

	Introduction
Periods of periodic orbits for vertex maps on graphs	
Introduction	One of the basic starting points for one-dimension combinatorial dynamics is Sharkovsky's Theorem.
an example -	Theorem
$\begin{array}{\|l\|l} \text { ailthatlpit } \\ \text { with } \\ \text { orientation } \end{array}$	Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. If f has a periodic point of least
$\begin{aligned} & \text { basic } \\ & \text { properties } \end{aligned}$	period v then f also has a periodic point of least period m for any $m \triangleleft v$, where
	$1 \triangleleft 2 \triangleleft 4 \triangleleft \ldots \ldots 28 \triangleleft 20 \triangleleft 12 \triangleleft \ldots 14 \triangleleft 10 \triangleleft 6 \ldots 7 \triangleleft 5 \triangleleft 3$.
$\begin{array}{\|l} \hline \text { basic } \\ \text { properties } \end{array}$	
$\begin{array}{\|l} \text { two lemmas - } \\ \text { redux } \end{array}$	
$\begin{aligned} & \text { Sharkovsky } \\ & \text { ordering } \end{aligned}$	

$\begin{array}{c}\text { Periods of } \\ \text { periodic orbits }\end{array}$

eriodic orbits
for vertex
maps on graphs

a basic result

Theorem

Let M be the Markov matrix associated to a directed graph that has vertices labeled E_{1}, \ldots, E_{n}, then the ijth entry of M^{k} gives the number of walks of length k from E_{j} to E_{i} ive the number of walk of langth k from E_{j} to E_{i}.
an example

$$
M=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Periods of periodic orbit periodic orbits for vertex
 maps on
 graphs

troduction

an example
an example an exan
with
orientat orientatio basic
properties properties o lemmas
vertex maps on graphs basic properties two lemmas redux
Sharkovsky ordering

a basic result

Theorem

Let M be the Markov matrix associated to a directed graph that has vertices labeled E_{1}, \ldots, E_{n}, then the ijth entry of M^{k} gives the number of walks of length k from E_{j} to E_{i}.

Corollary

The trace of M^{k} gives the total number of closed walks of length k.

	an example - with orientation	
$\begin{array}{\|c\|} \text { Periods of } \\ \text { periodic orbits } \\ \text { for vevtex } \\ \text { maps on } \\ \text { graphs } \end{array}$		
Introduction		
an example	θ	
$\begin{array}{\|l\|l} \hline \text { an example - } \\ \text { with } \\ \text { orietation } \end{array}$		
basic properties two lemmas vertex maps on graphs	$M_{0}(\theta)=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), M_{1}(\theta)=\left(\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right)$	
basic properties		
two lemmas - redux		
Sharkovsky ordering		

basic properties

Theorem

The ijth entry of $\left(M_{1}(\theta)\right)^{k}$ gives the number of positively oriented walks of length k from E_{j} to E_{i} minus the number negatively oriented walks from E_{j} to E_{i} ．

Corollary

The trace of $\left(M_{1}(\theta)\right)^{k}$ gives the number of positively oriented closed walks of length k minus the number of negatively oriented closed walks of length k ．

Periods of periodic orbits for vertex maps ongraphs	basic properties		
	Theorem		
	$\begin{aligned} & \left(M_{0}(\theta)\right)^{k}=M_{0}\left(\theta^{k}\right) \\ & \text { (2) }\left(M_{1}(\theta)\right)^{k}=M_{1}\left(\theta^{k}\right) \end{aligned}$		
an example an example－ with orientation			
basicpropertiestwo lemmas			
vertex maps on graphs basic properties two lemmas－ redux	$M_{0}(\theta)=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$,$M_{1}(\theta)=\left(\begin{array}{lll}0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right)$	
Sharkovsky ordering			

first lemma

Periods of
periodic orbits
periodic orbits
for vertex
maps on
graphs
introduction
an example
an example -
with
orientation
pasic
two lemmas
ertex maps
on graphs
basic
two lemmas
edux
Sharkovsky

Proof.

Since 17 is not a divisor of 2^{k} we know that $\theta^{2^{k}}$ does not fix any of the integers in $\{1,2, \ldots, 17\}$. So Trace $\left(M_{0}\left(\theta^{2^{k}}\right)\right)=0$.

first lemma

Periods of
 periodic orbit for vertex
 maps on graphs

introduction
an example
an example -
with
orientation
asic
propertie
wo lemmas
vertex maps
on graphs
basic
wo lemmas
edux edux
Sharkovsky
ordering

Proof.

Since 17 is not a divisor of 2^{k} we know that $\theta^{2^{k}}$ does not fix any of the integers in $\{1,2, \ldots, 17\}$. So Trace $\left(M_{0}\left(\theta^{2^{k}}\right)\right)=0$. So Trace $\left(M_{1}\left(\theta^{2^{k}}\right)\right)=-1$. So the oriented Markov graph has a vertex E_{j} with a closed walk from E_{j} to itself of length 2^{k} with negative orientation. Since the orientation is negative it cannot be the repetition of a shorter closed walk, as any shorter closed walk would have to be repeated an even number of times. So there is a periodic point in E_{j} with minimum period 2^{k}.

vertex maps on graphs

vertex maps on graphs

Periods of
periodic orbits

$$
M_{1}(\theta)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & -1 \\
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1 & -1 \\
0 & 1 & 0 & -1 & 0 & 1
\end{array}\right)
$$

vertex maps on graphs

$$
M_{0}(\theta)=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

first lemma - redux

Periods of
periodic orbits
for vertex
maps on
graphs

Lemma

Let G be a graph and f a vertex map from G to itself that is homotopic to the identity. Suppose that the vertices form one periodic orbit. Suppose f flips an edge. If v is not a divisor of 2^{k}, then f has a periodic point with period 2^{k}.
basic properties

```
Theorem
    (1) \(\left(M_{0}(\theta)\right)^{k}=M_{0}\left(\theta^{k}\right)\)
    (2) \(\left(M_{1}(\theta)\right)^{k}=M_{1}\left(\theta^{k}\right)\)
    (3) \(\operatorname{Trace}\left(M_{0}(\theta)\right)-\operatorname{Trace}\left(M_{1}(\theta)\right)=L_{f}\)
```


Corollary

If the underlying map is homotopic to the identity, then $\operatorname{Trace}\left(M_{0}(\theta)\right)-\operatorname{Trace}\left(M_{1}(\theta)\right)=v-e$

	first lemma - redux
$\begin{array}{\|c} \text { Periods of of } \\ \text { periodic orbits } \\ \text { for vertex } \end{array}$	Proof.
$\underbrace{\text { a }}_{\substack{\text { maps on } \\ \text { graphs }}}$	Since f flips an edge, there must be at least one loop in the Markov graph that has length 1 and has negative orientation.
an eample	
an eample -	
basic	
two lemmas	
vertex mans on sapheps	
sic	
$\begin{aligned} & \text { two lemmas - } \\ & \text { redux } \end{aligned}$	
Shartorsty ordering	

	first lemma - redux
$\begin{aligned} & \text { Periods of } \\ & \text { periodic orbits } \\ & \text { for vertex } \end{aligned}$	Proof.
$\underbrace{\text { Introduction }}_{\substack{\text { maps on } \\ \text { graph }}}$	Since f flips an edge, there must be at least one loop in the Markov graph that has length 1 and has negative orientation.
an erample	loops in Markov graph of length 1 that have positive
	orientation. By going around each of these loops in the Markov graph twice we can see that there must be at least $e-v+2$
${ }_{\substack{\text { basic } \\ \text { properies }}}$	loops of length 2 that have positive orientation.
two lemmas	
basic	
$\begin{aligned} & \text { two lemmas - } \\ & \text { redux } \end{aligned}$	
Sharkossy	-

first lemma - redux

Periods of
periodic orbits
for vertex
maps on graphs

Introduction an example
an example -
with
orientation
basic
roperties
wo lemmas
vertex maps on graphs
basic
wo lemmas -
redux
Sharkovsky
dering
or
der

	first lemma - redux
$\begin{aligned} & \text { Periods of } \\ & \text { periodic orbits } \\ & \text { for vertex } \end{aligned}$	Proof.
$\underset{\substack{\text { maps on } \\ \text { graph }}}{\text { and }}$	Since f flips an edge, there must be at least one loop in the Markov graph that has length 1 and has negative orientation.
	Since $\operatorname{Trace}\left(M_{1}(f)\right)=e-v$, there must be at least $e-v+1$ loops in Markov graph of length 1 that have positive
	orientation. By going around each of these loops in the Markov graph twice we can see that there must be at least $e-v+2$
$\left.\right\|_{\substack{\text { basic } \\ \text { properties }}}$	loops of length 2 that have positive orientation.
	Since $\operatorname{Trace}\left(M_{1}(f)^{2}\right)=e-v$, there must be at least one loop of length 2 with negative orientation. Since it has negative orientation, it cannot be the repetition of a shorter loop.
$\begin{aligned} & \text { properties } \\ & \text { two lemmas - } \\ & \text { redux } \end{aligned}$	
$\left\lvert\, \begin{aligned} & \text { Sharkovsky } \\ & \text { ordering } \end{aligned}\right.$	

	first lemma - redux
	Proof.
	Since f flips an edge, there must be at least one loop in the Markov graph that has length 1 and has negative orientation.
example	Since $\operatorname{Trace}\left(M_{1}(f)\right)=e-v$, there must be at least $e-v+1$ loops in Markov graph of length 1 that have positive
	orientation. By going around each of these loops in the Markov graph twice we can see that there must be at least $e-v+2$
basic	loops of length 2 that have positive orientation.
	Since $\operatorname{Trace}\left(M_{1}(f)^{2}\right)=e-v$, there must be at least one loop of length 2 with negative orientation. Since it has negative
on graph	orientation, it cannot be the repetition of a shorter loop. So
${ }^{\text {basic }}$ a	the Markov graph of f has a non-repetitive loop of length 2
$\begin{aligned} & \text { two lemmas - } \\ & \text { redux } \end{aligned}$	with negative orientation.
$\begin{aligned} & \text { Sharlostysy } \\ & \text { ordering } \end{aligned}$	

Periods of periodic orbit periodic orbit for vertex
 maps on graphs

Introduction an example an example an exam
with
orientat with
orientation
basic
properties
two lemmas
vertex maps
on graphs
basic
properties
two lemmas
redux
Sharkovs
dering

Sharkovsky ordering

The Sharkovsky ordering can be defined as follows:
(what positive integers does v force?)
(1) $2^{l} \triangleleft 2^{k}=v$ if $l \leq k$.

	Sharkovsky ordering
Introduction	The Sharkovsky ordering can be defined as follows: (what positive integers does v force?)
example.	(1) $2^{\prime} \triangleleft 2^{k}=v$ if $I \leq k$. (2) If $v=2^{k} s$, where $s>1$ is odd, then (0) $2^{\prime} \triangleleft v$, for all positive integers I.
lesic	
two lemmas	
Verter manson graphs	
basic	
two lemmas -	
redux	
$\begin{aligned} & \text { Sharkovsky } \\ & \text { ordering } \end{aligned}$	

Sharkovsky ordering

Periods of
 periodic orbit for vertex
 maps on graphs

The Sharkovsky ordering can be defined as follows: (what positive integers does v force?)
(1) $2^{l} \triangleleft 2^{k}=v$ if $I \leq k$.
(2) If $v=2^{k} s$, where $s>1$ is odd, then
(1) $2^{l} \triangleleft v$, for all positive integers l.

Sharkovsky ordering

Periods of periodic orbit
 periodic orbits for vertex
 maps on graphs

Introduction

The Sharkovsky ordering can be defined as follows:
(what positive integers does v force?)
(1) $2^{l} \triangleleft 2^{k}=v$ if $l \leq k$.
(2) If $v=2^{k} s$, where $s>1$ is odd, then
(1) $2^{\prime} \triangleleft v$, for all positive integers l
(2) $2^{k} r \triangleleft v$, where $r \geq s$.
(3) $2^{\prime} r \triangleleft v$, where $l>k$ and such that $2^{\prime} r<v$.

	final remarks
	This is a way of generalizing from maps of the interval and circle to maps on graphs.
an example an example	This is not the most general method of generalizing, but it leads to interesting results, and is very accessible.
with orientation	
two lemmas	
${ }_{\substack{\text { basio } \\ \text { nomeries }}}$	
Sharkovsky ordering	

final remarks

Periods of
 periodic orbits
 maps on
 graphs

(1) This is a way of generalizing from maps of the interval and circle to maps on graphs.
(2) This is not the most general method of generalizing, but it leads to interesting results, and is very accessible.
(3) More info at: Sharkovsky's theorem and one-dimensional combinatorial dynamics arxiv.org/abs/1201.3583

final remarks

Periods of periodic orbit
for vertex
maps on graphs

Introduction
an example
an example -
with
orientation
basic
Dasic
properties
two lemmas
vertex maps on graphs
basic
properties
two lemmas
redux
Sharkovsky
Sharkovsh
ordering
(1) This is a way of generalizing from maps of the interval and circle to maps on graphs.
(2) This is not the most general method of generalizing, but it leads to interesting results, and is very accessible.
(3) More info at: Sharkovsky's theorem and one-dimensional combinatorial dynamics arxiv.org/abs/1201.3583

