Strange chaotic triangular maps

Marta Štefánková

Mathematical Institute Silesian University in Opava Czech Republic

9th AIMS Conference, Orlando, July 2012

${ }^{\text {introduction }}$
\therefore

- A map $f \in \mathcal{C}(X)$ is of type 2^{∞} if it has a periodic orbit of period 2^{n} for every $n \in \mathbb{N}$, and has no other periodic orbits.
- $(X, \rho) \ldots$ compact metric space
- $f \in C(X) \ldots$ continuous map $f: X \rightarrow X$
- $I=[0,1]$
- triangular map ... a continuous map $F: I^{2} \rightarrow I^{2}$ of the form $F(x, y)=\left(f(x), g_{x}(y)\right)$
- $\mathcal{T} \ldots$ the class of triangular maps
- A map $f \in \mathcal{C}(X)$ is of type 2^{∞} if it has a periodic orbit of period 2^{n} for every $n \in \mathbb{N}$, and has no other periodic orbits.

For $f \in C(I)$:

$$
h(f)=0 \Leftrightarrow f \text { is of type } \leq 2^{\infty}
$$

- A map $f \in \mathcal{C}(X)$ is of type 2^{∞} if it has a periodic orbit of period 2^{n} for every $n \in \mathbb{N}$, and has no other periodic orbits.
For $f \in C(I)$:

$$
h(f)=0 \Leftrightarrow f \text { is of type } \leq 2^{\infty}
$$

- $U R(f)$. . the set of uniformly recurrent points of f
$x \in U R(f)$ if, for every neighborhood V of x there is a positive integer $K=K(V)$ such that every interval $N \subset[0, \infty)$ of length K contains an integer j such that $f^{j}(x) \in V$.
$U R(f)$ coincides with the union of all minimal sets of f, i.e., nonempty compact sets $M \subseteq X$ such that $f(M)=M$ and no proper compact subset of M has this property.
- Li and Yorke, Amer. Math. Monthly 1975

definitions

$\bullet \circ$

Distributional chaos

- Schweizer and Smítal, TAMS 1994
- Smítal and Štefánková, ChSF 2004
- Balibrea, Smítal and Štefánková, ChSF 2005

Let $f \in C(X), n \in \mathbb{N}, t \in \mathbb{R}$. Put

$$
\Phi_{x y}^{(n)}(t)=\frac{1}{n} \#\left\{m ; 0 \leq m<n \text { and } \rho\left(f^{m}(x), f^{m}(y)\right)<t\right\} .
$$

definitions
$\bullet \circ$

Distributional chaos

- Schweizer and Smítal, TAMS 1994
- Smítal and Štefánková, ChSF 2004
- Balibrea, Smítal and Štefánková, ChSF 2005

Let $f \in C(X), n \in \mathbb{N}, t \in \mathbb{R}$. Put

$$
\Phi_{x y}^{(n)}(t)=\frac{1}{n} \#\left\{m ; 0 \leq m<n \text { and } \rho\left(f^{m}(x), f^{m}(y)\right)<t\right\} .
$$

$\Phi_{x y}(t):=\liminf _{n \rightarrow \infty} \Phi_{x y}^{(n)}(t) \ldots$ lower distribution of x and y $\Phi_{x y}^{*}(t):=\lim \sup _{n \rightarrow \infty} \Phi_{x y}^{(n)}(t) \ldots$ upper distribution of x and y

$$
\begin{gather*}
\Phi_{x y} \text { and } \Phi_{x y}^{*} \text { are nondecreasing } \\
\Phi_{x y}(t) \leq \Phi_{x y}^{*}(t), \forall t \in \mathbb{R} \\
\Phi_{x y}(t)=\Phi_{x y}^{*}(t)=0, \forall t \leq 0 \\
\Phi_{x y}(t)=\Phi_{x y}^{*}(t)=1, \forall t>\operatorname{diam}(X)
\end{gather*}
$$

definitions
\circ

$f \in C(X)$ is distributionally chaotic (DC), if there is an uncountable set $\emptyset \neq S \subset X$ such that $\forall x, y \in S, x \neq y$
DC1: $\Phi_{x y}^{*} \equiv 1$ and $\Phi_{x y}(t)=0$ for some $t>0$
DC2: $\Phi_{x y}^{*} \equiv 1$ and $\Phi_{x y}<\Phi_{x y}^{*}$ on some interval

$f \in C(X)$ is distributionally chaotic (DC), if there is an uncountable set $\emptyset \neq S \subset X$ such that $\forall x, y \in S, x \neq y$
DC1: $\quad \Phi_{x y}^{*} \equiv 1$ and $\Phi_{x y}(t)=0$ for some $t>0$
DC2: $\Phi_{x y}^{*} \equiv 1$ and $\Phi_{x y}<\Phi_{x y}^{*}$ on some interval
DC3: $\Phi_{x y}^{*}>\Phi_{x y}$ on some interval

$$
\mathrm{DC} 1 \Rightarrow \mathrm{DC} 2 \Rightarrow \mathrm{DC} 3
$$

introduction \therefore	definitions \circ	results $\because \circ \bigcirc$	references

Theorem 1. There is a nonempty family of maps $\mathcal{F}_{1} \subseteq \mathcal{T}$ nondecreasing on the fibres and without DC2 pairs such that every $F \in \mathcal{F}_{1}$, restricted to the set of uniformly recurrent points, is Li-Yorke chaotic. (Every $F \in \mathcal{F}_{1}$ is of type 2^{∞} and has zero topological entropy.)

Proof.
We use the parametric family of maps introduced by BSŠ in 2005 and formalized by M. Mlíchová in 2006.

$$
Q \times I \rightarrow Q \times I,(x, y) \mapsto\left(\tau(x), g_{x}(y)\right)
$$

$Q=\{0,1\}^{\mathbb{N}} \ldots$ the middle-third Cantor set
$\tau \ldots$ the (binary) adding machine on Q;
$\tau\left(x_{1} x_{2} x_{3} \cdots\right)=x_{1} x_{2} x_{3} \cdots+1000 \cdots$, where the adding is mod 2 with carry; e. g., $\tau(11010 \cdots)=00110 \cdots$

If the maps $\varphi_{k}^{(j)}$ in (2) are taken such that
$\left\{n_{k}\right\}_{k=1}^{\infty} \ldots$ an increasing sequence of positive integers of the form $n_{k}=2^{c_{k}}, k, c_{k} \in \mathbb{N}$, with $c_{k} \geq 2$.
Write any $x=x_{1} x_{2} x_{3} \cdots \in Q$ in blocks as
$x=x^{1} x^{2} x^{3} \cdots$, where x^{j} is the block of c_{j} digits of x.
For any finite block $\alpha=x_{s} x_{s+1} \cdots x_{s+k}$ the evaluation of α is $e(\alpha)=x_{s}+2 x_{s+1}+2^{2} x_{s+2}+\cdots+2^{k} x_{s+k}$.
For any family of continuous maps $I \rightarrow I$

$$
\begin{equation*}
\left\{\varphi_{k}^{(j)} ; 0 \leq j \leq n_{k}-2\right\}_{k=1}^{\infty} \tag{2}
\end{equation*}
$$

define $F(x, y)=(\tau(x), y)$ if $x=1^{\infty}$ (i.e., if x contains no zero digit).
Otherwise, let x^{k} be the first block in (1) containing a zero digit, and let

$$
\begin{equation*}
F(x, y)=\left(\tau(x), \varphi_{k}^{(p)}(y)\right), \text { where } p=e\left(x^{k}\right) \tag{3}
\end{equation*}
$$

$\begin{aligned} & \hline \text { introduction } \\ & \circ \\ & \circ \end{aligned}$	$\begin{aligned} & \hline \text { definitions } \\ & \circ \circ \\ & \circ \end{aligned}$	$\begin{aligned} & \text { results } \\ & \circ \circ \\ & \bullet \circ \circ \end{aligned}$	references

Theorem 1. There is a nonempty family of maps $\mathcal{F}_{1} \subseteq \mathcal{T}$ nondecreasing on the fibres and without $D C 2$ pairs such that every $F \in \mathcal{F}_{1}$, restricted to the set of uniformly recurrent points, is Li-Yorke chaotic.

Proof.
STAGE 1. Define F on $Q \times I$ and show that it has unique (infinite) minimal set M, and that $\left.F\right|_{M}$ is Li-Yorke chaotic.
Let $\left\{r_{k}\right\}_{k \geq 1}$ be a sequence in $(0,1)$ such that

$$
\begin{equation*}
r_{k}<r_{k+1}, k \in \mathbb{N}, \text { and } \lim _{k \rightarrow \infty} r_{k}=1 \tag{6}
\end{equation*}
$$

Then there is an increasing sequence $\left\{n_{k}\right\}_{k \geq 1}$ of positive integers being powers $2^{c_{k}}$ of 2 such that

$$
\begin{equation*}
r_{k}^{n_{k} / 2}>r_{k+1}^{n_{k+1} / 2}, k \in \mathbb{N}, \quad \text { and } \quad \lim _{k \rightarrow \infty} r_{k}^{n_{k} / 2}=0 \tag{7}
\end{equation*}
$$

For every $k \in \mathbb{N}$ and every $t \in l$ let
$\theta_{k}(t)=r_{k} t$ and $\overline{\theta_{k}}(t)=\min \left\{1, t / r_{k}\right\}$,
$\psi_{k}(t)=1-r_{k}(1-t)$, and $\overline{\psi_{k}}(t)=\max \left\{0,\left(t+r_{k}-1\right) / r_{k}\right\}$.
It is easy to see that $\bar{\theta}_{k} \circ \theta_{k}=\bar{\psi}_{k} \circ \psi_{k}=l d$.

For every $k \in \mathbb{N}$ and every $t \in I$ let
$\theta_{k}(t)=r_{k} t$ and $\overline{\theta_{k}}(t)=\min \left\{1, t / r_{k}\right\}$,
$\psi_{k}(t)=1-r_{k}(1-t)$, and $\overline{\psi_{k}}(t)=\max \left\{0,\left(t+r_{k}-1\right) / r_{k}\right\}$.
It is easy to see that $\bar{\theta}_{k} \circ \theta_{k}=\bar{\psi}_{k} \circ \psi_{k}=I d$.
Define the family (2) by

$$
\varphi_{k}^{(j)}= \begin{cases}I d & \text { if } j=0 \tag{8}\\ \frac{\psi_{k}}{\psi_{k}} & \text { if } \quad \text { if } \quad n_{k} / 2-1 \leq n_{k} / 2-1 \\ \end{cases}
$$

if k is odd,
and

$$
\varphi_{k}^{(j)}=\left\{\begin{array}{ll}
I d & \text { if } \quad j=0 \tag{9}\\
\theta_{k} & \text { if } 0<j \leq n_{k} / 2-1, \\
\overline{\theta_{k}} & \text { if } \quad n_{k} / 2-1<j \leq n_{k} / 2
\end{array} \quad \text { if } k\right. \text { is even }
$$

Then (4) and (5) are satisfied.

introduction ○○	definitions \circ	$\begin{aligned} & \text { results } \\ & \text { esils } \\ & \circ 00 \end{aligned}$
Using Lemma it is easy to verify that		
$F^{j m_{k-1}}(0,1)=\left(\tau^{j m_{k-1}}(0), r_{k}^{j}\right), \quad j, k \in \mathbb{N}, k$ even,		
$F^{j m_{k-1}}(0,0)=\left(\tau^{j m_{k-1}}(0), 1-r_{k}^{j}\right), \quad j, k \in \mathbb{N}, k$ odd.		

This gives that $M=\omega_{F}(0,0)$ is the unique minimal set and $\left.F\right|_{M}$ is LYC.
STAGE 2. We show that parameters n_{k} can be chosen such that $\left.F\right|_{Q \times I}$, or equivalently (since (Q, τ) is distal), no I_{x} with $x \in Q$ contains a DC2-pair. So it suffices to show that

$$
\Phi_{u v}(t)=\Phi_{u v}^{*}(t)=1, \text { for every } u, v \in I_{x}, \quad x \in Q, \quad \text { and } \quad t>0
$$

Using Lemma it is easy to verify that

$$
\begin{gather*}
F^{j m_{k-1}}(0,1)=\left(\tau^{j m_{k-1}}(0), r_{k}^{j}\right), \quad j, k \in \mathbb{N}, k \text { even } \tag{10}\\
F^{j m_{k-1}}(0,0)=\left(\tau^{j m_{k-1}}(0), 1-r_{k}^{j}\right), \quad j, k \in \mathbb{N}, k \text { odd. } \tag{11}
\end{gather*}
$$

This gives that $M=\omega_{F}(0,0)$ is the unique minimal set and $\left.F\right|_{M}$ is LYC.

Using Lemma it is easy to verify that

$$
\begin{gather*}
F^{j m_{k-1}}(0,1)=\left(\tau^{j m_{k-1}}(0), r_{k}^{j}\right), \quad j, k \in \mathbb{N}, k \text { even } \tag{10}\\
F^{j m_{k-1}}(0,0)=\left(\tau^{j m_{k-1}}(0), 1-r_{k}^{j}\right), \quad j, k \in \mathbb{N}, k \text { odd. } \tag{11}
\end{gather*}
$$

This gives that $M=\omega_{F}(0,0)$ is the unique minimal set and $\left.F\right|_{M}$ is LYC.
STAGE 2. We show that parameters n_{k} can be chosen such that $\left.F\right|_{Q \times I}$, or equivalently (since (Q, τ) is distal), no I_{x} with $x \in Q$ contains a $D C 2$-pair. So it suffices to show that

$$
\Phi_{u v}(t)=\Phi_{u v}^{*}(t)=1, \text { for every } u, v \in I_{x}, \quad x \in Q, \quad \text { and } t>0
$$

STAGE 3. Extend the map F from $Q \times I$ in the affine manner onto a map $(x, y) \rightarrow\left(f(x), g_{x}(y)\right)$ in \mathcal{T}.

introduc
\circ
\circ
0

Remarks on open(?) problems

- If $F \in \mathcal{T}$ possesses no $D C 3$-pair, is it true that $\left.F\right|_{U R(F)}$ has no Li-Yorke pair?
NO (Downarowicz and M.Š.)

introduction ㅇo	$\begin{aligned} & \hline \text { definitions } \\ & \circ \circ \\ & \circ \circ \end{aligned}$	results $\circ 00$ \circ 00 $\circ \circ$	references

Remarks on open(?) problems

\section*{| results |
| :---: |
| 0.00 |}

Remarks on open(?) problems

- If $F \in \mathcal{T}$ possesses no $D C 3$-pair, is it true that $\left.F\right|_{U R(F)}$ has no Li-Yorke pair?
NO (Downarowicz and M.Š.)
- For $F \in \mathcal{T}$, does $h\left(\left.F\right|_{R R(F)}\right)=0$ imply $h\left(\left.F\right|_{U R(F)}\right)=0$? NO (Downarowicz)

嗇 F．Balibrea，J．Smítal，and M．Štefánková，The three versions of distributional chaos，Chaos，Solitons and Fractals 23 （2005）， 1581 － 1583.

围 M．Čiklová，Li－Yorke sensitive minimal maps，Nonlinearity 19 （2006），517－529．
嗇 T．Y．Li and J．A．Yorke，Period three implies chaos，Amer．Math Monthly 82 （1975）， 985 － 992.

B．Schweizer and J．Smítal，Measures of chaos and a spectral decomposition of dynamical systems on the interval，Trans．Amer． Math．Soc． 344 （1994）， 737 － 854.

目 J．Smítal，and M．Štefánková，Distributional chaos for triangular maps，Chaos，Solitons and Fractals 21 （5）（2004）， 1125 － 1128.

