Euclidean tilings

Invariant measures

Asymptotic Thurston norm
F. Gautero
R. Chazottes
J.M. Gambaudo

Université de Nice - Sophia Antipolis

Polytechnique, Paris Université de Nice - Sophia Antipolis

Tilings of \mathbb{R}^{2}

Prototiles: $\mathcal{P}=\left\{p_{1}, \cdots, p_{n}\right\}$ is a finite set of polygons with colored edges.
Definition
A \mathcal{P}-tiling of \mathbb{R}^{2} is a collection of polygons with colored edges (t_{i}) (tiles) such that:

1. $\mathbb{R}^{2}=\bigcup_{i} t_{i}$.
2. The tiles t_{i} have disjoint interiors.
3. If two tiles t_{i}, t_{j} meet, they meet along edges whose colors match.
4. Each tile t_{i} is a translate of some prototile $p_{j} \in \mathcal{P}$.
$\Omega_{\mathcal{P}}$ is the set of all \mathcal{P}-tilings.
Remark
$\Omega_{\mathcal{P}}$ might be empty: this is an undecidable problem.

The Anderson-Putnam complex $\mathcal{A}_{\boldsymbol{P}}$

2. Two 2-cells are glued along the edges e_{i}, e_{j} if and only if there Orient the 2-cells with the orientation of the plane and choose

The Anderson-Putnam complex $\mathcal{A}_{\mathcal{P}}$

Definition

1. The 2-cells are the prototiles p_{j}. is a translation which carries e_{i} to e_{j} and the colors match. an orientation for the edges.
2. Each edge has two sides: the collection of 2-cells where it appears with a + sign in the boundary and the collection of 2-cells where it appears with a - sign.
\Rightarrow Structure of Branched Surface

The Anderson-Putnam complex $\mathcal{A}_{\mathcal{P}}$

Definition

1. The 2-cells are the prototiles p_{j}.
2. Two 2-cells are glued along the edges e_{i}, e_{j} if and only if there is a translation which carries e_{i} to e_{j} and the colors match.

The Anderson-Putnam complex $\mathcal{A}_{\mathcal{P}}$

Homology and surfaces

$$
H_{2}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)=\operatorname{Ker}\left(\partial: C_{2}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right) \rightarrow C_{1}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)\right) .
$$

Equivalent to look at the switch equations.
Lemma
Any non-negative integer 2-cycle $c \in H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{Z}\right)$ is represented by a closed (i.e. with no boundary) compact surface S, denoted by $[S]=c$.
This surface S is not necessarily unique up to homeomorphism.

Homology and surfaces

Homology and surfaces

$$
H_{2}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)=\operatorname{Ker}\left(\partial: C_{2}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right) \rightarrow C_{1}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)\right)
$$

Equivalent to look at the switch equations.
Lemma
Any non-negative integer 2-cycle $c \in H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{Z}\right)$ is represented by a closed (i.e. with no boundary) compact surface S, denoted by $[S]=c$.
This surface S is not necessarily unique up to homeomorphism.

Thurston semi-norm
$c \in H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{Z}\right)$.
If S is a closed compact surface, $\chi(S)$ is the Euler characteristic of S.

Thurston semi-norm

$c \in H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{Z}\right)$.
If S is a closed compact surface, $\chi(S)$ is the Euler characteristic of S.

Definition

$$
\|c\|=\min _{[S]=c \mid}|(S)|
$$

Thurston semi-norm

$c \in H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{Z}\right)$.
If S is a closed compact surface, $\chi(S)$ is the Euler characteristic of s.
Definition

$$
\|c\|=\min _{[S]=c}|\chi(S)|
$$

Lemma

1. $\|c\|=0$ if and only if there is a torus representing c.
2. $\left\|c_{1}+c_{2}\right\| \leq\left\|c_{1}\right\|+\left\|c_{2}\right\|$.
3. $\|n c\| \leq|n|| | c \mid \|$.

It might happen $\| n c| |<|n||c| \mid$.

Asymptotic Thurston norm

Definition

$$
\left\|\left|\|\mid\|=\lim _{n \rightarrow+\infty} \frac{\|n c\|}{n}\right.\right.
$$

Well-defined for rational classes.

Asymptotic Thurston norm

Definition

$$
\left|\|c \mid\|=\lim _{n \rightarrow+\infty} \frac{\|n c\|}{n}\right.
$$

Well-defined for rational classes.
Lemma
The asymptotic Thurston norm is uniformly continuous.
Lemma

1. The asymptotic Thurston norm is well-defined on $H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)$.
2. $\left\|\left|c_{1}+c_{2}\right|\right\| \leq\left|\left\|c_{1}|\|+\||\left|c_{2}\right|\right\|\right.$.
3. $\|||n c|\|=|n|\|||c|\|$.
4. $|\|c \mid\|=0$ does not imply that there is a torus representing c.

A geometric interpretation of the tiling problem

Theorem (Chazottes-Gambaudo-G)

$\Omega_{\mathcal{P}}$ is non-empty (which is equivalent to \mathcal{P} tiles the plane) if and only if the asymptotic Thurston norm vanishes on some non-trivial class $c \in H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{Z}\right)$.

Metrizable topology on $\Omega_{\mathcal{P}}$

$T, T^{\prime} \in \Omega_{\mathcal{P}} . B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

$$
A=\left\{\epsilon \in(0,1) \text { s.t. there exists } u \in \mathbb{R}^{2} \text { with }\|u\|<\epsilon\right. \text { and }
$$

$$
\left.(T+u) \cap B_{1 / \epsilon}(0)=T^{\prime} \cap B_{1 / \epsilon}(0)\right\}
$$

Metrizable topology on $\Omega_{\mathcal{P}}$

$T, T^{\prime} \in \Omega_{\mathcal{P}} . B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

$$
A=\left\{\epsilon \in(0,1) \text { s.t. there exists } u \in \mathbb{R}^{2} \text { with }\|u\|<\epsilon\right. \text { and }
$$

$$
\left.(T+u) \cap B_{1 / \epsilon}(0)=T^{\prime} \cap B_{1 / \epsilon}(0)\right\}
$$

$\delta\left(T, T^{\prime}\right)=\inf (A)$ if A is non-empty and 1 otherwise.
Lemma
$\left(\Omega_{\mathcal{P}}, \delta\right)$ is a compact metric space, together with a continuous action of \mathbb{R}^{2}.

Metrizable topology on $\Omega_{\mathcal{P}}$

$T, T^{\prime} \in \Omega_{\mathcal{P}} . B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

$$
A=\left\{\epsilon \in(0,1) \text { s.t. there exists } u \in \mathbb{R}^{2} \text { with }\|u\|<\epsilon\right. \text { and }
$$

$$
\left.(T+u) \cap B_{1 / \epsilon}(0)=T^{\prime} \cap B_{1 / \epsilon}(0)\right\}
$$

$\delta\left(T, T^{\prime}\right)=\inf (A)$ if A is non-empty and 1 otherwise.
Lemma
$\left(\Omega_{\mathcal{P}}, \delta\right)$ is a compact metric space, together with a continuous action of \mathbb{R}^{2}.
\mathbb{R}^{2} amenable \Rightarrow Existence of an invariant measure \Rightarrow Existence of a non-negative real 2-cycle in $H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)$.

Metrizable topology on $\Omega_{\mathcal{P}}$

Metrizable topology on $\Omega_{\mathcal{P}}$

$T, T^{\prime} \in \Omega_{\mathcal{P}} . B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

$$
A=\left\{\epsilon \in(0,1) \text { s.t. there exists } u \in \mathbb{R}^{2} \text { with }\|u\|<\epsilon\right. \text { and }
$$

$$
\left.(T+u) \cap B_{1 / \epsilon}(0)=T^{\prime} \cap B_{1 / \epsilon}(0)\right\}
$$

$\delta\left(T, T^{\prime}\right)=\inf (A)$ if A is non-empty and 1 otherwise.
Lemma
$\left(\Omega_{\mathcal{P}}, \delta\right)$ is a compact metric space, together with a continuous action of \mathbb{R}^{2}.
\mathbb{R}^{2} amenable \Rightarrow Existence of an invariant measure \Rightarrow Existence of a non-negative real 2-cycle in $H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)$.

Asymptotic Thurston norm and invariant measures
$\mathcal{M}\left(\Omega_{\mathcal{P}}\right)$ set of invariant measures on $\Omega_{\mathcal{P}}$.

$$
\text { Projection } \pi: \mathcal{M}\left(\Omega_{\mathcal{P}}\right) \rightarrow H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)
$$

Asymptotic Thurston norm and invariant measures

$\mathcal{M}\left(\Omega_{\mathcal{P}}\right)$ set of invariant measures on $\Omega_{\mathcal{P}}$.

$$
\text { Projection } \pi: \mathcal{M}\left(\Omega_{\mathcal{P}}\right) \rightarrow H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)
$$

Theorem (Chazottes-Gambaudo-G)
Let $c \in H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)$. There exists $\mu \in \mathcal{M}\left(\Omega_{\mathcal{P}}\right)$ such that $c=\pi(\mu)$ if and only if the asymptotic Thurston norm of c vanishes.

Wang tilings

A Wang tiling is（a tiling made from）a finite collection of unit squares with sides parallel to the axis of \mathbb{R}^{2} and colored edges．
Theorem（Sadun－Williams）
For any finite collection of polygons \mathcal{P} there is a Wang tiling \mathcal{W} such that $\left(\Omega_{\mathcal{P}}, \mathbb{R}^{2}\right)$ and $\left(\Omega_{\mathcal{W}}, \mathbb{R}^{2}\right)$ are topologically equivalent．

Wang tilings

Wang tilings

A Wang tiling is（a tiling made from）a finite collection of unit squares with sides parallel to the axis of \mathbb{R}^{2} and colored edges．
Theorem（Sadun－Williams）
For any finite collection of polygons \mathcal{P} there is a Wang tiling \mathcal{W} such that $\left(\Omega_{\mathcal{P}}, \mathbb{R}^{2}\right)$ and $\left(\Omega_{\mathcal{W}}, \mathbb{R}^{2}\right)$ are topologically equivalent．

Proposition
It is sufficient to prove our theorem for Wang tilings．

Hint of proof for Wang tilings
$c=\pi(\mu) \Rightarrow\|c \mid\|=0$ ：Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson－Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$ ．The system $\left(\Omega_{\mathcal{W}}, \mathbb{R}^{2}\right)$ is a sub－system of $\left(\Omega_{\widehat{W}}, \mathbb{R}^{2}\right)$ ．

Hint of proof for Wang tilings

$c=\pi(\mu) \Rightarrow\|\mid\| c \|=0$ ：Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson－Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$ ．The system $\left(\Omega_{\mathcal{W}}, \mathbb{R}^{2}\right)$ is a sub－system of $\left(\Omega_{\widehat{\mathcal{W}}}, \mathbb{R}^{2}\right)$ ．

Periodic orbits of \mathbb{R}^{2}（tori）are dense in $\left(\Omega_{\widehat{W}}, \mathbb{R}^{2}\right)$ ．
Any invariant measure in $\mathcal{M}\left(\Omega_{\mathcal{W}}\right)$ is an invariant measure in $\mathcal{M}\left(\Omega_{\widehat{W}}\right)$ ．

Hint of proof for Wang tilings

$c=\pi(\mu) \Rightarrow\|c \mid\|=0$ ：Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson－Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$ ．The system $\left(\Omega_{\mathcal{W}}, \mathbb{R}^{2}\right)$ is a sub－system of $\left(\Omega_{\widehat{W}}, \mathbb{R}^{2}\right)$ ．

Periodic orbits of \mathbb{R}^{2}（tori）are dense in $\left(\Omega_{\widehat{W}}, \mathbb{R}^{2}\right)$ ．
Any invariant measure in $\mathcal{M}\left(\Omega_{\mathcal{W}}\right)$ is an invariant measure in $\mathcal{M}\left(\Omega_{\widehat{w}}\right)$ ．
$c=\pi(\mu)$ in $H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)$ is approximated by a sequence of 2－cycles $\left(c_{i}\right)$ in $H_{2}^{+}\left(\mathcal{A}_{\widehat{W}} ; \mathbb{R}\right)$ such that $\left\|\mid c_{i}\right\| \|=0$ ．

Hint of proof for Wang tilings

$c=\pi(\mu) \Rightarrow\|| | c \mid\|=0$ ：Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson－Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$ ．The system $\left(\Omega_{\mathcal{W}}, \mathbb{R}^{2}\right)$ is a sub－system of $\left(\Omega_{\widehat{W}}, \mathbb{R}^{2}\right)$ ．

Periodic orbits of \mathbb{R}^{2}（tori）are dense in $\left(\Omega_{\widehat{\mathcal{W}}}, \mathbb{R}^{2}\right)$ ．
Any invariant measure in $\mathcal{M}\left(\Omega_{\mathcal{W}}\right)$ is an invariant measure in $\mathcal{M}\left(\Omega_{\widehat{W}}\right)$ ．
$c=\pi(\mu)$ in $H_{2}^{+}\left(\mathcal{A}_{\mathcal{P}} ; \mathbb{R}\right)$ is approximated by a sequence of 2 －cycles $\left(c_{i}\right)$ in $H_{2}^{+}\left(\mathcal{A}_{\widehat{W}} ; \mathbb{R}\right)$ such that $\left\|\mid c_{i}\right\| \|=0$ ．

By continuity $\||c|\|=0$ ．

