



Overview Background Endpoints Summary Unimodal Maps Combinatoric Behavior Inverse Limit Spaces Endpoints Adding Machines Hofbauer Towers	Overview Background Endpoints Summary Unimodal Maps Combinatoric Behavior Inverse Limit Spaces Endpoints Adding Machines Hofbauer Towers
Given a unimodal map f , the associated Hofbauer tower is the disjoint union of intervals $\{D_n\}_{n\geq 1}$ where $D_1 = [0, c_1]$ and, for $n \geq 1$, $D_{n+1} = \begin{cases} f(D_n) & \text{if } c \notin D_n, \\ [c_{n+1}, c_1] & \text{if } c \in D_n. \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 ・ イヨト イヨト イヨト オヨト ヨークへへ Lori Alvin Hofbauer Towers and Inverse Limit Spaces 	Figure: Hofbauer tower for Fibonacci combinatorics Lori Alvin Hofbauer Towers and Inverse Limit Spaces
Overview Background Endpoints Summary Unimodal Maps Combinatoric Behavior Inverse Limit Spaces Endpoints Adding Machines	Overview Background Endpoints Summary Adding Machines
Inverse Limit Spaces	Ingram's Conjecture
Here a continuum is a compact connected metrizable space. Given a continuum <i>I</i> and a continuous map $f : I \to I$, the associated inverse limit space (I, f) is defined by $(I, f) = \{x = (x_0, x_1,) \mid x_n \in I \text{ and } f(x_{n+1}) = x_n \text{ for all } n \in \mathbb{N}\}$ and has metric $d(x, y) = \sum_{i=0}^{\infty} \frac{ x_i - y_i }{2^i}.$	Inverse limit spaces are difficult to classify.
	Ingram's Conjecture, dating to the early 1990s, states that the inverse limit spaces (I, f) and (I, g) are not topologically homeomorphic when f and g are distinct symmetric tent maps.
	There have been many partial results over the past two decades, and most recently Barge, Bruin, and Štimac establish Ingram's Conjecture.
 ・ イヨ > イヨ > イヨ > モラ ション き つくで Lori Alvin Hofbauer Towers and Inverse Limit Spaces 	 ・ イヨト イヨト イヨト テラス() Lori Alvin Hofbauer Towers and Inverse Limit Spaces

Overview Unimodal Maps Background Combinatoric Behavior Endpoints Endpoints Summary Adding Machines	Overview Background Endpoints Summary Adding Machines
Endpoints and \mathcal{E}	Backward Itineraries
In our case, a point $x \in (I, f)$ is an endpoint of (I, f) provided for every pair A and B of subcontinua of (I, f) with $x \in A \cap B$, either $A \subset B$ or $B \subset A$. Given a unimodal map f , define $\mathcal{E}_f := \{(x_0, x_1, \ldots) \in (I, f) \mid x_i \in \omega(c, f) \text{ for all } i \in \mathbb{N}\}$ Lemma (2010, Alvin and Brucks, Fund. Math.) Let f be a unimodal map with $\mathcal{K}(f) \neq 10^\infty$ and suppose $x = (x_0, x_1, \cdots) \in (I, f) \setminus \mathcal{E}$. Then x is not an endpoint of (I, f) .	The backward itinerary of a point $x \in (I, f)$ is defined coordinate-wise by $\mathcal{I}_j(x)$, where $\mathcal{I}_j(x) = 1$ if $x_j > c$, $\mathcal{I}_j(x) = 0$ if $x_j < c$, and $\mathcal{I}_j(x) = *$ if $x_j = c$.
< ロ > 、(司 > 、(司 > 、(言 > 、(言 > 、)))) () ()	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
Lori Alvin Hofbauer Towers and Inverse Limit Spaces	Lori Alvin Hofbauer Towers and Inverse Limit Spaces
Overview Background Endpoints Summary Unimodal Maps Overview Endpoints Adding Machines	Overview Background Endpoints Summary Unimodal Maps Combinatoric Behavior Inverse Limit Spaces Endpoints Adding Machines
Backward Itineraries	Known Results About Endpoints
For each $x \in (I, f)$ such that $x_i \neq c$ for all $i > 0$, set $\tau_R(x) = \sup\{n \ge 1 \mid \mathcal{I}_{n-1}(x)\mathcal{I}_{n-2}(x)\cdots\mathcal{I}_1(x) = e_1e_2\cdots e_{n-1} \text{ and}$ $\#\{1 \le i \le n-1 \mid e_i = 1\} \text{ is even }\}, \text{ and}$	Bruin provides a characterization with both a combinatoric and analytic component when f is unimodal and the turning point is not periodic.
$\pi_{L}(x) = \sup\{n \ge 1 \mid \mathcal{I}_{n-1}(x)\mathcal{I}_{n-2}(x)\cdots\mathcal{I}_{1}(x) = e_{1}e_{2}\cdots e_{n-1} \text{ and} \\ \#\{1 \le i \le n-1 \mid e_{i} = 1\} \text{ is odd } \}.$	Proposition (1999, Bruin, Topology Appl.) Let f be a unimodal map and $x \in (I, f)$ be such that $x_i \neq c$ for all $i \geq 0$. Then x is an endpoint of (I, f) if and only if $\tau_R(x) = \infty$ and $x_0 = \sup \pi_0(\Gamma(x))$ (or $\tau_L(x) = \infty$ and $x_0 = \inf \pi_0(\Gamma(x))$).
<ロト イラト イラト イラト イラト ラマペ Lori Alvin Hofbauer Towers and Inverse Limit Spaces	▲ □ ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ ③ ○ ○ ○ Lori Alvin Hofbauer Towers and Inverse Limit Spaces

Overview Unimodal Maps Background Combinatoric Behavior Endpoints Inverse Limit Spaces Summary Adding Machines	Overview BackgroundEndpoints of (I, f) for Various Maps fEndpoints SummaryProof using Hofbauer Towers
he Adding Machine Map	Relating Endpoints and Renormalization
Let $\alpha = \langle q_1, q_2, \ldots \rangle$ be a sequence of integers where each $q_i \ge 2$. Denote by Δ_{α} the set of all sequences (a_1, a_2, \ldots) such that $0 \le a_i \le q_i - 1$ for each <i>i</i> . The map $f_{\alpha} : \Delta_{\alpha} \to \Delta_{\alpha}$, defined by $f_{\alpha}((x_1, x_2, \ldots)) = (x_1, x_2, x_3, \ldots) + (1, 0, 0, \ldots)$, is called the α -adic adding machine map.	Theorem (2010, Alvin and Brucks, Fund. Math.) Let f be an infinitely renormalizable logistic map. Then \mathcal{E} is precisely the collection of endpoints of (I, f) . In this case $\lim_{k\to\infty} Q(k) = \infty$.
 ・ イラト イラト イラト イラト マーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマー	(기도) (I, f) for Various Maps f Summary (I 다 Alvin Hofbauer Towers and Inverse Limit Spaces (I 다 Alvin Hofbauer Towers Alpha Structure) Endpoints of (I, f) for Various Maps f Proof using Hofbauer Towers
neading Maps, Adding Machines, and Endpoints	Kneading Maps and Endpoints
Theorem (2011, Alvin and Brucks, Topology Appl.) Let $f \in A$ be such that $\lim_{k\to\infty} Q(k) = \infty$. Then \mathcal{E} is precisely the collection of endpoints of (I, f) . Further, if $f \in A$ and $\lim_{k\to\infty} Q(k) \neq \infty$, then it may be that \mathcal{E} is exactly the collection of endpoints of (I, f) , or it may be that \mathcal{E} properly contains the collection of endpoints of (I, f) .	Is it possible that every unimodal map f with $\lim_{k\to\infty} Q(k) = \infty$ is such that \mathcal{E} is the collection of endpoints of (I, f) ? Recall that if $f _{\omega(c)}$ is topologically conjugate to an adding machine, then $f _{\omega(c)}$ is one-to-one.
イロト イラト イラト オラト ラージへへ Lori Alvin Hofbauer Towers and Inverse Limit Spaces	イロトイクトイモト モート モート インシン (C Lori Alvin Hofbauer Towers and Inverse Limit Spaces

Overview Background EndpointsEndpoints of (1, f) for Various Maps fProof using Hofbauer Towers	Overview Background Endpoints of (I, f) for Various Maps f Endpoints Summary
Kneading Maps and Endpoints	Proof of Main Result
Theorem (Alvin, Proc. AMS, to appear) Let f be a unimodal map such that $\lim_{k\to\infty} Q(k) = \infty$ and $f _{\omega(c)}$ is one-to-one. Then \mathcal{E} is precisely the collection of endpoints of $(1, f)$.	Let $x = (x_0, x_1, x_2,) \in \mathcal{E}$ be such that $x_i \neq c$ for all $i \ge 0$. Recall that $x_0 \in \omega(c)$. We can find an increasing sequence of D_{n_k} such that $x_0 \in D_{n_k}$ for all $k \in \mathbb{N}$. As $Q(k) \to \infty$ and $f _{\omega(c)}$ is one-to-one, there exists some level D_N of the Hofbauer tower where if $x_0 \in D_n$ for some $n \ge N$, then the unique preimage $x_1 \in \omega(c)$ lies in D_{n-1} . WLOG take $\{n_k\}$ such that $n_1 > S_l > N$.
 ・ イクト・イラト・イラト ラークへで Lori Alvin Hofbauer Towers and Inverse Limit Spaces 	イロト イラト イヨト イヨト ヨークへで Lori Alvin Hofbauer Towers and Inverse Limit Spaces
Overview Endpoints of (I, f) for Various Maps f Endpoints Proof using Hofbauer Towers Summary Proof using Hofbauer Towers	Overview Background Endpoints Endpoints Summary Endpoints of (I, f) for Various Maps f Proof using Hofbauer Towers
Proof of Main Result	Proof of Main Result
$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline \\ \hline$	Hence $\mathcal{I}_{\beta(n_k)-1}(x) \cdots \mathcal{I}_1(x) = e_1 e_2 \cdots e_{\beta(n_k)-1}$. Note that $\beta(n_k) \to \infty$. $\tau_R(x) = \infty$ or $\tau_L(x) = \infty$. In both cases we show x must be an endpoint of (I, f) , using Bruin's characterization.
▲ロト 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 日 h 4 H 4 H 4 H 4 H 4 H 4 H 4 H 4 H 4 H 4	・ロト イ 団 ト イ ヨ ト イ ヨ ト ラ 王 ・ ク Q へ Lori Alvin Hofbauer Towers and Inverse Limit Spaces

