

1. Introduction

1. Introduction	1. Introduction
Let $\tilde{\Sigma}$ be the shift on the "entire solutions" of the switched dynamics. Set $\boxed{\text{Complexity(switched dynamics)} := h_{top}(\tilde{\Sigma}).}$ Result. Under some provisos, $\text{Complexity(control)} \leq \text{Complexity(switched dynamics)}$ Corollary. (Complexity increase via switching) If $\text{Complexity(control)} > h_{top}(f_+), h_{top}(f)$ then $\text{Complexity(switched dynamics)} > h(f_+), h(f).$	 In general, the emergence of different properties to those of the constituent maps via switching is called <i>Parrondo's paradox</i>. Original version¹: Switching two loosing games can produce a winning game. Dynamical version²: Periodic switching of chaotic maps can produce order. A possible topological version: Switching of noncomplex dynamics can produce a complex dynamics.
J.M. Amigó (ClO) Entropy Madrid, July 2014 5 / 24 2. Switching systems	¹ J.M.R. Parrondo, G.P. Harner, D. Abbott, Phys. Rev. Lett. 85 (2000). ² J. Almeida, D. Peralta-Salas, M. Romera, Physica D 200 (2006). J.M. Amigó (CIO) Entropy Madrid, July 2014 6 / 24 2. Switching systems
Switching systems can be studied by means of <i>cocycle maps</i> , which are continuous maps $\varphi:\mathbb{N}_0\times\{-1,+1\}^\mathbb{Z}\times\mathbb{R}^d\to\mathbb{R}^d$	Def. An <i>entire solution</i> of (σ, φ) is a map $\chi : S \to \mathbb{R}^d$ such that $\chi(\sigma^n \mathbf{s}) = \varphi(n, \mathbf{s}, \chi(\mathbf{s}))$ for all $n \ge 0$. More generally,
with $arphi(0,\mathbf{s},x_0) = x_0$ $arphi(n,\mathbf{s},x_0) = f_{s_{n-1}} \circ \cdots \circ f_{s_1} \circ f_{s_0}(x_0), \qquad n \ge 1.$	$\chi(\sigma^{n}\mathbf{s}) = \varphi(n - k, \sigma^{k}\mathbf{s}, \chi(\sigma^{k}\mathbf{s})),$ for all $\mathbf{s} \in S$ and $n, k \in \mathbb{Z}$ with $k \le n$. Interpretation. $\chi(\mathbf{s})$ is the point of the <i>orbit</i>
Then (<i>cocycle property</i>)	$\{\chi(\sigma^n \mathbf{s}) : n \in \mathbb{Z}\}$
$\varphi(n+k,\mathbf{s},x_0) = \varphi(n,\sigma^k\mathbf{s},\varphi(k,\mathbf{s},x_0)), \ \forall n,k \ge 0.$	at time $n = 0$.
Def. ³ (σ, φ) is a skew product flow on $\{-1, +1\}^{\mathbb{Z}} \times \mathbb{R}^d$	

2. Switching systems

Def. The space \mathcal{K} of compact subsets of \mathbb{R}^d is a complete metric space with the *Hausdorff metric*

 $dist_H(A, B) := \max\{\rho(A, B), \rho(B, A)\}$

where $\rho(A, B)$ is the Hausdorff semi-distance defined by

 $\rho(A,B) := \max_{a \in A} \operatorname{dist}(a,B), \quad \operatorname{dist}(a,B) := \min_{b \in B} |a-b|.$

2. Switching systems

Def. A pullback attractor is a family of nonempty compact subsets,

$$\mathfrak{A} = \{A(\mathbf{s}), \mathbf{s} \in \mathcal{S}\} \subset \mathcal{K},$$

which

(i) is φ -invariant, i.e.,

$$\varphi(n, \mathbf{s}, A(\mathbf{s})) = A(\sigma^n \mathbf{s}), \qquad n \ge 0,$$

(ii) pullback attracts, i.e.

$$\operatorname{dist}_{H}\left(\varphi(n,\sigma^{-n}\mathbf{s},D),A(\mathbf{s})\right)\to 0 \quad \text{for } n\to\infty$$

for every nonempty bounded subset $D \subset \mathbb{R}^d$.

Entropy

The $A(\mathbf{s})$ are called the *component sets* of the attractor \mathfrak{A} .

2. Switching systems

J.M. Amigó (CIO)

Remarks.

• The component sets $A(\mathbf{s})$ consist of entire solutions bounded in the past.

Entropy

• Pullback attractors exist under more general conditions than forward attractors.

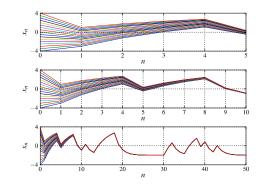
3. Simple case: 1D affine constituent maps

Constituent maps: $f_{\pm 1}: \mathbb{R} \to \mathbb{R}$,

$$f_{\pm 1}(x) = heta_{\pm} x \pm 1 \ \ (0 < heta_+, heta_- < 1, heta_+
eq heta_-).$$

Remark: $h_{top}(f_{\pm 1}) = 0$.

J.M. Amigó (CIO)



Entropy

Madrid, July 2014

D)

Madrid, July 2014

10 / 24

3. Simple case: 1D affine constituent maps

The component sets of the attractor 𝔅 = {A(s) : s ∈𝔅} are singletons:

$$A(\mathbf{s}) = \{\chi(\mathbf{s})\} ext{ with } \chi(\mathbf{s}) \in \left[rac{-1}{1- heta_-}, rac{1}{1- heta_+}
ight]$$

- where $\chi(\mathbf{s})$ are the *entire solutions* of the skew product (σ, φ) .
- Thus, Hausdorff distance = Hausdorff semidistance = Euclidean distance:

$$\operatorname{dist}_{H}(\chi(\mathbf{s}),\chi(\mathbf{s}^{*})) = \rho(\chi(\mathbf{s}),\chi(\mathbf{s}^{*})) = |\chi(\mathbf{s}) - \chi(\mathbf{s}^{*})|$$

It follows that the mapping

$$egin{array}{rcl} \mathcal{S} &
ightarrow & \mathfrak{A} = \left[rac{-1}{1- heta_-},rac{1}{1- heta_+}
ight] \ \mathbf{s} & \mapsto & \chi(\mathbf{s}) \end{array}$$

is continuous. J.M. Amigó (CIO)

3. Simple case: 1D affine constituent maps

Therefore

 $h_{top}(\Sigma|_{\Phi(S)}) = h_{top}(\sigma) :=$ Complexity(control).

Entropy

Call

Complexity(switched dynamics) := $h_{top}(\Sigma|_{\Phi(S)})$.

Thus:

Complexity(switched dynamics) = Complexity(control).

Corollary. Sufficient condition for entropy increase via switching: If

$$h_{top}(\sigma) > 0$$

then

Complexity(switched dynamics) > 0 = $h_{top}(f_{\pm})$.

Entropy

3. Simple case: 1D affine constituent maps

Proposition. Define

$$\begin{split} \Phi: \ \mathcal{S} &\to \qquad \mathfrak{A}^{\mathbb{Z}} \\ \mathbf{s} &\mapsto (\chi(\sigma^{n}\mathbf{s}))_{n \in \mathbb{Z}} \end{split}$$
(a) Then Φ is 1-to-1 and bicontinuous.
(b) If Σ is the shift on $\mathfrak{A}^{\mathbb{Z}}$, then

$$\begin{split} \mathcal{S} &\stackrel{\sigma}{\to} & \mathcal{S} \\ \Phi \downarrow \qquad \downarrow \Phi \\ \mathfrak{A}^{\mathbb{Z}} &\stackrel{\Sigma}{\to} & \mathfrak{A}^{\mathbb{Z}} \end{split}$$
commutes.
Here

$$\begin{split} \operatorname{dist} ((\chi(\sigma^{n}\mathbf{s}))_{n \in \mathbb{Z}}, (\chi(\sigma^{n}\mathbf{s}^{*}))_{n \in \mathbb{Z}}) &:= \sum_{n \in \mathbb{Z}} \frac{|\chi(\sigma^{n}\mathbf{s}) - \chi(\sigma^{n}\mathbf{s}^{*})|}{2^{|n|}} \end{split}$$

$$\begin{split} \mathrm{Mere} \quad \mathrm{Me$$

4. General case

General assumptions for switched dynamics on \mathbb{R}^d , $d \ge 1$:

- The constituent mappings have attractors.
- The switched dynamics has a pullback attractor

$$\mathfrak{A} = \{A(\mathbf{s}) : \mathbf{s} \in \mathcal{S}\}$$

such that $A(\mathbf{s})$ are nonempty, uniformly bounded compact subsets of \mathbb{R}^d , i.e., there is a closed ball $\bar{B}_R(0) \subset R^d$, such that

$$A(\mathbf{s}) \subset \overline{B}_R(0), \ \forall \mathbf{s} \in \mathcal{S}.$$

Call \mathcal{K}_R the family of nonempty compact subsets of \mathbb{R}^d contained in $\bar{B}_R(0)$.

J.M. Amigó (CIO)

Madrid, July 2014

13 / 24

Entropy

4. General case

Technical difficulties:

- The component sets $A(\mathbf{s})$ are not singletons in general.
- dist_{*H*}($A(\mathbf{s}), A(\mathbf{s}^*)$) is not continuous.

Proposition⁴. The map $\mathbf{s} \mapsto A(\mathbf{s})$ is upper semi-continuous in $(\mathcal{K}_R, \operatorname{dist}_H)$, i.e.,

 $ho\left(A(\mathbf{s}),A(\mathbf{s}^*)
ight)
ightarrow 0$ as $\operatorname{dist}_{\mathcal{S}}(\mathbf{s},\mathbf{s}^*)
ightarrow 0$,

here $\rho(\cdot, \cdot)$ is the Hausdorff semi-distance.

4. General case

To replicate the approach in the affine case, some additional assumptions seem necessary:

9 First possibility. Guarantee that

$$\Phi: \mathbf{s} \mapsto (A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}}$$

is Borel bimeasurable.

2 Second possibility. Guarantee that $\mathbf{s} \rightarrow A(\mathbf{s})$ is continuous.

Remarks.

J.M. Amigó (CIO)

4. General case

- There are several sufficient conditions for (1). For example, (2) implies (1).
- There are several sufficient conditions for (2). For example, suppose that

Entropy

$$\operatorname{dist}_{H}(\varphi(n,\sigma^{-n}\mathbf{s},D),A(\mathbf{s}))\to 0$$

uniformly in **s** for some nonempty set $D \subset \mathbb{R}^d$.

J.M. Amigó (CIO) Entropy

4. General case

Consider

$$\begin{array}{rccc} \Phi: & \mathcal{S} & \to & \mathcal{K}_R^{\mathbb{Z}} \\ & \mathbf{s} & \mapsto & (A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}} \end{array}$$

⁴P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, AMS, 2010.

where

$$\operatorname{dist}_{\mathfrak{A}^{\mathbb{Z}}}((A(\sigma^{n}\mathbf{s}))_{n\in\mathbb{Z}},(A(\sigma^{n}\mathbf{s}^{*}))_{n\in\mathbb{Z}}=\sum_{n\in\mathbb{Z}}\frac{\operatorname{dist}_{H}(A(\sigma^{n}\mathbf{s}),A(\sigma^{n}\mathbf{s}^{*}))}{2^{|n|}}$$

Remark. If $\chi(\mathbf{s})$ is an entire solution and $\chi(\mathbf{s}) \in A(\mathbf{s})$, then

$$(\chi(\sigma^n \mathbf{s}))_{n\in\mathbb{Z}}\in (A(\sigma^n \mathbf{s}))_{n\in\mathbb{Z}}.$$

We call $(A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}}$ the *lumped trajectory*.

Proposition. If one of the assumptions (1) or (2) holds and

$$\Phi: \ \mathcal{S} \to \mathcal{K}_R^{\mathbb{Z}} \\ \mathbf{s} \mapsto (A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}}$$

is 1-to-1, then Φ a homeomorphism from ${\mathcal S}$ to $\Phi({\mathcal S})$, and the diagram

$$\begin{array}{ccc} \mathcal{S} & \xrightarrow{\sigma} & \mathcal{S} \\ \Phi \downarrow & & \downarrow \Phi \\ \mathcal{K}_{R}^{\mathbb{Z}} & \xrightarrow{\Sigma} & \mathcal{K}_{R}^{\mathbb{Z}} \end{array}$$

commutes, where σ is the shift on S and Σ is the shift on $\mathcal{K}_R^{\mathbb{Z}}$ (the *lumped dynamics*).

• There are several sufficient conditions⁵ for the injectivity of Φ .

Entropy

⁵J.M.A., P.E. Kloeden, A. Giménez, *Entropy* 15 (2013).

Madrid, July 2014

17 / 24

Madrid, July 2014

18 / 24

4. General case

Hence (as in the 1D affine case)

$$h_{top}(\sigma) = h_{top}(\Sigma|_{\Phi(S)}) =: \text{Complexity}(\text{lumped dynamics}).$$

Consider the shift on the lumped trajectories

 $\Sigma : (A(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}} \mapsto (A(\sigma^{n+1} \mathbf{s}))_{n \in \mathbb{Z}}$

and the shift on the sharp trajectories

$$ilde{\Sigma}: (\chi(\sigma^n \mathbf{s}))_{n \in \mathbb{Z}} \mapsto (\chi(\sigma^{n+1} \mathbf{s}))_{n \in \mathbb{Z}}$$

Then

 $h_{top}(\Sigma|_{\Phi(\mathcal{S})}) \leq h_{top}(\tilde{\Sigma}|_{\Phi(\mathcal{S})}) =: \mathsf{Complexity}(\mathsf{switched dynamics}).$

Entropy

4. General case

In sum:

```
Complexity(control) = Complexity(lumped dynamics)
```

and

Complexity(lumped dynamics) \leq Complexity(switched dynamics).

Thus

 $Complexity(control) \leq Complexity(switched dynamics).$

Corollary. (*Entropy increase via switching*) If $h_{top}(\sigma) > h_{top}(f_{\pm})$, then

Complexity(switched dynamics) $\geq h_{top}(f_{\pm})$

Entropy

5. Conclusion

J.M. Amigó (CIO)

- We provided a sufficient condition for the topological entropy of a switching system to increase wrt to the topological entropy of its two constituent maps.
- Generalization to more than two constituent maps possible.
- The complexity of non-autonomous systems, as measured by the topological entropy, can be studied via pullback attractors.

References

J.M. Amigó (CIO)

- J.M. Amigó, P.E. Kloeden, and A. Giménez, Switching systems and entropy. J. Diff. Eq. Appl. 19 (2013) 1872-1888.
- J.M. Amigó, P.E. Kloeden, and A. Giménez, Entropy increase in switching systems, *Entropy* 15 (2013) 2363-2383.
- P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, AMS (2010).

Entropy

S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems, *Random Comp. Dyn.* 4 (1996) 205-233.

Madrid, July 2014

Madrid, July 2014 22 / 24