbf{s}^{*}\right)\right)$ is not continuous.

Proposition ${ }^{4}$. The map $\mathbf{s} \mapsto A(\mathbf{s})$ is upper semi-continuous in $\left(\mathcal{K}_{R}, \operatorname{dist}_{H}\right)$, i.e.,

$$
\rho\left(A(\mathbf{s}), A\left(\mathbf{s}^{*}\right)\right) \rightarrow 0 \quad \text { as } \quad \operatorname{dist}_{\mathcal{S}}\left(\mathbf{s}, \mathbf{s}^{*}\right) \rightarrow 0
$$

here $\rho(\cdot, \cdot)$ is the Hausdorff semi-distance.
${ }^{4}$ P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, AMS, 2010.

4. General case

To replicate the approach in the affine case, some additional assumptions seem necessary:
(1) First possibility. Guarantee that

$$
\Phi: \mathbf{s} \mapsto\left(A\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}
$$

is Borel bimeasurable.
(2) Second possibility. Guarantee that $\mathbf{s} \rightarrow A(\mathbf{s})$ is continuous.

Remarks.

- There are several sufficient conditions for (1). For example, (2) implies (1).
- There are several sufficient conditions for (2). For example, suppose that

$$
\operatorname{dist}_{H}\left(\varphi\left(n, \sigma^{-n} \mathbf{s}, D\right), A(\mathbf{s})\right) \rightarrow 0
$$

uniformly in \mathbf{s} for some nonempty set $D \subset \mathbb{R}^{d}$.

4. General case

Consider

$$
\begin{array}{rlll}
\Phi: \mathcal{S} & \rightarrow & \mathcal{K}_{R}^{\mathbb{Z}} \\
\mathbf{s} & \mapsto & \left(A\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}
\end{array}
$$

where

$$
\operatorname{dist}_{\mathfrak{A} \mathbb{Z}}\left(\left(A\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}\left(A\left(\sigma^{n} \mathbf{s}^{*}\right)\right)_{n \in \mathbb{Z}}=\sum_{n \in \mathbb{Z}} \frac{\operatorname{dist}_{H}\left(A\left(\sigma^{n} \mathbf{s}\right), A\left(\sigma^{n} \mathbf{s}^{*}\right)\right)}{2^{|n|}}\right.
$$

Remark. If $\chi(\mathbf{s})$ is an entire solution and $\chi(\mathbf{s}) \in A(\mathbf{s})$, then

$$
\left(\chi\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}} \in\left(A\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}} .
$$

We call $\left(A\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}$ the lumped trajectory.

4. General case

Proposition. If one of the assumptions (1) or (2) holds and

$$
\begin{array}{rll}
\Phi: \mathcal{S} & \rightarrow & \mathcal{K}_{R}^{\mathbb{Z}} \\
\mathbf{s} & \mapsto & \left(A\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}
\end{array}
$$

is 1-to-1, then Φ a homeomorphism from \mathcal{S} to $\Phi(\mathcal{S})$, and the diagram

commutes, where σ is the shift on \mathcal{S} and Σ is the shift on $\mathcal{K}_{R}^{\mathbb{Z}}$ (the lumped dynamics).

- There are several sufficient conditions ${ }^{5}$ for the injectivity of Φ.

[^1]
4. General case

Hence (as in the 1D affine case)

$$
h_{\text {top }}(\sigma)=h_{\text {top }}\left(\left.\Sigma\right|_{\Phi(\mathcal{S})}\right)=: \text { Complexity(lumped dynamics). }
$$

Consider the shift on the lumped trajectories

$$
\Sigma:\left(A\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}} \mapsto\left(A\left(\sigma^{n+1} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}
$$

and the shift on the sharp trajectories

$$
\tilde{\Sigma}:\left(\chi\left(\sigma^{n} \mathbf{s}\right)\right)_{n \in \mathbb{Z}} \mapsto\left(\chi\left(\sigma^{n+1} \mathbf{s}\right)\right)_{n \in \mathbb{Z}}
$$

Then

$$
h_{\text {top }}\left(\left.\Sigma\right|_{\Phi(\mathcal{S})}\right) \leq h_{\text {top }}\left(\left.\tilde{\Sigma}\right|_{\Phi(\mathcal{S})}\right)=: \text { Complexity(switched dynamics). }
$$

4. General case

In sum:

$$
\text { Complexity }(\text { control })=\text { Complexity }(\text { lumped dynamics })
$$

and
Complexity(lumped dynamics) \leq Complexity(switched dynamics).
Thus

$$
\text { Complexity(control) } \leq \text { Complexity(switched dynamics). }
$$

Corollary. (Entropy increase via switching) If $h_{\text {top }}(\sigma)>h_{\text {top }}\left(f_{ \pm}\right)$, then
Complexity (switched dynamics) $\geq h_{\text {top }}\left(f_{ \pm}\right)$

5. Conclusion

- We provided a sufficient condition for the topological entropy of a switching system to increase wrt to the topological entropy of its two constituent maps.
- Generalization to more than two constituent maps possible.
- The complexity of non-autonomous systems, as measured by the topological entropy, can be studied via pullback attractors.

References

(1) J.M. Amigó, P.E. Kloeden, and A. Giménez, Switching systems and entropy. J. Diff. Eq. Appl. 19 (2013) 1872-1888.
(2) J.M. Amigó, P.E. Kloeden, and A. Giménez, Entropy increase in switching systems, Entropy 15 (2013) 2363-2383.
(3) P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, AMS (2010).
(9) S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comp. Dyn. 4 (1996) 205-233.

[^0]: ${ }^{1}$ J.M.R. Parrondo, G.P. Harner, D. Abbott, Phys. Rev. Lett. 85 (2000).
 ${ }^{2}$ J. Almeida, D. Peralta-Salas, M. Romera, Physica D 200 (2006).

[^1]: ${ }^{5}$ J.M.A., P.E. Kloeden, A. Giménez, Entropy 15 (2013).

