	Notations
Continuum-wise Expansive Homoclinic classes Lee, Keonhee < Joint work with J. Oh > (khlee@cnu.ac.kr) Chungnam National University Daejeon, Korea	 <i>M</i> : a compact <i>C</i>[∞] manifold Diff(<i>M</i>) : the space of <i>C</i>¹ diffeomorphisms on <i>M</i> endowed with the <i>C</i>¹ topology. For any <i>x</i> ∈ <i>M</i> and <i>f</i> ∈ Diff(<i>M</i>), <i>O</i>_f(<i>x</i>) = {<i>f</i>ⁿ(<i>x</i>) : <i>n</i> ∈ ℤ} : the orbit of <i>f</i> through <i>x</i>.
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 1/24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 2 Notations
 <i>M</i> : a compact <i>C</i>[∞] manifold Diff(<i>M</i>) : the space of <i>C</i>¹ diffeomorphisms on <i>M</i> endowed with the <i>C</i>¹ topology. For any <i>x</i> ∈ <i>M</i> and <i>f</i> ∈ Diff(<i>M</i>), 	 <i>M</i> : a compact C[∞] manifold Diff(<i>M</i>) : the space of C¹ diffeomorphisms on <i>M</i> endowed with the C¹ topology. For any x ∈ M and f ∈ Diff(M), O_f(x) = {fⁿ(x) : n ∈ Z} : the orbit of f through x.
$O_f(x) = \{f^n(x) : n \in \mathbb{Z}\}$: the orbit of f through x.	$\Box = O_f(X) - \int I(X) \cdot I \in \mathbb{Z}_f$. the orbit of I through X.

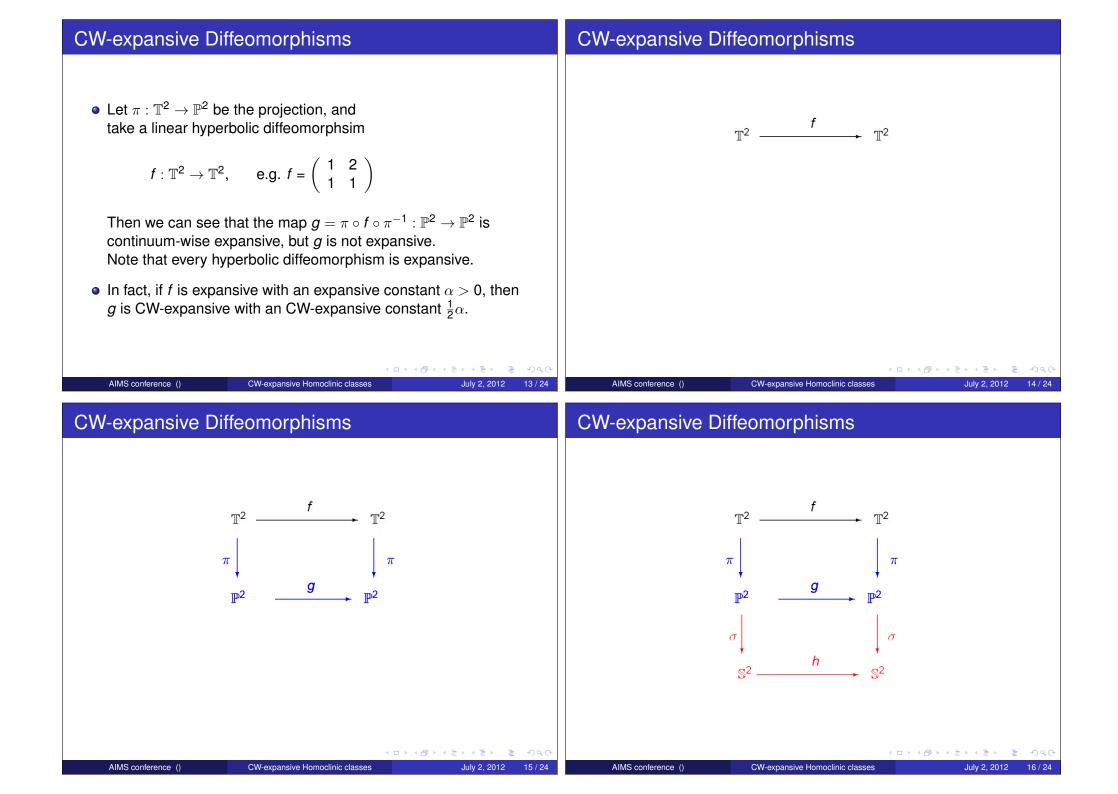
Goal	Hyperbolicity
 In this talk, we will study the hyperbolicity of continuum-wise expansive homoclinic classes. 	 A closed invariant set Λ ⊂ M called (uniformly) hyperbolic for f if T_ΛM has a splitting T_ΛM = E^s_Λ ⊕ E^u_Λ such that E^s_Λ and E^u_Λ are Df- invariant, Df is contractive on E^s_Λ and Df is expansive on E^u_Λ. There are several notions extending (uniform) hyperbolicity; partial hyperbolicity, dominated splitting, etc.
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 3/24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 4 // Dominated splitting
• A closed invariant set $\Lambda \subset M$ admits a dominated splitting if $T_{\Lambda}M$	• A closed invariant set $\Lambda \subset M$ admits a dominated splitting if $T_{\Lambda}M$
 has a splitting T_ΛM = E_Λ ⊕ F_Λ such that E_Λ and F_Λ are Df – invariant; there are constans C > 0 and 0 < λ < 1 such that for any x ∈ Λ, any unit vectors u ∈ E_x, v ∈ F_x, 	 has a splitting T_ΛM = E_Λ ⊕ F_Λ such that E_Λ and F_Λ are Df – invariant; there are constans C > 0 and 0 < λ < 1 such that for any x ∈ Λ, any unit vectors u ∈ E_x, v ∈ F_x,
 <i>E</i>_Λ and <i>F</i>_Λ are <i>Df</i> – invariant; there are constans <i>C</i> > 0 and 0 < λ < 1 such that 	 <i>E</i>_Λ and <i>F</i>_Λ are <i>Df</i> – invariant; there are constans <i>C</i> > 0 and 0 < λ < 1 such that
 <i>E</i>_Λ and <i>F</i>_Λ are <i>Df</i>− invariant; there are constans <i>C</i> > 0 and 0 < λ < 1 such that for any <i>x</i> ∈ Λ, any unit vectors <i>u</i> ∈ <i>E</i>_x, <i>v</i> ∈ <i>F</i>_x, 	 <i>E</i>_Λ and <i>F</i>_Λ are <i>Df</i>− invariant; there are constans <i>C</i> > 0 and 0 < λ < 1 such that for any <i>x</i> ∈ Λ, any unit vectors <i>u</i> ∈ <i>E_x</i>, <i>v</i> ∈ <i>F_x</i>,
 E_Λ and F_Λ are Df – invariant; there are constans C > 0 and 0 < λ < 1 such that for any x ∈ Λ, any unit vectors u ∈ E_x, v ∈ F_x, 	• E_{Λ} and F_{Λ} are Df - invariant; • there are constans $C > 0$ and $0 < \lambda < 1$ such that for any $x \in \Lambda$, any unit vectors $u \in E_x$, $v \in F_x$, $\frac{\ D_x f^n(u)\ }{\ D_x f^n(v)\ } \le C\lambda^n, \forall n \ge 0$

Homoclinic class	Homoclinic class
 P_h(f) = the set of hyperbolic periodic points of f. For any p, q ∈ P_h(f), we say that p and q are homoclinically related (p ~ q) if W^s(p) h W^u(q) ≠ Ø and W^u(p) h W^s(q) ≠ Ø 	 P_h(f) = the set of hyperbolic periodic points of f. For any p, q ∈ P_h(f), we say that p and q are homoclinically related (p ~ q) if W^s(p) ∩ W^u(q) ≠ Ø and W^u(p) ∩ W^s(q) ≠ Ø
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 6 / 24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 6 / 24
$W^{u}(q)$ $W^{s}(p)$ p q	• "~" is an equivalence relation on $P_h(f)$ by the λ -lemma. • $H_f(p) = \overline{\{q \in P_h(f) : q \sim p\}}$ $= \overline{\{x \in W^s(p) \pitchfork W^u(p)\}}$ = the homoclinic class of f
$W^{s}(q) \qquad \qquad$	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 8/24

Homoclinic class	Why homoclinic class?
 "~" is an equivalence relation on P_h(f) by the λ-lemma. H_f(p) = {q ∈ P_h(f) : q ~ p} = {x ∈ W^s(p) ∩ W^u(p)} = the homoclinic class of f associated to p. 	 Every basic set is a homoclinic class; More precisely, if Ω(f) = Λ₁ ∪ ··· ∪ Λ_n is a spectral decomposition, then for each i = 1, 2, ···, n, there is a hyperbolic periodic point p_i ∈ Λ_i such that Λ_i = H_f(p_i) Homoclinic classes are natural candidates to replace the hyperbolic basic sets in non-uniform hyperbolic theory of dynamical systems.
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 8/24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 9/24 Hyperbolic-like properties
 Every basic set is a homoclinic class; More precisely, if Ω(f) = Λ₁ ∪ · · · ∪ Λ_n is a spectral decomposition, then for each i = 1, 2, · · · , n, there is a hyperbolic periodic point p_i ∈ Λ_i such that Λ_i = H_f(p_i) Homoclinic classes are natural candidates to replace the hyperbolic basic sets in non-uniform hyperbolic theory of dynamical systems. 	 When does the homoclinic class H_f(p) have the hyperbolicity or hyperbolic-like properties such as partial hyperbolicity singular hyperbolicity dominated splitting ?
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 9/24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 10 / 24

Hyperbolic-like properties	Hyperbolic-like properties
 When does the homoclinic class H_f(p) have the hyperbolicity or hyperbolic-like properties such as partial hyperbolicity singular hyperbolicity dominated splitting ? 	 When does the homoclinic class H_f(p) have the hyperbolicity or hyperbolic-like properties such as partial hyperbolicity singular hyperbolicity dominated splitting ?
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 10/24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 10/ Continuum-wise Expansivity
 When does the homoclinic class H_f(p) have the hyperbolicity or hyperbolic-like properties such as partial hyperbolicity singular hyperbolicity dominated splitting ? 	 We say that Λ ⊂ <i>M</i> is continuum-wise expansive for <i>f</i> if there is a constant α > 0 such that for any subsontinuum A ⊂ Λ, diam fⁿ(A) > α for some n ∈ Z. (H. Kato ('93)) Every homeomorphism acting on a totally disconnected set is trivially CW-expansive, while it is not expansive in general.
 AIMS conference () CW-expansive Homoclinic classes July 2, 2012 10/24 	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 11 /

 From differential view point, we can see that the class of
continuum-wise expansive diffeomorphism is strictly larger than the class of expansive diffeomorphisms. • For example, we denote \mathbb{T}^2 by the 2-dimensional torus. Let us consider the quotient space $\mathbb{P}^2 = \mathbb{T}^2 / \backsim$ obtained from the torus \mathbb{T}^2 by identifying each point $x \in \mathbb{T}^2$ with its antipodal point -x.
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 12/24
 Let π : T² → P² be the projection, and take a linear hyperbolic diffeomorphsim f : T² → T², e.g. f = (1 2) (1 1) Then we can see that the map g = π ∘ f ∘ π⁻¹ : P² → P² is continuum-wise expansive, but g is not expansive. Note that every hyperbolic diffeomorphism is expansive. In fact, if f is expansive with an expansive constant α > 0, then



CW-expansive Diffeomorphisms	Theorem 1
$\mathbb{T}^{2} \xrightarrow{f} \mathbb{T}^{2}$ $\xrightarrow{\pi} \xrightarrow{g} \xrightarrow{\pi} \mathbb{T}^{2}$ $\mathbb{P}^{2} \xrightarrow{g} \mathbb{P}^{2}$ $\xrightarrow{\sigma} \xrightarrow{h} \xrightarrow{\varsigma^{2}} \xrightarrow{h} \mathbb{S}^{2}$ In this way, we can construct many diffeomorphisms on \mathbb{S}^{2} which are <i>CW</i> -expansive.	 We say that <i>CR</i>(<i>f</i>) is <i>C</i>¹-persistently CW-expansive if there is a <i>C</i>¹-neighborhood <i>U</i>(<i>f</i>) of <i>f</i> such that for any <i>g</i> ∈ <i>U</i>(<i>f</i>), <i>CR</i>(<i>g</i>) is CW-expansive. <i>CR</i>(<i>f</i>) is <i>C</i>¹-persistently CW-expansive if and only if <i>f</i> satisfies Axiom A (i.e., Ω(<i>f</i>) = <i>P</i>(<i>f</i>) is hyperbolic) and no-cycle condition (2012, Das-L-Lee).
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 17 / 24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 18 / 24
Theorem 1	Theorem 2
 We say that <i>CR</i>(<i>f</i>) is <i>C</i>¹-persistently CW-expansive if there is a <i>C</i>¹-neighborhood <i>U</i>(<i>f</i>) of <i>f</i> such that for any <i>g</i> ∈ <i>U</i>(<i>f</i>), <i>CR</i>(<i>g</i>) is CW-expansive. <i>CR</i>(<i>f</i>) is <i>C</i>¹-persistently CW-expansive if and only if <i>f</i> satisfies Axiom A (i.e., Ω(<i>f</i>) = <i>P</i>(<i>f</i>) is hyperbolic) and no-cycle condition (2012, Das-L-Lee). 	 <i>C</i>¹-generically, every CW-expansive homoclinic class is hyperbolic (2012, Das-L-Lee). More precisely, there is a residual subset <i>R</i> of Diff(<i>M</i>) such that for any <i>f</i> ∈ <i>R</i> and for any <i>p</i> ∈ <i>P</i>_h(<i>f</i>), if <i>H</i>_f(<i>p</i>) is CW-expansive, then <i>H</i>_f(<i>p</i>) is hyperbolic. <i>C</i>¹-generically, every expansive homoclinic class is hyperbolic (2009, Yang and Gan).
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 18 / 24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 19/2

nerically, every CW-expansive homoclinic class is hyperbolic , Das-L-Lee). precisely, there is a residual subset \mathcal{R} of Diff(M) such that $f \in \mathcal{R}$ and for any $p \in P_h(f)$, if $H_f(p)$ is CW-expansive, then is hyperbolic. nerically, every expansive homoclinic class is hyperbolic , Yang and Gan).
1 3
by that $H_f(p)$ is C^1 -stably CW-expansive if there are a borhood U of $H_f(p)$ and a C^1 -neighborhood $\mathcal{U}(f)$ of f such $f(f) = \bigcap_{n \in \mathbb{Z}} f^n(U)$ $\mathcal{U}(f), \Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is CW-expansive for g . (a) is C^1 -stably CW-expansive, then it is hyperbolic (2012, -Lee).
$f(p) \in f(p)$

Theorem 3	Theorem 3
 We say that H_f(p) is C¹-stably CW-expansive if there are a neighborhood U of H_f(p) and a C¹-neighborhood U(f) of f such that H_f(p) = ∩_{n∈Z} fⁿ(U) ∀g ∈ U(f), Λ_g = ∩_{n∈Z} gⁿ(U) is CW-expansive for g. If H_f(p) is C¹-stably CW-expansive, then it is hyperbolic (2012, Das-L-Lee). If H_f(p) is C¹-stably expansive, then it is hyperbolic (2010, L-Lee). 	 We say that H_f(p) is C¹-stably CW-expansive if there are a neighborhood U of H_f(p) and a C¹-neighborhood U(f) of f such that H_f(p) = ∩_{n∈Z} fⁿ(U) ∀g ∈ U(f), ∧_g = ∩_{n∈Z} gⁿ(U) is CW-expansive for g. If H_f(p) is C¹-stably CW-expansive, then it is hyperbolic (2012, Das-L-Lee). If H_f(p) is C¹-stably expansive, then it is hyperbolic (2010, L-Lee).
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 20 / 24	AIMS conference () CW-expansive Homoclinic classes July 2, 2012 20 / 24
Theorem 3	Theorem 3
 We say that H_f(p) is C¹-stably CW-expansive if there are a neighborhood U of H_f(p) and a C¹-neighborhood U(f) of f such that H_f(p) = ∩_{n∈Z} fⁿ(U) ∀g ∈ U(f), ∧_g = ∩_{n∈Z} gⁿ(U) is CW-expansive for g. If H_f(p) is C¹-stably CW-expansive, then it is hyperbolic (2012, Das-L-Lee). If H_f(p) is C¹-stably expansive, then it is hyperbolic (2010, L-Lee). 	 We say that H_f(p) is C¹-stably CW-expansive if there are a neighborhood U of H_f(p) and a C¹-neighborhood U(f) of f such that H_f(p) = ∩_{n∈Z} fⁿ(U) ∀g ∈ U(f), Λ_g = ∩_{n∈Z} gⁿ(U) is CW-expansive for g. If H_f(p) is C¹-stably CW-expansive, then it is hyperbolic (2012, Das-L-Lee). If H_f(p) is C¹-stably expansive, then it is hyperbolic (2010, L-Lee).

Open	SEOUL ICM 2014
 If H_f(p) is C¹-persistently expansive (or, CW-expansive) then is it hyperbolic? 	 Place : Seoul, Korea Dates : Aug 13 - 21, 2014 ICM 2014 Website : http://www.ICM2014.org
AIMS conference () CW-expansive Homoclinic classes July 2, 2012 21 / 24	イロトイラトイラトイラト モータへで AIMS conference () CW-expansive Homoclinic classes July 2, 2012 22 / 24
	SEOUL ICM 2014
 Place : Seoul, Korea Dates : Aug 13 - 21, 2014 ICM 2014 Website : http://www.ICM2014.org 	 SEOUL ICM 2014 Place : Seoul, Korea Dates : Aug 13 - 21, 2014 ICM 2014 Website : http://www.ICM2014.org

