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Recurrence

1 X - compact,

2 f : X → X - continuous
3 x ∈ X is recurrent if x ∈ ω(x , f ) .

or in other words, N(x ,U , f ) 6= ∅ for any neighborhoods U of x ,
where N(x ,U , f ) =

{
i > 0 : f i (x) ∈ U

}
.

4 x ∈ X is uniformly recurrent (or minimal) if it is recurrent and ω(x , f )
is a minimal set.

or equivalently N(x ,U , f ) is syndetic (has bounded gaps between its
elements, i.e. any sufficiently long block of consecutive integers
intersects it).
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Product recurrence

1 x ∈ X is (uniformly) recurrent if x ∈ ω(x , f ) (and it is a minimal set).
2 x ∈ X is product recurrent if

1 given any recurrent point y in any dynamical system g
2 and any neighborhoods U of x and V of y ,
3 N(x ,U , f ) ∩ N(y ,V , g) 6= ∅.

where N(x ,U, f ) =
{
i > 0 : f i (x) ∈ U

}
.

3 x , z ∈ X are proximal if lim infn→∞ d(f n(x), f n(z)) = 0

4 x is distal if it is not proximal to any point in its orbit closure other
than itself.

Theorem (Furstenberg)

A point x is product recurrent if and only if it is (uniformly recurrent)
distal point.
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Weak product recurrence

1 x ∈ X is weakly product recurrent if
1 given any uniformly recurrent (=almost periodic) point y in any

dynamical system g
2 and any neighborhoods U of x and V of y ,
3 N(x ,U , f ) ∩ N(y ,V , g) 6= ∅.

Question

,,Another question (even for Z or N actions): If (x, y) is recurrent for all
almost periodic points y , is x necessarily a distal point?”
[J. Auslander and H. Furstenberg, Product recurrence and distal points,
Trans. Amer. Math. Soc., 343 (1994) 221–232.]

2 It was first by Haddad and Ott that product recurrence and weak
product recurrence are not equivalent (Answer NO to the above).

[Recurrence in pairs, Ergod. Th. & Dynam. Sys. 28 (2008) 1135–1143]
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Haddad and Ott example

Theorem

A point x ∈ X is weakly product recurrent if it has the following property:

for every neighborhood V of x there exists n such that if S ⊂ N is
any finite set satisfying |s − t| > n for all distinct s, t ∈ S, then there
exists l ∈ N such that l + s ∈ N(x ,V , f ) for every s ∈ S.

1 the above conditions are satisfied by many points/systems (e.g. point
with dense orbit in full shift on 2 symbols)

2 dynamical system satisfying above must be at least mixing

3 dynamical system satisfying above cannot be minimal
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Disjointness

1 We a closed set ∅ 6= J ⊂ X × Y is a joining of (X , f ) and (Y , g) if it
is invariant (for the product map f × g) and its projections on first
and second coordinate are X and Y respectively.

2 If X × Y is the only joining of f and g then we say that they are
disjoint.

Question

How to characterize systems disjoint from any distal or minimal system?
[H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a
problem in Diophantine approximation, Math. Systems Theory, 1 (1967),
1–49]

Theorem (Petersen, 1970)

A system is disjoint with every distal system iff it is weakly mixing and
minimal.
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Disjointness and product recurrence

1 Only partial answers are known when a system is disjoint with all
minimal systems.

Theorem (Furstenberg, 1967)

If f is weakly mixing with dense periodic points then it is disjoint from
every minimal systems.

Theorem (Huang & Ye; Oprocha)

If (X , f ) is disjoint from every minimal system then every transitive point
in (X , f ) is weakly product recurrent.
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Disjointness and product recurrence (cont.)

Remark

The class of weak product recurrent points is much wider than can
detected by disjointness theorems, e.g.

If ([0, 1], f ) is mixing and (S1,R) is irrational rotation then for any
z ∈ S1 there is a residual set in [0, 1] × {z} ⊂ (S1,R) in dynamical
system ([0, 1] × S1, f × R) consisting of weakly product recurrent
points.

But ([0, 1] × S1, f × R) is not disjoint with (S1,R).
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Product recurrence in terms of Furstenberg families (Dong,
Shao, Ye)

1 F - upward hereditary set of subsets of N = Furstenberg family

2 x ∈ X is F-recurrent if N(x ,U, f ) ∈ F for any open neighborhood U
of x ,

3 recurrence = Finf -recurrence (Finf = infinite subsets of N)
4 x ∈ X is F-product recurrent (F-PR for short) if for any dynamical

system (Y , g) and any F-recurrent point y ∈ Y the pair (x , y) is
recurrent for (X × Y , f × g).

5 F-PR0 = F-PR but only with (Y , g) of topological entropy zero.

6 Finf -PR = product recurrence (as introduced by Furstenberg)

7 Fs-PR = weak product recurrence (where Fs is the family of syndetic
sets)
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Further results on product recurrence
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Figure: Product recurrence and product recurrence with zero entropy systems
(Dong, Shao & Ye)

Fps = piecewise syndetic, i.e. intersections of syndetic and thick set

Fpubd = sets with positive upper Banach denisty

0 < D(A) = lim sup
n→∞

1

n
sup
i≥0

#(A ∩ [i , i + n))
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Results on PR obtained by results on disjointness

1 If (X , f ) is a minimal flow (i.e. homeomorphism) such that any of its
invariant measures is a K -measure, then it is disjoint from any
transitive zero entropy E-system.

If (X , f ) is a strictly ergodic flow with its unique invariant measure
being a K -measure, then every point x ∈ X is Fpubd-PR0.
But it has positive topological entropy, so also asymptotic pairs...
So there are points in X which are not recurrent in pair with minimal
points.
Hence we have an example Fpubd − PR0 6=⇒ Fs − PR.

W. Huang, K. K. Park, and X. Ye, Topological disjointness from
entropy zero systems, Bull. Soc. Math. France 135 (2007), no. 2,
259–282.

2 If x is Fps-PR0 then it is a minimal point.
Hence we have an example Fs − PR 6=⇒ Fps − PR0.

P. Dong, S. Shao, and X. Ye, Product recurrent properties, disjointness
and weak disjointness, Israel J. Math. 188 (2010), 463–507.
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Further results on product recurrence (cont.)
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Figure: Product recurrence and product recurrence with zero entropy systems
(Dong, Shao & Ye) + work of Oprocha and G.H. Zhang

Fps = piecewise syndetic, i.e. intersections of syndetic and thick set

Fpubd = sets with positive upper Banach denisty

Piotr Oprocha (AGH) Product recurrence AIMS, Orlando, July 2012 12 / 14

Results with Guo Hua Zhang

Theorem

If x is Fps -PR then it is distal.

Theorem

The following statements are equivalent:

1 x is distal,

2 (x , y) is recurrent for any recurrent point y of any system (Y , g),

3 (x , y) is Fpubd -recurrent for any Fpubd -recurrent point y of any
system (Y , g),

4 (x , y) is Fps -recurrent for any Fps -recurrent point y of any system
(Y , g),

5 (x , y) is minimal for any minimal point y of any system (Y , g).
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Open problems

1 Fps − PR0 =⇒ Fpubd − PR0?

2 Fs − PR +minimal =⇒ distal?
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