Infinite-Dimensional Topology and the Hilbert-Smith Conjecture

James Keesling James Maissen David C. Wilson

CB-

AIMS Conference Orland, Florida July 3, 2012

Hilbert-Smith Conjecture

↔ Hilbert's Fifth Problem (1900). Let *G* be a compact group acting on the manifold *M*. Suppose that

$G \times M \to M$

is effective. Then G is a Lie group. That is, the space of G is a differentiable manifold with multiplication and inversion differentiable functions. The action is also differentiable.

Focus on the Group

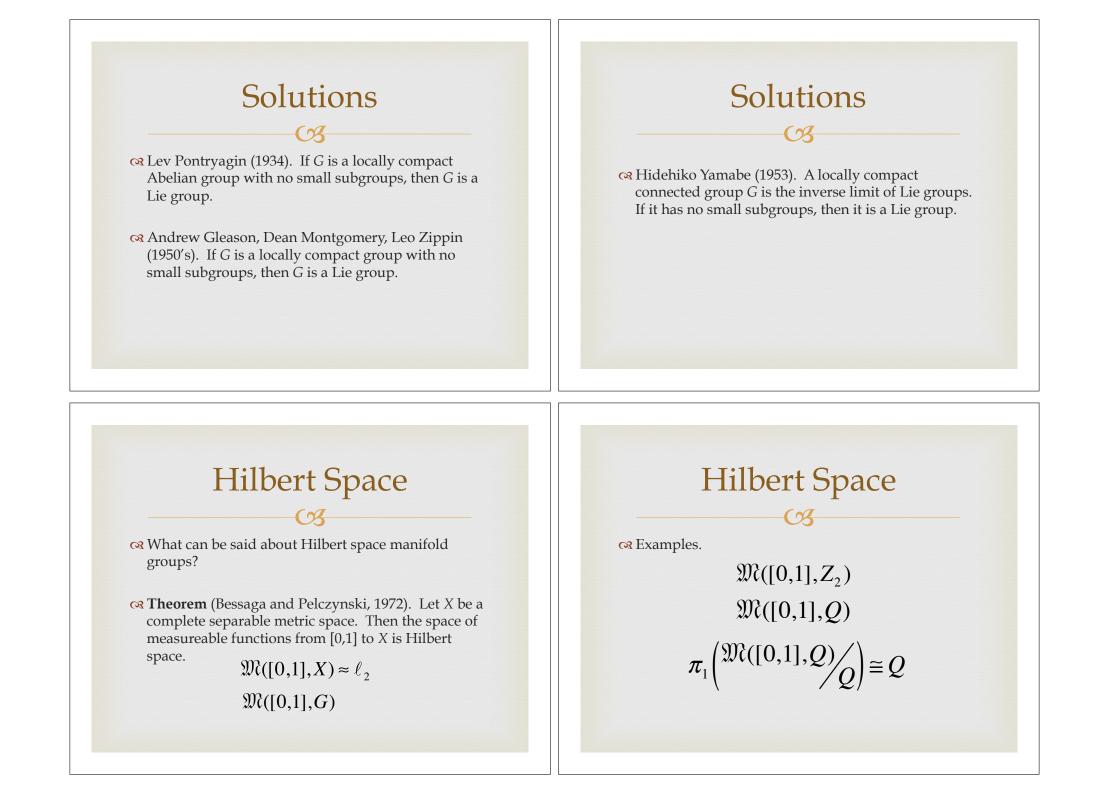
↔ When is a locally compact group a Lie group?

Solutions

Get John von Neumann (1929). If *G* is a compact group such that *G* is locally Euclidean, then *G* is a Lie group.

Requivalently, if G is a compact group that has no small subgroups, then G is a Lie group.

C Equivalently, if G is finite dimensional and locally connected, then G is a Lie group.



Hilbert-Smith R. H. Bing 03 \bigcirc There is a Z_2 – action on S^3 that cannot be **R** The other side of Hilbert's Fifth Problem. If differentiable. (1952) $G \times M \to M$ is an effective action by a compact group *G* on a differentiable manifold *M*, then *G* is Lie and the action is differentiable. http://mathworld.wolfram.com/AlexandersHornedSphere.html Hilbert-Smith Conjecture

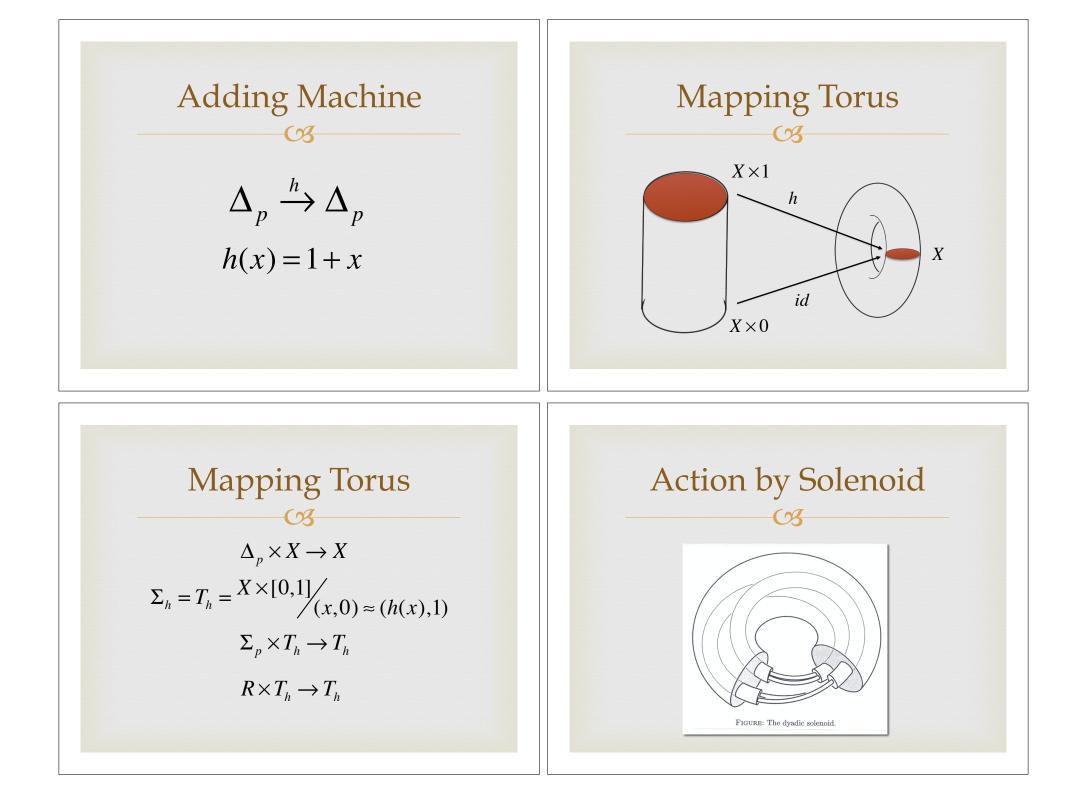
- **Conjecture.** If $G \times M \to M$ is an effective action of a compact group *G* on a manifold *M*, then *G* is a Lie group.
- **Requivalent.** There is no effective action of a *p*-adic group, Δ_p , on a manifold for any *p*.

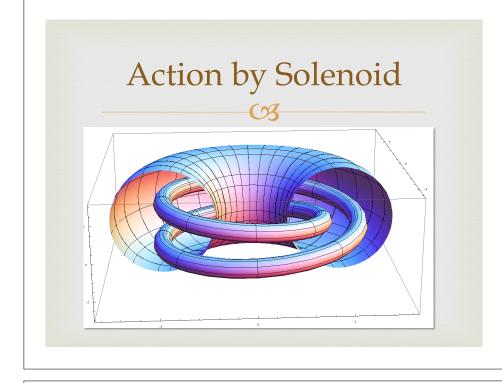
Adding Machine

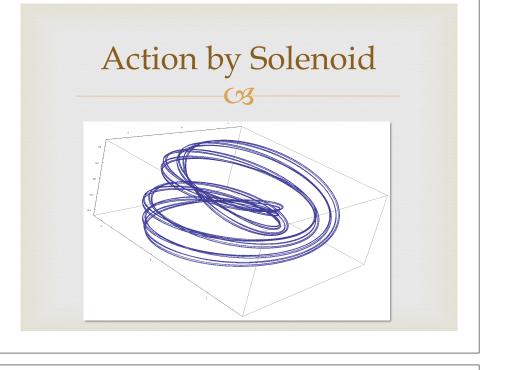
$$\alpha = (p_0, p_1, ...)$$

$$\Delta_{\alpha} = \lim_{n \to \infty} \left\{ Z_{p_0 p_1 \cdots p_n} \leftarrow Z_{p_0 p_1 \cdots p_{n+1}} \right\}$$

$$Z_{p_0} \longrightarrow Z_{p_0 p_1} \longrightarrow Z_{p_0 p_1 p_2} \cdots \infty \Delta_{\alpha}$$







Classic Results

CB-

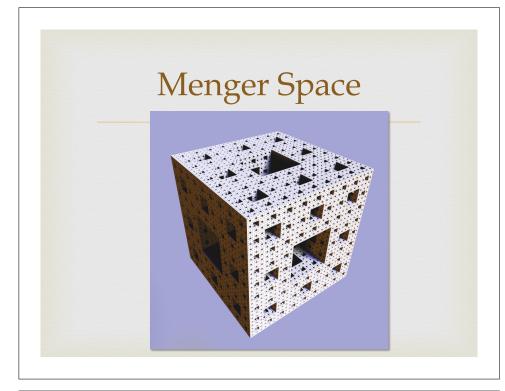
- **c Examples.** (D. Wilson, 1970's) For every n ≥ 3 and every m ≥ n there is an open mapping *f* from I^n onto I^m whose point inverses are Cantor sets.

Classic Results

∞ Menger Manifolds. (A. Dranishnikov, 1989) For every *n*-dimensional Menger manifold μ^n and every *p*, there is a free action of Δ_n on μ^n .

 (γ)

𝔅𝔅 (J. Mayer and C. Stark, 1985) There are free actions of Δ_p on μⁿ such that the dimension of the quotient is <math>n + 1. There are free actions such that the dimension of the quotient is n + 2.



Classic Results

Extending Actions to Compactifications

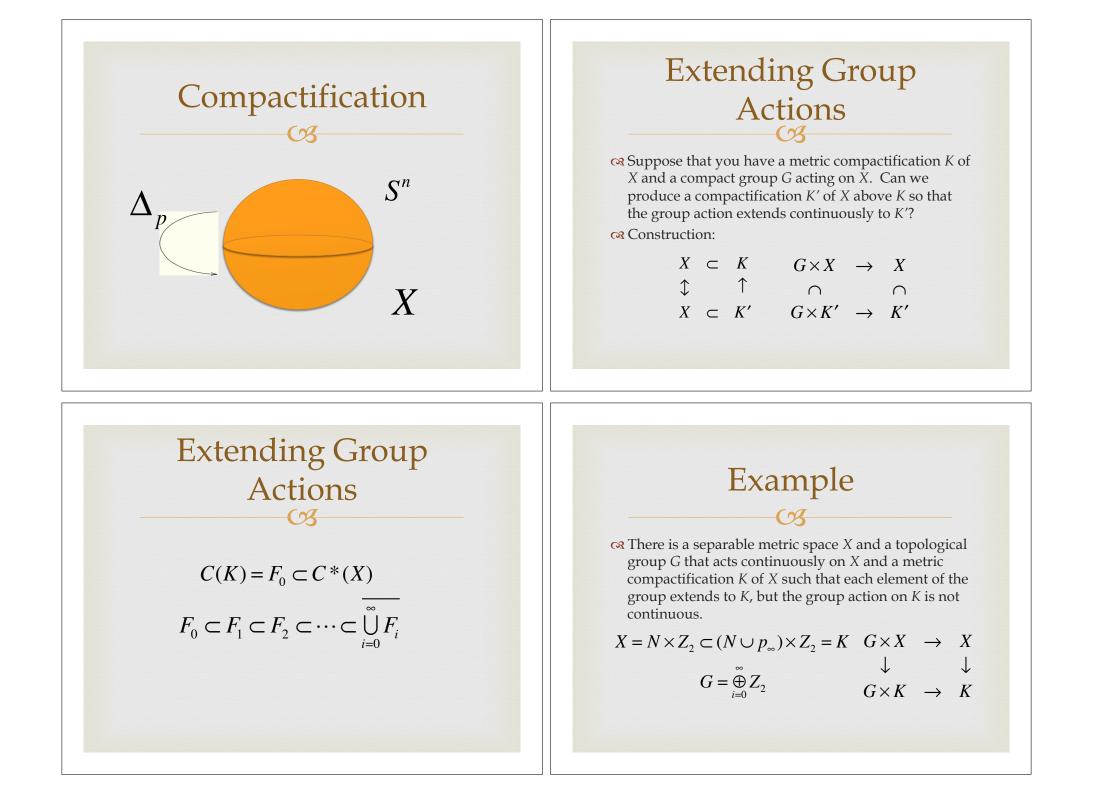
- ↔ When can a compact group action extend to a compactification?
- ↔ What kind of compact spaces can extend the action of the group.
- R Characterize manifold compactifications and actions.

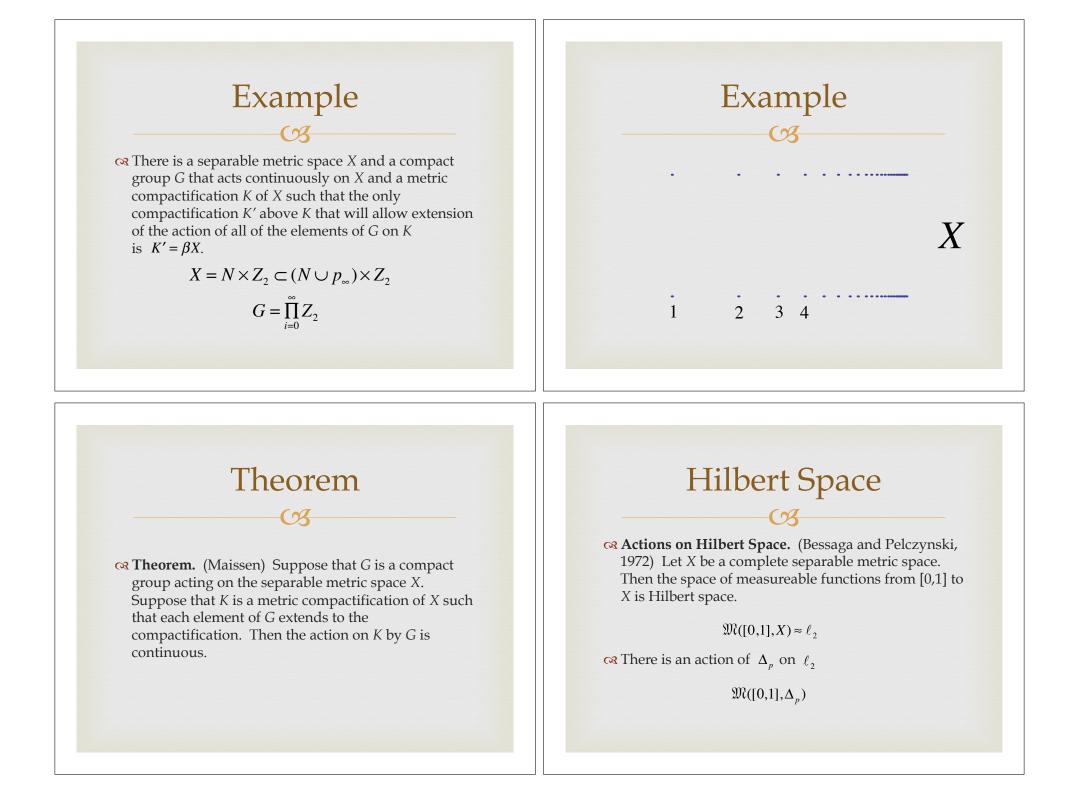
Compactifications

Rings of Continuous Functions.

 $X \subset K$ Compactification

$C^*(X) \leftarrow C(K)$





Hilbert Space

Alternative actions:

 $\mathfrak{M}([0,1],\Sigma_p)$ using the subgroup $\Delta_p \subset \Sigma_p$

 $\mathfrak{M}([0,1],\mu^n)$ where μ^n is a Menger Manifold

Hilbert Space

What compactifications can extend the action?

 $\Delta_p \times I^{\infty} \to I^{\infty}$

Free action except for one fixed point.

 $\prod_{i=1}^{\infty}\mu^{n_i}$

Invariant Hilbert space

Irrationals

(%

Actions on the Irrationals. There is precisely one free action of the *p*−adic group on the irrational numbers.

$$\Delta_p \times Z^{\infty} \to \Delta_p \times Z^{\infty} \approx Z^{\infty}$$

Dense Invariant Subspaces \mathcal{CS} \mathcal{COPY} of this irrational action in *K*. \mathcal{CS} \mathcal{CS}

 $\Delta_p \times Z^{\infty} \quad \to \quad Z^{\infty}$

Summary

- ℜ Hilbert's Fifth Problem has generated a rich fabric of results. The current version continues to do so.
- There are simple obstructions to extending compact group actions on a separable metric space to any metric compactification and a simple theorem when we can extend an action.
- \mathfrak{R} There are many examples of interesting actions of Δ_p on compact metric spaces. All of these are extensions of actions of invariant non-compact subspaces.
- **R** We have characterizations of manifolds and other spaces to help develop a theory.

Extending Actions

- ↔ What compact group actions on a separable metric space can extend to a metric compactification?
- α What compactifications extend the action of Δ_p on the irrationals.