Shadowable chain transitive sets of \mathcal{C}^1 -vector fields	Shadowable chain transitive sets of C^1 -vector fields
	Outline
Shadowable chain transitive sets of C ¹ -vector fields Manseob Lee Joint work with Prof. K. Lee Mokwon University, Daejeon, Korea.	Motivations Conjecture Previous results Main Theorem Basic notions Shadowing Chain transitive set Proof of Main Theorem
July 2, 2012	Outline of the Proof End of the Proof of Main Theorem
Shadowable chain transitive sets of <i>C</i> ¹ -vector fields Motivations Conjecture	Shadowable chain transitive sets of C ¹ -vector fields Motivations Previous results
Conjecture	Previous results
Abdenur and Díaz(2007) There is a residual set $\mathcal{G} \subset \operatorname{Diff}(M)$ such that $f \in \mathcal{G}$ is shadowable if and only if it is hyperbolic.	 Abdenur and Díaz(2007) Given a locally maximal transitive set Λ of a generic diffeomorphisms f, then either, (a) Λ is hyperbolic or (b) there are a neighborhood U(f) of f and a small locally maximal neighborhood U of Λ such that every g ∈ U(f) is non-shadowable in the neighborhood U.

Shadowable chain transitive sets of C^1 -vector fields	Shadowable chain transitive sets of C^1 -vector fields
Motivations	-Main Theorem
Previous results	
Previous results Lee and Wen(2012) A locally maximal chain transitive set of a C ¹ -generic diffeomorphism is hyperbolic if and only if it is shadowable.	Main Theorem For C^1 generic vector field X, a locally maximal chain transitive set is shadowable if and only if the chain transitive set is a hyperbolic basic set.
Shadowable chain transitive sets of C ¹ -vector fields Basic notions	Shadowable chain transitive sets of C ¹ -vector fields └─Basic notions └─Shadowing
	L-Basic notions

Shadowable chain transitive sets of C ¹ -vector fields └─ Basic notions └─ Shadowing	Shadowable chain transitive sets of C ¹ -vector fields Basic notions Shadowing Star condition
Shadowing Let Λ be a closed X_t -invariant set. We say that X_t has the shadowing property on Λ (or Λ is shadowable) if for every $\epsilon > 0$ there is $\delta > 0$ such that for any δ -pseudo-orbit $\{(x_i, t_i)\}_{i=a}^b \subset \Lambda(-\infty \le a < b \le \infty)$, let $T_i = t_0 + \cdots + t_i$ for any $0 \le i < b$, and $T_i = -t_{-1} - t_{-2} - \cdots - t_i$ for any $a < i \le 0$, there exists a point $y \in M$ and an increasing homeomorphism $h : \mathbb{R} \to \mathbb{R}$ with $h(0) = 0$ such that $d(X_{h(t)}(y), X_{t-T_i}(x_i)) < \epsilon$ for all $a \le i \le b - 1$, and $T_i < t < T_{i+1}$.	 P(X) : the set of the periodic orbits. Sing(X) : the set of singularities.
Shadowable chain transitive sets of C ¹ -vector fields Basic notions Shadowing Star condition	Shadowable chain transitive sets of C ¹ -vector fields Basic notions Shadowing Star condition
 P(X) : the set of the periodic orbits. Sing(X) : the set of singularities. 	 P(X) : the set of the periodic orbits. Sing(X) : the set of singularities.
• $Crit(X) = P(X) \cup Sing(X).$	 Crit(X) = P(X) ∪ Sing(X). S(M) : the set of C¹ vector fields in M for which there is a C¹-neighborhood U(X) such that every critical orbit of every vector field in U(X) is hyperbolic.

Shadowable chain transitive sets of C^1 -vector fields	Shadowable chain transitive sets of C^1 -vector fields
L Basic notions	└──Basic notions └──Shadowing
- Madeling	
Star condition	Star condition
\blacktriangleright $P(X)$: the set of the periodic orbits.	
 Sing(X) : the set of singularities. 	• We say that X is star flow if $X \in \mathfrak{F}(M)$.
• $Crit(X) = P(X) \cup Sing(X).$	▶ If $X \in \mathfrak{F}(M)$ and has no singularities, then X is Axiom A and
	no-cycle condition (Gan and Wen(2006)).
• $\mathfrak{F}(M)$: the set of C^1 vector fields in M for which there is a	
C^1 -neighborhood $\mathcal{U}(X)$ such that every critical orbit of every	
vector field in $\mathcal{U}(X)$ is hyperbolic.	
Shadowable chain transitive sets of C ¹ -vector fields Basic notions	Shadowable chain transitive sets of C ¹ -vector fields Basic notions
Shadowing	Chain transitive set
Star condition	Chain transitive set
	\mathbf{N} (a count bet \mathbf{A} is transitive if there is a point $\mathbf{x} \in \mathbf{A}$ such that
	We say that Λ is transitive if there is a point x ∈ Λ such that the closure of O _{Xt} (x)(t ≥ 0) is Λ.
• We say that X is star flow if $X \in \mathfrak{F}(M)$.	For given $x, y \in \Lambda$, we write $x \rightsquigarrow_{\Lambda} y$ if for any $\delta > 0$ there is a
	δ -pseudo-orbit $\{(x_i,t_i)\}_{i=0}^n (n\geq 1,t_i\geq 1)$ of X_t in Λ such that
▶ If $X \in \mathfrak{F}(M)$ and has no singularities, then X is Axiom A and	$x_0 = x$ and $x_n = y$.
no-cycle condition (Gan and Wen(2006)).	

Shadowable chain transitive sets of C ¹ -vector fields └─Basic notions └─Chain transitive set	Shadowable chain transitive sets of C ¹ -vector fields Basic notions Chain transitive set
Chain transitive set	Chain transitive set
• We say that Λ is transitive if there is a point $x \in \Lambda$ such that the closure of $\mathcal{O}_{X_t}(x)(t \ge 0)$ is Λ .	We say that Λ is transitive if there is a point x ∈ Λ such that the closure of O _{Xt} (x)(t ≥ 0) is Λ.
For given $x, y \in \Lambda$, we write $x \rightsquigarrow_{\Lambda} y$ if for any $\delta > 0$ there is a δ -pseudo-orbit $\{(x_i, t_i)\}_{i=0}^n (n \ge 1, t_i \ge 1)$ of X_t in Λ such that $x_0 = x$ and $x_n = y$.	For given $x, y \in \Lambda$, we write $x \rightsquigarrow_{\Lambda} y$ if for any $\delta > 0$ there is a δ -pseudo-orbit $\{(x_i, t_i)\}_{i=0}^n (n \ge 1, t_i \ge 1)$ of X_t in Λ such that $x_0 = x$ and $x_n = y$.
• We say that $\mathcal{C}(X)$ is chain transitive if $x \rightsquigarrow_{\mathcal{C}(X)} y$ for any $x, y \in \mathcal{C}(X)$.	We say that C(X) is chain transitive if x → _{C(X)} y for any x, y ∈ C(X).
	Note that every transitive set is chain transitive, but the converse is not true in general.
Shadowable chain transitive sets of C^1 -vector fields	Shadowable chain transitive sets of C^1 -vector fields
Shadowable chain transitive sets of C ¹ -vector fields Basic notions Chain transitive set	Shadowable chain transitive sets of C ¹ -vector fields Basic notions Chain transitive set
Basic notions	Basic notions
└─Basic notions └─Chain transitive set	└─Basic notions └─Chain transitive set
□ Basic notions □ Chain transitive set Chain transitive set ► We say that Λ is transitive if there is a point $x \in Λ$ such that	□ Basic notions □ Chain transitive set Chain transitive set ► We say that Λ is transitive if there is a point $x \in Λ$ such that
 □ Chain transitive set Chain transitive set We say that Λ is transitive if there is a point x ∈ Λ such that the closure of O_{Xt}(x)(t ≥ 0) is Λ. For given x, y ∈ Λ, we write x ~∧_Λ y if for any δ > 0 there is a δ-pseudo-orbit {(x_i, t_i)}ⁿ_{i=0}(n ≥ 1, t_i ≥ 1) of X_t in Λ such that 	 □ Basic notions □ Chain transitive set Chain transitive set We say that Λ is transitive if there is a point x ∈ Λ such that the closure of O_{Xt}(x)(t ≥ 0) is Λ. For given x, y ∈ Λ, we write x ~∧ y if for any δ > 0 there is a δ-pseudo-orbit {(x_i, t_i)}ⁿ_{i=0}(n ≥ 1, t_i ≥ 1) of X_t in Λ such that

Shadowable chain transitive sets of C ¹ -vector fields └─Basic notions └─Chain transitive set	Shadowable chain transitive sets of C ¹ -vector fields └─Basic notions └─Chain transitive set
Basic set	Basic set
• We say that Λ is locally maximal if there is a neighborhood U of Λ such that $\bigcap_{t \in \mathbb{R}} X_t(U) = \Lambda.$	 We say that Λ is locally maximal if there is a neighborhood U of Λ such that
We say that A is basic set if it is locally maximal and transitive set.	We say that Λ is basic set if it is locally maximal and transitive set.
Shadowable chain transitive sets of C ¹ -vector fields Basic notions Chain transitive set Hyperbolic	Shadowable chain transitive sets of C ¹ -vector fields Basic notions Chain transitive set Generic
We say that Λ is hyperbolic for X_t if the tangent bundle $T_{\Lambda}M$ has a DX_t -invariant splitting $E^s \oplus \langle X \rangle \oplus E^u$ and there exist constants $C > 0$ and $\lambda > 0$ such that $\ DX_t _{E_x^s}\ \leq Ce^{-\lambda t}$ and $\ DX_{-t} _{E_x^u}\ \leq Ce^{-\lambda t}$ for all $x \in \Lambda$ and $t > 0$.	 We say that a subset G ⊂ X(M) is residual if G contains the intersection of a countable family of open and dense subsets of X(M) We say that a property holds (C¹) generically if there exists a residual subset G ⊂ X(M) such that for any X ∈ G has that property.

Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem
Main Theorem For C^1 generic vector field X, a locally maximal chain transitive set C(X) is shadowable if and only if $C(X)$ is a hyperbolic basic set.
Shadowable chain transitive sets of C ¹ -vector fields
Outline of the Proof
Step 1 If a locally maximal chain transitive set $C(X)$ is shadowable then $C(X)$ is transitive.
Step 2 For C^1 -generic X, if X has the shadowing property on $C(X)$, then for any hyperbolic periodic orbits $\gamma_1, \gamma_2 \in C(X)$,
$\operatorname{index}(\gamma_1) = \operatorname{index}(\gamma_2),$

Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem Outline of the Proof
Outline of the Proof
 Step 3 For C¹-generic X, if X has the shadowing property on a locally maximal chain transitive set C(X), then X ∈ ℑ(M). Step 4 For C¹-generic X, if X has the shadowing property on a locally maximal chain transitive set C(X), then C(X) is a hyperbolic basic set.
Shadowable chain transitive sets of C^1 -vector fields \Box Proof of Main Theorem \Box Outline of the Proof
Sketch of Proof of Step 2
Crovisier(2006) A compact X_t -invariant set $C(X)$ is chain transitive if and only if $C(X)$ is the Hausdorff limit of a sequence of periodic orbits of X_t .

Shadowable chain transitive sets of C ¹ -vector fields └─Proof of Main Theorem └─Outline of the Proof	Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem Outline of the Proof
Sketch of Proof of Step 2	Sketch of Proof of Step 2
Let	Let γ ₁ , γ ₂ ∈ C(X) be hyperbolic periodic orbits. If X has the shadowing property on C(X), then
$W^{s}(\gamma_{1})\cap W^{u}(\gamma_{2}) eq \emptyset, ext{ and } W^{u}(\gamma_{1})\cap W^{s}(\gamma_{2}) eq \emptyset.$	$W^{s}(\gamma_{1})\cap W^{u}(\gamma_{2}) eq \emptyset, ext{ and } W^{u}(\gamma_{1})\cap W^{s}(\gamma_{2}) eq \emptyset.$
Let X ∈ X(M). We say that X is Kupka-Smale if all its critical points are hyperbolic, and the invariant manifolds of such elements intersect transversaly.	Let X ∈ 𝔅(M). We say that X is Kupka-Smale if all its critical points are hyperbolic, and the invariant manifolds of such elements intersect transversaly.
	Note that the set of Kupka-Smale vector fields is a residual subset of $\mathfrak{X}(M)$.
Shadowable chain transitive sets of C ¹ -vector fields └─ Proof of Main Theorem └─ Outline of the Proof	Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem Outline of the Proof
-Proof of Main Theorem	Proof of Main Theorem
└─Proof of Main Theorem └─Outline of the Proof	└─ Proof of Main Theorem └─ Outline of the Proof
□ Proof of Main Theorem □ Outline of the Proof Sketch of Proof of Step 2 ► Let $\gamma_1, \gamma_2 \in C(X)$ be hyperbolic periodic orbits. If X has the	$\label{eq:second} \begin{array}{c} \begin{tabular}{l} $ $ \begin{tabular}{l} $ $ \begin{tabular}{l} $ $ \begin{tabular}{l} $ $ \\ \hline $ \begin{tabular}{l} $ \\ \hline $ \begin{tabular}{l} $ $ \\ \hline $ \bedintup{tabular}{l} $ $
 □ Proof of Main Theorem □ Outline of the Proof Sketch of Proof of Step 2 ▶ Let γ₁, γ₂ ∈ C(X) be hyperbolic periodic orbits. If X has the shadowing property on C(X), then 	$\label{eq:started_outline} \begin{tabular}{l} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Shadowable chain transitive sets of C ¹ -vector fields └─ Proof of Main Theorem └─ Outline of the Proof	Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem Outline of the Proof
Sketch of Proof of Step 3	Step 3
Let $p \in \gamma \in P(X)$ be hyperbolic. For any $\delta > 0$, We say that a point p has a δ -weak eigenvalue if there is an eigenvalue λ of $DX_T(p)$ such that $(1 - \delta) < \lambda < (1 + \delta)$.	Lemma 2 There is a residual set $\mathcal{G}_2 \subset \mathfrak{X}(M)$ such that for any C^1 -neighborhood $\mathcal{U}(X)$ of X if there is a $Y \in \mathcal{U}(X)$ such that there exists at least one point in $P_h(Y)$ with δ -weak eigenvalue, then there exists a point in $P_h(X)$ with 2δ -weak eigenvalue, where $P_h(X)$ is the set of hyperbolic periodic orbits.
Shadowable chain transitive sets of C^1 -vector fields \square Proof of Main Theorem	Shadowable chain transitive sets of C^1 -vector fields $\ \ \ \ \ \ \ \ \ \ \ \ \ $
⊂Outline of the Proof Poincaré map	Poincaré map
Let $X \in \mathfrak{X}(M), x \in M$ and $T_x M(r) = \{v \in T_x M : v \le r\}$. For every regular point $x \in M(X(x) \ne 0)$, let $N_x = \langle X(x) \rangle^{\perp} \subset T_x M$ and $N_x(r)$ be the <i>r</i> ball in N_x . Let $\mathcal{N}_{x,r} = \exp_x(N_x(r))$.	Let $X \in \mathfrak{X}(M), x \in M$ and $T_x M(r) = \{v \in T_x M : v \le r\}$. For every regular point $x \in M(X(x) \ne 0)$, let $N_x = \langle X(x) \rangle^{\perp} \subset T_x M$ and $N_x(r)$ be the r ball in N_x . Let $\mathcal{N}_{x,r} = \exp_x(N_x(r))$.
• Given a regular point $x \in M$ and $t \in \mathbb{R}$, there are $r > 0$ and a C^1 map $\tau : \mathcal{N}_{x,r} \to \mathbb{R}$ with $\tau(x) = t$ such that $X_{\tau(y)}(y) \in \mathcal{N}_{X_{\tau}(x),1}$, for any $y \in \mathcal{N}_{x,r}$.	• Given a regular point $x \in M$ and $t \in \mathbb{R}$, there are $r > 0$ and a C^1 map $\tau : \mathcal{N}_{x,r} \to \mathbb{R}$ with $\tau(x) = t$ such that $X_{\tau(y)}(y) \in \mathcal{N}_{X_{\tau}(x),1}$, for any $y \in \mathcal{N}_{x,r}$.
	▶ We define the Poincaré map $f_{x,t} : \mathcal{N}_{x,r} \to \mathcal{N}_{X_T(x),1}$ by $f_{x,t}(y) = X_{\tau(y)}(y).$

Shadowable chain transitive sets of C ¹ -vector fields └─ Proof of Main Theorem └─ Outline of the Proof	Shadowable chain transitive sets of C ¹ -vector fields └─Proof of Main Theorem └─Outline of the Proof
Poincaré map	Linear Poincaré flow
Let $X \in \mathfrak{X}(M), x \in M$ and $T_x M(r) = \{v \in T_x M : v \le r\}$. For every regular point $x \in M(X(x) \ne 0)$, let $N_x = \langle X(x) \rangle^{\perp} \subset T_x M$ and $N_x(r)$ be the r ball in N_x . Let $\mathcal{N}_{x,r} = \exp_x(N_x(r))$.	Let $M_X = \{x \in M : X(x) \neq 0\}$, and let $N = \bigcup_{x \in M_X} N_x$ be the normal bundle based on M_X .
• Given a regular point $x \in M$ and $t \in \mathbb{R}$, there are $r > 0$ and a $C^1 \text{ map } \tau : \mathcal{N}_{x,r} \to \mathbb{R}$ with $\tau(x) = t$ such that $X_{\tau(y)}(y) \in \mathcal{N}_{X_{\tau}(x),1}$, for any $y \in \mathcal{N}_{x,r}$.	• We define a flow $\Phi_t : N \to N$ by $\Phi_t _{N_x} = \pi_{N_x} \circ D_x X_t _{N_x}$, where $\pi_{N_x} : T_x M \to N_x$ is the projection and $D_x X_t : T_x M \to T_{X_t(x)} M$ is the derivative map of X_t .
• We define the Poincaré map $f_{x,t} : \mathcal{N}_{x,r} \to \mathcal{N}_{X_T(x),1}$ by $f_{x,t}(y) = X_{\tau(y)}(y)$.	
Proof of Main Theorem	Shadowable chain transitive sets of C^1 -vector fields \Box Proof of Main Theorem
Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem Outline of the Proof Linear Poincaré flow	
└─ Proof of Main Theorem └─ Outline of the Proof	└─ Proof of Main Theorem └─ Outline of the Proof
Linear Poincaré flow Let $M_X = \{x \in M : X(x) \neq 0\}$, and let $N = \bigcup_{x \in M_X} N_x$ be the	Linear Poincaré flow Let $M_X = \{x \in M : X(x) \neq 0\}$, and let $N = \bigcup_{x \in M_X} N_x$ be the
Let $M_X = \{x \in M : X(x) \neq 0\}$, and let $N = \bigcup_{x \in M_X} N_x$ be the normal bundle based on M_X . ► We define a flow $\Phi_t : N \to N$ by $\Phi_t _{N_x} = \pi_{N_x} \circ D_x X_t _{N_x}$, where $\pi_{N_x} : T_x M \to N_x$ is the projection and	Let $M_X = \{x \in M : X(x) \neq 0\}$, and let $N = \bigcup_{x \in M_X} N_x$ be the normal bundle based on M_X . ► We define a flow $\Phi_t : N \to N$ by $\Phi_t _{N_x} = \pi_{N_x} \circ D_x X_t _{N_x}$, where $\pi_{N_x} : T_x M \to N_x$ is the projection and

Shadowable chain transitive sets of C¹-vector fields └─Proof of Main Theorem └─Outline of the Proof

Sketch of Proof of Step 3

Lemma 3

Let $X \in \mathfrak{X}(M)$ has no singularities, and let $\mathcal{U}(X)$ be a C^1 -neighborhood of X and Λ be locally maximal in U. If $\gamma \in \Lambda \cap P(Y)$ is not hyperbolic, then there is $Y \in \mathcal{U}(X)$ such that two distinct hyperbolic periodic orbits $\gamma_1, \gamma_2 \in \Lambda_Y(U)$ with different indices, where $\Lambda_Y(U) = \bigcap_{t \in \mathbb{R}} Y_t(U)$.

Shadowable chain transitive sets of C¹-vector fields └─Proof of Main Theorem └─Outline of the Proof

Sketch of Proof of Step 3

Lemma 4

Let $\mathcal{C}(X)$ be a locally maximal chain transitive set. There is a residual set $\mathcal{G}_3 \subset \mathfrak{X}(M)$ such that for any $X \in \mathcal{G}_3$, if X has the shadowing property on $\mathcal{C}(X)$, then there is $\delta > 0$ such that every hyperbolic periodic orbit in $\mathcal{C}(X)$ has no δ -weak eigenvalue.

Sketch of Proof of Step 3

Lemma 3

Let $X \in \mathfrak{X}(M)$ has no singularities, and let $\mathcal{U}(X)$ be a C^1 -neighborhood of X and Λ be locally maximal in U. If $\gamma \in \Lambda \cap P(Y)$ is not hyperbolic, then there is $Y \in \mathcal{U}(X)$ such that two distinct hyperbolic periodic orbits $\gamma_1, \gamma_2 \in \Lambda_Y(U)$ with different indices, where $\Lambda_Y(U) = \bigcap_{t \in \mathbb{R}} Y_t(U)$.

Shadowable chain transitive sets of C¹-vector fields └─ Proof of Main Theorem └─ Outline of the Proof

Proposition

There is a residual set $\mathcal{G}_4 \subset \mathfrak{X}(M)$ such that if X has no singularities and X has the shadowing property on a locally maximal chain transitive set $\mathcal{C}(X)$, then there exist constants T > 0 and $\lambda > 0$ such that for any $p \in \gamma \in P(X)$,

- (a) $\|\Phi_{X_t}|_{E^s(p)}\| \cdot \|\Phi_{X_{-t}}|_{E^u(X_t(p))}\| \le e^{-2\lambda t}$ for any $t \ge T$,
- (b) If τ is the period of p, m is any positive integer, and $0 = t_0 < t_1 < \cdots < t_k = m\tau$ is any partition of the time interval $[0, m\tau]$ with $t_{i+1} - t_i \ge T$, then

$$\frac{1}{m\tau} \sum_{i=0}^{k-1} \log \|\Phi_{X_{t_{i+1}-t_i}}|_{E^s(X_{t_i}(\rho))}\| < -\lambda, \text{ and}$$
$$\frac{1}{m\tau} \sum_{i=0}^{k-1} \log \|\Phi_{X_{-(t_{i+1}-t_i)}}|_{E^s(X_{t_{i+1}}(\rho))}\| < -\lambda.$$

Shadowable chain transitive sets of C ¹ -vector fields └─Proof of Main Theorem └─Outline of the Proof	Shadowable chain transitive sets of C ¹ -vector fields └─Proof of Main Theorem └─Outline of the Proof
Sketch of Proof of Step 4	Sketch of Proof of Step 4
 Let x ∈ M \ Sing(X) is called strongly closable if for any C¹-neighborhood U(X) of X, for any δ > 0, there are Y ∈ U(X), p ∈ γ ∈ P(Y)and T > 0 such that (a) Y_T(p) = p, (b) X(y) = Y(y) for any y ∈ M \ U_{t∈[0,T]} B(X_t(x), δ), (c) d(X_t(x), Y_t(p)) < δ for each t ∈ [0, T]. 	 Let x ∈ M \ Sing(X) is called strongly closable if for any C¹-neighborhood U(X) of X, for any δ > 0, there are Y ∈ U(X), p ∈ γ ∈ P(Y)and T > 0 such that (a) Y_T(p) = p, (b) X(y) = Y(y) for any y ∈ M \ U_{t∈[0,T]} B(X_t(x), δ), (c) d(X_t(x), Y_t(p)) < δ for each t ∈ [0, T].
• Let $\Sigma(X)$ be the set of strongly closable points of X.	• Let $\Sigma(X)$ be the set of strongly closable points of X.
Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem Outline of the Proof Skotch of Droof of Stop 1	Shadowable chain transitive sets of C ¹ -vector fields Proof of Main Theorem Outline of the Proof Skotch of Droof of Stop 4
Sketch of Proof of Step 4 Let \mathcal{M} be the space of all Borel measures μ on \mathcal{M} endowed with the weak* topology. Then for any ergodic measure $\mu \in \mathcal{M}$ of X , μ is supported on a periodic point $p \in \gamma$ of $X(X_T(p) = p, T > 0)$ if and only if $\int f d\mu = \frac{1}{T} \int_0^T f(X_t(p)) dt,$ where $f : C^0(\mathcal{M}) \to \mathbb{R}$.	Sketch of Proof of Step 4 Wen(1996) Let $X \in \mathfrak{X}(M)$. $\mu(\Sigma(X) \cup Sing(X)) = 1$, for every $T > 0$ and every X_T -invariant probability Borel measure μ . Lee and Wen(2012) There is a residual set $\mathcal{G}_5 \subset \mathfrak{X}(M)$ such that every $X \in \mathcal{G}_5$ satisfies the following property: Any ergodic measure μ of X is the limit of sequence of ergodic invariant measures supported by periodic orbits γ_n of X in the weak* topology. Moreover, the orbits γ_n converges to the support of μ in the Hausdorff topology.

Shadowable chain transitive sets of C ¹ -vector fields	Shadowable chain transitive sets of C ¹ -vector fields
└─ Proof of Main Theorem	Proof of Main Theorem
└─ End of the Proof of Main Theorem	End of the Proof of Main Theorem
Let $X \in \mathfrak{X}(M)$ without singularities, and let $X \in \mathcal{G}_4 \cap \mathcal{G}_5$. Then we prove the Main Theorem.	Thanks for your attention.