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Motivations

Conjecture

Conjecture

Abdenur and D́ıaz(2007)

There is a residual set G ⊂ Diff(M) such that f ∈ G is shadowable
if and only if it is hyperbolic.
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Motivations

Previous results

Previous results

Abdenur and D́ıaz(2007)

Given a locally maximal transitive set Λ of a generic
diffeomorphisms f , then either,

(a) Λ is hyperbolic or

(b) there are a neighborhood U(f ) of f and a small locally
maximal neighborhood U of Λ such that every g ∈ U(f ) is
non-shadowable in the neighborhood U.
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Motivations

Previous results

Previous results

Lee and Wen(2012)

A locally maximal chain transitive set of a C 1-generic
diffeomorphism is hyperbolic if and only if it is shadowable.
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Main Theorem

Main Theorem
For C 1 generic vector field X , a locally maximal chain transitive
set is shadowable if and only if the chain transitive set is a
hyperbolic basic set.
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Basic notions

I M : a compact smooth Riemannian Manifold.

I X(M) : the set of all C 1-vector fields of M endowed with
the C 1-topology.

I d : the distance induced from the Riemannian structure.
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Basic notions

Shadowing

Shadowing

Pseudo orbit
For δ > 0, a sequence
{(xi , ti ) : xi ∈ M, ti ≥ 1}bi=a(−∞ ≤ a < b ≤ ∞) in M is called a
δ-pseudo orbit of X if d(Xti (xi ), xi+1) < δ for all a ≤ i ≤ b − 1.
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Basic notions

Shadowing

Shadowing

Let Λ be a closed Xt-invariant set. We say that Xt has the
shadowing property on Λ (or Λ is shadowable) if for every ε > 0
there is δ > 0 such that for any δ-pseudo-orbit
{(xi , ti )}bi=a ⊂ Λ(−∞ ≤ a < b ≤ ∞), let Ti = t0 + · · ·+ ti for any
0 ≤ i < b, and Ti = −t−1 − t−2 − · · · − ti for any a < i ≤ 0, there
exists a point y ∈ M and an increasing homeomorphism h : R → R
with h(0) = 0 such that d(Xh(t)(y),Xt−Ti

(xi )) < ε for all
a ≤ i ≤ b − 1, and Ti < t < Ti+1.
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Basic notions

Shadowing

Star condition

I P(X ) : the set of the periodic orbits.

I Sing(X ) : the set of singularities.

I Crit(X ) = P(X ) ∪ Sing(X ).

I F(M) : the set of C 1 vector fields in M for which there is a
C 1-neighborhood U(X ) such that every critical orbit of every
vector field in U(X ) is hyperbolic.
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Basic notions

Shadowing

Star condition

I We say that X is star flow if X ∈ F(M).

I If X ∈ F(M) and has no singularities, then X is Axiom A and
no-cycle condition (Gan and Wen(2006)).

Shadowable chain transitive sets of C1-vector fields

Basic notions

Shadowing

Star condition

I We say that X is star flow if X ∈ F(M).

I If X ∈ F(M) and has no singularities, then X is Axiom A and
no-cycle condition (Gan and Wen(2006)).

Shadowable chain transitive sets of C1-vector fields

Basic notions

Chain transitive set

Chain transitive set

I We say that Λ is transitive if there is a point x ∈ Λ such that
the closure of OXt (x)(t ≥ 0) is Λ.

I For given x , y ∈ Λ, we write x  Λ y if for any δ > 0 there is a
δ-pseudo-orbit {(xi , ti )}ni=0(n ≥ 1, ti ≥ 1) of Xt in Λ such that
x0 = x and xn = y .

I We say that C(X ) is chain transitive if x  C(X ) y for any
x , y ∈ C(X ).

I Note that every transitive set is chain transitive, but the
converse is not true in general.
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Chain transitive set

Basic set

I We say that Λ is locally maximal if there is a neighborhood U
of Λ such that ⋂

t∈R
Xt(U) = Λ.

I We say that Λ is basic set if it is locally maximal and
transitive set.
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Basic notions

Chain transitive set

Hyperbolic

We say that Λ is hyperbolic for Xt if the tangent bundle TΛM has
a DXt-invariant splitting E s⊕ < X > ⊕Eu and there exist
constants C > 0 and λ > 0 such that

‖DXt |E s
x
‖ ≤ Ce−λt and ‖DX−t |Eu

x
‖ ≤ Ce−λt

for all x ∈ Λ and t > 0.
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Basic notions

Chain transitive set

Generic

I We say that a subset G ⊂ X(M) is residual if G contains the
intersection of a countable family of open and dense subsets
of X(M)

I We say that a property holds (C 1) generically if there exists a
residual subset G ⊂ X(M) such that for any X ∈ G has that
property.
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Main Theorem
For C 1 generic vector field X , a locally maximal chain transitive set
C(X ) is shadowable if and only if C(X ) is a hyperbolic basic set.
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Proof of Main Theorem

Outline of the Proof

Outline of the Proof

Step 1 If a locally maximal chain transitive set C(X ) is shadowable
then C(X ) is transitive.

Step 2 For C 1-generic X , if X has the shadowing property on C(X ),
then for any hyperbolic periodic orbits γ1, γ2 ∈ C(X ),

index(γ1) = index(γ2),

where index(γ) = dimW s(γ).

Shadowable chain transitive sets of C1-vector fields

Proof of Main Theorem

Outline of the Proof

Outline of the Proof

Step 1 If a locally maximal chain transitive set C(X ) is shadowable
then C(X ) is transitive.

Step 2 For C 1-generic X , if X has the shadowing property on C(X ),
then for any hyperbolic periodic orbits γ1, γ2 ∈ C(X ),

index(γ1) = index(γ2),

where index(γ) = dimW s(γ).



Shadowable chain transitive sets of C1-vector fields

Proof of Main Theorem

Outline of the Proof

Outline of the Proof

Step 3 For C 1-generic X , if X has the shadowing property on a
locally maximal chain transitive set C(X ), then X ∈ F(M).

Step 4 For C 1-generic X , if X has the shadowing property on a
locally maximal chain transitive set C(X ), then C(X ) is a
hyperbolic basic set.
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Proof of Main Theorem

Outline of the Proof

Sketch of Proof of Step 1

I If X has the shadowing property on a locally maximal chain
transitive set C(X ), then the shadowing point can be taken
from C(X ).

I If X has the shadowing property on a locally maximal chain
transitive set C(X ), then C(X ) is transitive.
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Proof of Main Theorem

Outline of the Proof

Sketch of Proof of Step 2

Crovisier(2006)

A compact Xt-invariant set C(X ) is chain transitive if and only if
C(X ) is the Hausdorff limit of a sequence of periodic orbits of Xt .
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Proof of Main Theorem

Outline of the Proof

Sketch of Proof of Step 2

I Let γ1, γ2 ∈ C(X ) be hyperbolic periodic orbits. If X has the
shadowing property on C(X ), then

W s(γ1) ∩W u(γ2) 6= ∅, and W u(γ1) ∩W s(γ2) 6= ∅.

I Let X ∈ X(M). We say that X is Kupka-Smale if all its
critical points are hyperbolic, and the invariant manifolds of
such elements intersect transversaly.

Note that the set of Kupka-Smale vector fields is a residual subset
of X(M).
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Outline of the Proof

Sketch of Proof of Step 3

Lemma 1
There is a residual set G1 ⊂ X(M) such that for any
C 1-neighborhood U(X ) of X , if there is Y ∈ U(X ) such that Y
has two distinct hyperbolic periodic orbits γY , ηY with different
indices, then X has two different hyperbolic periodic orbits γ, η
with different indices.
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Outline of the Proof

Sketch of Proof of Step 3

Let p ∈ γ ∈ P(X ) be hyperbolic. For any δ > 0, We say that a
point p has a δ-weak eigenvalue if there is an eigenvalue λ of
DXT (p) such that (1− δ) < |λ| < (1 + δ).
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Outline of the Proof

Step 3

Lemma 2
There is a residual set G2 ⊂ X(M) such that for any
C 1-neighborhood U(X ) of X if there is a Y ∈ U(X ) such that
there exists at least one point in Ph(Y ) with δ-weak eigenvalue,
then there exists a point in Ph(X ) with 2δ-weak eigenvalue, where
Ph(X ) is the set of hyperbolic periodic orbits.
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Outline of the Proof

Poincaré map

Let X ∈ X(M), x ∈ M and TxM(r) = {v ∈ TxM : ‖v‖ ≤ r}. For
every regular point x ∈ M(X (x) 6= 0), let Nx =< X (x) >⊥⊂ TxM
and Nx(r) be the r ball in Nx . Let Nx ,r = expx(Nx(r)).

I Given a regular point x ∈ M and t ∈ R, there are r > 0 and a
C 1 map τ : Nx ,r → R with τ(x) = t such that
Xτ(y)(y) ∈ NXT (x),1, for any y ∈ Nx ,r .

I We define the Poincaré map fx ,t : Nx ,r → NXT (x),1 by
fx ,t(y) = Xτ(y)(y).
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Linear Poincaré flow

Let MX = {x ∈ M : X (x) 6= 0}, and let N =
⋃

x∈MX
Nx be the

normal bundle based on MX .

I We define a flow Φt : N → N by Φt |Nx = πNx ◦ DxXt |Nx ,
where πNx : TxM → Nx is the projection and
DxXt : TxM → TXt(x)M is the derivative map of Xt .

I Φt |Nx = Dx fx ,t .
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Sketch of Proof of Step 3

Lemma 3
Let X ∈ X(M) has no singularities, and let U(X ) be a
C 1-neighborhood of X and Λ be locally maximal in U. If
γ ∈ Λ ∩ P(Y ) is not hyperbolic, then there is Y ∈ U(X ) such that
two distinct hyperbolic periodic orbits γ1, γ2 ∈ ΛY (U) with
different indices, where ΛY (U) =

⋂
t∈R Yt(U).
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Lemma 4
Let C(X ) be a locally maximal chain transitive set. There is a
residual set G3 ⊂ X(M) such that for any X ∈ G3, if X has the
shadowing property on C(X ), then there is δ > 0 such that every
hyperbolic periodic orbit in C(X ) has no δ-weak eigenvalue.
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Outline of the Proof

Proposition
There is a residual set G4 ⊂ X(M) such that if X has no
singularities and X has the shadowing property on a locally
maximal chain transitive set C(X ), then there exist constants
T > 0 and λ > 0 such that for any p ∈ γ ∈ P(X ),

(a) ‖ΦXt |E s(p)‖ · ‖ΦX−t |Eu(Xt(p))‖ ≤ e−2λt for any t ≥ T ,

(b) If τ is the period of p,m is any positive integer, and
0 = t0 < t1 < · · · < tk = mτ is any partition of the time
interval [0,mτ ] with ti+1 − ti ≥ T , then

1

mτ

k−1∑

i=0

log ‖ΦXti+1−ti
|E s(Xti

(p))‖ < −λ, and

1

mτ

k−1∑

i=0

log ‖ΦX−(ti+1−ti )
|E s(Xti+1

(p))‖ < −λ.
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Outline of the Proof

Sketch of Proof of Step 4

I Let x ∈ M \ Sing(X ) is called strongly closable if for any
C 1-neighborhood U(X ) of X , for any δ > 0, there are
Y ∈ U(X ), p ∈ γ ∈ P(Y )and T > 0 such that

(a) YT (p) = p,
(b) X (y) = Y (y) for any y ∈ M \⋃t∈[0,T ] B(Xt(x), δ),

(c) d(Xt(x),Yt(p)) < δ for each t ∈ [0,T ].

I Let Σ(X ) be the set of strongly closable points of X .
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Sketch of Proof of Step 4

Let M be the space of all Borel measures µ on M endowed with
the weak∗ topology. Then for any ergodic measure µ ∈ M of X , µ
is supported on a periodic point p ∈ γ of X (XT (p) = p,T > 0) if
and only if ∫

fdµ =
1

T

∫ T

0
f (Xt(p))dt,

where f : C 0(M) → R.
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Outline of the Proof

Sketch of Proof of Step 4

Wen(1996)

Let X ∈ X(M). µ(Σ(X ) ∪ Sing(X )) = 1, for every T > 0 and
every XT -invariant probability Borel measure µ.

Lee and Wen(2012)

There is a residual set G5 ⊂ X(M) such that every X ∈ G5 satisfies
the following property: Any ergodic measure µ of X is the limit of
sequence of ergodic invariant measures supported by periodic
orbits γn of X in the weak∗ topology. Moreover, the orbits γn
converges to the support of µ in the Hausdorff topology.
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End of the Proof of Main Theorem

Let X ∈ X(M) without singularities, and let X ∈ G4 ∩ G5. Then we
prove the Main Theorem.
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Thanks for your attention.


