Maximally transitive semigroups of $n \times n$ matrices

Mohammad Javaheri Siena College, NY

July 2, 2012

◆□▶ ◆御≯ ◆恵≯ ◆恵≯ 「恵」

Mohammad Javaheri Siena College, NY

Maximally transitive semigroups of $n \times n$ matrices

Introduction

Definition

Let G be a semigroup acting on a topological space X by continuous maps. The action of G on X is called

▶ hypercyclic, if there exists $x \in G$ such that the G-orbit of xdefined by $\{f(x): f \in G\}$ is dense in X.

Mohammad Javaheri Siena College,

Maximally transitive semigroups of $n \times n$ matrices

Introduction

Definition

Let G be a semigroup acting on a topological space X by continuous maps. The action of G on X is called

- ▶ hypercyclic, if there exists $x \in G$ such that the G-orbit of xdefined by $\{f(x): f \in G\}$ is dense in X.
- ▶ topologically transitive, if for every pair of nonempty open sets U and V in X, there exists a map $f \in G$ so that $f(U) \cap V \neq \emptyset$.

Introduction

Definition

Let G be a semigroup acting on a topological space X by continuous maps. The action of G on X is called

- hypercyclic, if there exists $x \in G$ such that the G-orbit of x defined by $\{f(x): f \in G\}$ is dense in X.
- ▶ topologically transitive, if for every pair of nonempty open sets U and V in X, there exists a map $f \in G$ so that $f(U) \cap V \neq \emptyset$.
- **topologically** k-transitive, if the induced action of G on X^k is topologically transitive.

Birkhoff transitivity theorem for semigroup actions

Theorem

Let G be a semigroup acting by continuous maps on a separable complete metric space X without isolated points. If the action of G is topologically transitive, then there exists a G_{δ} set $W \subseteq X$ so that the G-orbit of every $x \in W$ is dense in X.

Mohammad Javaheri Siena College, NY

Maximally transitive semigroups of $n \times n$ matrices

Birkhoff transitivity theorem for semigroup actions

Theorem

Let G be a semigroup acting by continuous maps on a separable complete metric space X without isolated points. If the action of G is topologically transitive, then there exists a G_{δ} set $W \subseteq X$ so that the G-orbit of every $x \in W$ is dense in X.

For the action of $GL(n, \mathbb{K})$ on \mathbb{K}^n , the action of a subsemigroup is n-transitive if and only if the subsemigroup is dense in $GL(n, \mathbb{K})$.

Mohammad Javaheri Siena College, N

Maximally transitive semigroups of $n \times n$ matrices

The one-dimensional case

▶ The real case: If $\ln(-a)/\ln b$ is a negative irrational number, then $\langle a,b\rangle$ is dense in \mathbb{R} .

The one-dimensional case

- ▶ The real case: If $\ln(-a)/\ln b$ is a negative irrational number, then $\langle a,b\rangle$ is dense in \mathbb{R} .
- ▶ The complex case: If $\ln(-a)/\ln(b) < 0$ and the numbers

$$1, \ \frac{\ln(-a)}{\ln b}, \ \frac{\arg(c)}{2\pi},$$

are rationally independent, then $\langle a, b \rangle$ is dense in \mathbb{C} .

The commutative case

- ▶ Feldman: The minimum number of generators for the semigroup of diagoanl matrices is n + 1.
- ➤ Ayadi, Costakis, and Abels-Manoussos: minimum number of generators of an abelian semigroup of matrices with a dense orbit:
 - ▶ Real case: $\lfloor (n+3)/2 \rfloor$
 - ▶ Complex case: n+1
 - lacktriangleright Real case traingular non-diagonalizable: n+1
 - ightharpoonup Complex case triangular non-diagonalizable: n+2

Mohammad Javaheri Siena College, NY

Maximally transitive semigroups of $n \times n$ matrices

The non-commutative case

- ▶ Does there exist a pair of matrices in $GL(n, \mathbb{K})$ that generates a dense subsemigroup of $GL(n, \mathbb{K})$?
- ▶ Does there exist a pair of matrices in $SL(n, \mathbb{K})$ that generates a dense subsemigroup of $SL(n, \mathbb{K})$?
- ► What is the minimum number of generators of a dense semigroup of lower-triangular matrices?

Mohammad Javaheri Siena College, N

Maximally transitive semigroups of $n \times n$ matrices

A 2-dimensional explicit example

▶ The semigroup of matrices generated by

$$A = \begin{pmatrix} 1 & 1/2 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & -8/3 \end{pmatrix}$

is dense in the set of 2×2 real matrices.

A 2-dimensional explicit example

▶ The semigroup of matrices generated by

$$A = \begin{pmatrix} 1 & 1/2 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & -8/3 \end{pmatrix}$

is dense in the set of 2×2 real matrices.

▶ The matrices

$$A = \begin{pmatrix} 1/\sqrt{2} & -\sqrt{2} \\ 1/\sqrt{2} & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} \sqrt{2/3} & 0 \\ 0 & \sqrt{3/2} \end{pmatrix}$,

generate a dense subsemigroup of $SL(2,\mathbb{R})$.

n-transitive subsemigroups of matrices

Theorem

There exists a 2-generator semigroup of matrices whose action on the set of \mathbb{K}^n is topologically n-transitive. Equivalently, this semigroup is dense in the set of $n \times n$ matrices with entries in \mathbb{K} .

Maximally transitive semigroups of $n \times n$ matrices

◆□▶ ◆樹≯ ◆恵≯ ◆恵≯ ・恵

n-transitive subsemigroups of matrices

Theorem

There exists a 2-generator semigroup of matrices whose action on the set of \mathbb{K}^n is topologically n-transitive. Equivalently, this semigroup is dense in the set of $n \times n$ matrices with entries in \mathbb{K} .

This is an optimal result because the action of a singly generated subsemigroup is not even hypercyclic, while the action of a subsemigroup of $GL(n, \mathbb{K})$ can never be (n+1)-transitive.

Maximally transitive semigroups of $n \times n$ matrices

Dense subsemigroups of Lie groups

Abels-Vinberg: Connected Lie groups with finite center have 2-generator dense sub(semi)groups.

Sketch of the proof:

▶ Given a non-central element g, there exists elliptic h so that $\langle g, h \rangle$ is dense.

Dense subsemigroups of Lie groups

Abels-Vinberg: Connected Lie groups with finite center have 2-generator dense sub(semi)groups.

Sketch of the proof:

- ▶ Given a non-central element g, there exists elliptic h so that $\langle g, h \rangle$ is dense.
- ▶ In $SL(n, \mathbb{C})$, choose g and h (of finite order p) so that $\langle g, h \rangle$ is dense in $SL(n, \mathbb{C})$.

Dense subsemigroups of Lie groups

Abels-Vinberg: Connected Lie groups with finite center have 2-generator dense sub(semi)groups.

Sketch of the proof:

- ▶ Given a non-central element g, there exists elliptic h so that $\langle g, h \rangle$ is dense.
- ▶ In $SL(n, \mathbb{C})$, choose g and h (of finite order p) so that $\langle g, h \rangle$ is dense in $SL(n, \mathbb{C})$.
- ▶ Choose $a, b \in \mathbb{C}$ so that $\langle a^p, b^p \rangle$ is dense in \mathbb{C} . Then $\langle ag, bh \rangle$ is dense in $GL(n, \mathbb{C})$.

Mohammad Javaheri Siena College, NY

Maximally transitive semigroups of $n \times n$ matrices

Dense subsemigroups of Lie groups

Abels-Vinberg: Connected Lie groups with finite center have 2-generator dense sub(semi)groups.

Sketch of the proof:

- ▶ Given a non-central element g, there exists elliptic h so that $\langle g, h \rangle$ is dense.
- ▶ In $SL(n, \mathbb{C})$, choose g and h (of finite order p) so that $\langle g, h \rangle$ is dense in $SL(n, \mathbb{C})$.
- ▶ Choose $a, b \in \mathbb{C}$ so that $\langle a^p, b^p \rangle$ is dense in \mathbb{C} . Then $\langle ag, bh \rangle$ is dense in $GL(n, \mathbb{C})$.
- ▶ In \mathbb{R} , further care is required.

Mohammad Javaheri Siena College, N

Maximally transitive semigroups of $n \times n$ matrices

An alternative approach

Lemma

Let Λ be a closed subsemigroup of $(n+1) \times (n+1)$ matrices with entries in $\mathbb K$ such that

$$\forall F \in GL(n, \mathbb{K}): \begin{pmatrix} F & 0 \\ 0 & 1 \end{pmatrix} \in \Lambda.$$

Suppose that there exists

$$K = \begin{pmatrix} F & X \\ Y & \eta \end{pmatrix} \in \Lambda,$$

such that

$$YF^{-1}X \neq 0, \eta$$

Then Λ contains all $(n+1) \times (n+1)$ matrices with entries in \mathbb{K} .

Indutive construction

Theorem

For any $n \geq 1$, there exists a pair of matrices in $\mathcal{M}_{n \times n}(\mathbb{C})$ that generates a dense subsemigroup of $\mathcal{M}_{n \times n}(\mathbb{C})$. Moreover, for $n \geq 2$, we can arrange for one of the matrices to be of the form

$$A = \begin{pmatrix} Z_1 & 0 & \dots & 0 \\ 0 & Z_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & Z_n \end{pmatrix},$$

where $Z_n = 1, Z_1 \neq 0$, and each $Z_i, 1 < i < n$, is a root of unity.

Proof

Induction: Given A and E generating a dense subsemigroup of $GL(n,\mathbb{C})$, let

$$C = \begin{pmatrix} Z'_1 & 0 & \dots & 0 \\ 0 & Z'_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & Z'_n \end{pmatrix}, D = \begin{pmatrix} E & 0 \\ 0 & 1 \end{pmatrix},$$

where $Z_i' = \sqrt{Z_i}$ for $1 \le i < n$, and

$$Z_n' = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix}.$$

Thank You!

Any Questions?

Mohammad Javaheri Siena College, NY

Maximally transitive semigroups of $n \times n$ matrices

Maximally transitive semigroups of $n \times n$ matrices