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Motivation

The notion of reducibility plays a fundamental role in the study of
the combinatorial and topological dynamics of discrete dynamical
systems.

Reducible systems are those such that the space can be
decomposed in connected pieces with pairwise disjoint interiors
which are permuted by the map.

In this situation the behavior of the original map can be related
with the dynamics of an iterate of the map on the reduced pieces.

This approach plays a crucial role, for instance in the study of both
the surface homeomorphisms and the interval dynamics related to
periodic orbits (where reducibility is formalized through the notion
of block structure).
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Aims

The aim of this talk is to clarify the notions of reducibility and
irreducibility for periodic orbits of tree maps and study the
dynamical implications of these notions at a topological and
algebraic level.

Thanks to this study, we obtain some interesting properties of the
topological entropy of reducible systems and we clarify its relation
with the decomposition of the space and the Markov matrix of the
map.

This study is done at a combinatorial level. So we need the notion
of combinatorial type or pattern for finite invariant sets of trees.
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The definition of a pattern

Let T be a tree and let P ⊂ T be a finite subset of T . The pair
(T ,P) will be called a pointed tree. A set Q ⊂ P is said to be a
discrete component of (T ,P) if either |Q| > 1 and there is a
connected component C of T \ P such that Q = Cl(C ) ∩ P , or
|Q| = 1 and Q = P .

We say that two pointed trees (T ,P) and (T ′,P ′) are equivalent if
there exists a bijection φ : P −→ P ′ which preserves discrete
components. In this case, two discrete components C of (T ,P)
and C ′ of (T ′,P ′) will be called equivalent if C ′ = φ(C ).

The equivalence class of a pointed tree (T ,P) will be denoted by
[T ,P ], and the equivalence class of a discrete component of
(T ,P) will be called a discrete component of [T ,P ].
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The definition of a pattern

Let (T ,P) and (T ′,P ′) be equivalent pointed trees, and let
θ : P −→ P and θ′ : P ′ −→ P ′ be maps. We will say that θ and θ′

are equivalent if θ′ = ϕ ◦ θ ◦ ϕ−1 for a bijection ϕ : P −→ P ′ which
preserves discrete components. The equivalence class of θ by this
relation will be denoted by [θ].

Definition

If [T ,P ] is an equivalence class of pointed trees and [θ] is an
equivalence class of maps then the pair ([T ,P ], [θ]) will be called a
pattern.

Any discrete component of [T ,P ] will be also called a discrete

component of the pattern ([T ,P ], [θ]).

We say that a model (T ,P , f ) exhibits a pattern (T ,Θ) if
T = [〈P〉T ,P ] and Θ = [f

∣

∣

P
]. Alternatively, we will say that the

model (T ,P , f ) is a representative of the pattern (T ,Θ).

Ll. Alsedà (UAB) Topological and algebraic reducibility for patterns on trees 4/41



Motivation and aims Patterns and monotone models On the reducibility of patterns Reducibility and entropy Entropy 0

Entropy of a pattern

The topological entropy of a map f : T −→ T will be denoted by
h(f ).

Given a pattern P, the topological entropy of P is defined to be

h(P) := inf{h(f ) : (T ,P , f ) is a model exhibiting P}.
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Monotone models

The simplest models exhibiting a given pattern are the monotone
ones, according to the following definition. Let S and T be trees
and let f : T −→ S be a map. Given a, b ∈ T we say that f

∣

∣

[a,b]
is

monotone if f ([a, b]) is either an interval or a point and f
∣

∣

[a,b]
is

monotone as an interval map.

Let (T ,P , f ) be a model. A pair {a, b} ⊂ P will be called a basic

path of (T ,P) if it is contained in a single discrete component of
(T ,P).

Definition

We will say that f is P-monotone if En(T ) ⊂ P and f
∣

∣

[a,b]
is

monotone for any basic path {a, b}. The model (T ,P , f ) will be
called monotone.

In such case, one can see that the set P ∪ V (T ) is f -invariant and
the map f (which is P-monotone, is also (P ∪ V (T ))-monotone).
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Monotone models may not exist. Hence, the space cannot

be fixed!!
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Monotone models

Theorem (Theorem A of [aglmm])

Let P be a pattern. Then the following statements hold.

1 There exists a monotone model of P.

2 Every monotone model (T ,P , f ) of P satisfies h(f ) = h(P).

[aglmm] Ll. Alsedà, J. Los, F. Mañosas, and P. Mumbrú,
Canonical representatives for patterns of tree maps, Topology
36 (1997), no. 5, 1123–1153. MR 1445556 (99f:58062)
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Canonical models

The monotone models from the above are essentially unique in the
following sense. Let (T ,P , f ) be a monotone model and let S be a
non-empty union of edges disjoint from P . We will say that S is an
invariant forest of (T ,P , f ) if either f i (S) ∩ P = ∅ for every i ≥ 0
or there exists n > 0 such that f i(S) ∩ P = ∅ for every
i = 0, 1, . . . , n − 1 and f n(S) degenerates to a point of P .

(T ,P , f ) is a canonical model of the pattern [T ,P , f ] if it has no
invariant forests. From [aglmm, Theorem B] it follows that every
pattern has a canonical model. Moreover, given two canonical
models (T ,P , f ) and (T ′,P ′, f ′) of the same pattern there exists a
homeomorphism ϕ : T −→ T ′ such that ϕ(P) = P ′, and
f ′ ◦ ϕ

∣

∣

P
= ϕ ◦ f

∣

∣

P
. Hence, the canonical model of a pattern is

essentially unique.
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On the reducibility of patterns

We need to introduce the notions of trivial pattern, collapsing
interval, Markov matrix, block structure and rotational structure,
which depend only on the combinatorial data of the pattern.
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Trivial Pattern

An n-periodic pattern P will be called trivial if it has only one
discrete component.

In this case, for n ≥ 2, let (T ,P) be a pointed tree such that T is
an n-star with En(T ) = P = {x1, x2, . . . , xn} and let y be its
central point. Consider a rigid rotation on T , that is, a model
(T ,P , f ) such that f (y) = y and f maps bijectively [y , xi ] onto
[y , xi+1] for 1 ≤ i < n and [y , xn] onto [y , x1]. Clearly, (T ,P , f ) is
a monotone model with no invariant forests. In consequence,
(T ,P , f ) is the canonical model of P. Therefore, it easily follows
that every trivial pattern has entropy 0.
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Collapsing interval

Let P be a periodic pattern and let (T ,P , f ) be the canonical
model of P. Any (P ∪ V (T ))-basic interval [a, b] such that
f ([a, b]) reduces to a point will be called a collapsing interval of P.

Note that, in this case, since P is periodic, {a, b} 6⊂ P . On the
other hand, since (T ,P , f ) has no invariant forests,
{a, b} 6⊂ V (T ) \ P . Therefore, each collapsing interval has the
form [a, b] with a ∈ P and b ∈ V (T ) \ P (the interval [c , 8] in the
canonical model of the pattern P shown in Example 1 is an
example of a collapsing interval, since f (c) = f (8) = 9).

There is a purely combinatorial criterion to decide whether a
pattern P has collapsing intervals (without constructing its
canonical model). Indeed, a pattern ([T ,P ], [f ]) has collapsing
intervals if and only if there is a discrete component C of (T ,P)
such that |En(〈f (C )〉)| < |C |. This definition is independent from
the particular model (T ,P , f ) realizing the pattern.
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Example 1
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Figure: The canonical model (T ,P , f ) of a 12-periodic pattern P , which
satisfies f (a) = d , f (b) = 6, f (c) = 9, f (d) = b. The pattern P has a
separated 4-block structure given by the partition
{1, 5, 9} ∪ {2, 6, 10} ∪ {3, 7, 11} ∪ {4, 8, 12} and a separated 2-block
structure given by the partition {1, 3, 5, 7, 9, 11}∪ {2, 4, 6, 8, 10, 12}.

Recall that [c , 8] is a collapsing interval for P and observe that the
discrete component C = {2, 4, 8, 12} verifies
〈f (C )〉 = 〈{3, 5, 9, 1}〉, a tree with 3 endpoints.
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Markov Matrix

Let (T ,Q, f ) be a monotone model such that Q ⊃ V (T ). In this
case, any connected component of T \ Q is an open interval.

An interval of T will be called Q-basic if it is the closure of a
connected component of T \Q. Observe that two different
Q-basic intervals have pairwise disjoint interiors.

Given K , L ⊂ T , we will say that K f -covers L if f (K ) ⊃ L.

Consider a labeling I1, I2, . . . Ik of all Q-basic intervals. The Markov

graph of (T ,Q, f ) associated to this labeling is a combinatorial
directed graph whose vertices are the Q-basic intervals and there is
an arrow from Ii to Ij if and only if Ii f -covers Ij .
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Markov Matrix

The Markov matrix of (T ,Q, f ) associated to this labeling is a
k × k matrix (mi ,j)

k
i ,j=1 such that mi ,j = 1 if and only if Ii f -covers

Ij , and mi ,j = 0 otherwise.

Given two different labellings of the set of Q-basic intervals and
their associated Markov matrices M and N, there exists a
permutation matrix A such that M = ATNA (where AT denotes
the transpose of A), and the corresponding Markov graphs are
isomorphic.

Recall that if (T ,P , f ) is the canonical model of a pattern P then
the model (T ,P ∪ V (T ), f ) is monotone. Thus, we can consider
their Markov graph and matrix. Since both objects depend only on
the canonical model of P, which is uniquely determined by the
combinatorial data of the pattern P, they will be respectively
called Markov graph of P and Markov matrix of P.
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Algebraic reducibility

We recall that a square matrix with non-negative entries is called
reducible if there exists a permutation matrix A such that

(1) ATMA =

(

M11 0
M21 M22

)

where M11 and M22 are square matrices of sizes l × l and m ×m

(l ,m ≥ 1) respectively and 0 stands for the l ×m matrix whose
entries are all 0. If there does not exist such A then the matrix M

is called irreducible.
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Primitivity

An irreducible matrix M is called primitive if all powers Mn are
irreducible for n ≥ 2. Otherwise M is called imprimitive. It is well
known [gant, Theorem 8] that an irreducible matrix M is primitive
if and only if there exists n ≥ 1 such that all the entries of Mn are
positive.

[gant] F.R. Gantmacher, The theory of matrices, AMS Chelsea
Publishing Company, New York 1989–90 (2nd edition).
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Ciclicity

A square matrix with non-negative entries M will be called cyclic if
there exist p ≥ 2 and a permutation matrix A such that

(2) ATMA =















0 M1 0 . . . 0
0 0 M2 0
...

. . .
. . .

...
0 0 . . . 0 Mp−1

Mp 0 . . . 0 0















where the diagonal 0 blocks are square (possibly with pairwise
different sizes). Of course, the matrix of a cyclic permutation is
cyclic.
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Remarks

Remark

Recall that if (T ,P , f ) is the canonical model of a trivial
n-periodic pattern P with n ≥ 3 then T is an n-star with
En(T ) = P and f (y) = y , where y is the central point of T . It is
straightforward to check that the Markov matrix M of P is the
permutation matrix corresponding to the cyclic permutation
(2, 3, . . . , n, 1). In consequence, M is cyclic.

Remark

Let M be an irreducible matrix. It is well known [gant] that M is
imprimitive if and only if M is cyclic.
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Block Structure

Let P = ([T ,P ], [f ]) be an n-periodic pattern with n ≥ 3. For
n > p ≥ 2, we will say that P has a p-block structure (or simply a
block structure) if there exists a partition P = P1 ∪ P2 ∪ . . . ∪ Pp

such that f (Pi ) = Pi+1 for 1 ≤ i < p, f (Pp) = P1, and
〈Pi 〉T ∩ Pj = ∅ whenever i 6= j .

In this case, p is a strict divisor of n and |Pi | = n/p for 1 ≤ i ≤ p.

The trees 〈Pi 〉T (which do depend on the particular model
(T ,P , f ) realizing the pattern) will be called blocks. See the
pattern P in Example 2: the partition
P = P1 ∪ P2 = {1, 3, 5, 7, 9, 11, 13, 15} ∪ {2, 4, 6, 8, 10, 12, 14, 16}
defines a 2-block structure for P, since
〈P1〉T ∩ P2 = 〈P2〉T ∩ P1 = ∅ no matter what particular model
(T ,P , f ) represents P.
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Example 2
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Figure: A 16-periodic pattern P = ([T ,P], [f ]). The dashed circles stand for the
discrete components of P. The points of P are labeled with natural numbers,
f (i) = i + 1 for 1 ≤ i < 16 and f (16) = 1. The pointed tree corresponding to the
discrete component {1, 6, 8, 11, 14} in the canonical model is shown. The partition
P = P1 ∪ P2 = {1, 3, 5, 7, 9, 11, 13, 15} ∪ {2, 4, 6, 8, 10, 12, 14, 16} defines a 2-block
structure for P. There is also a 4-block structure given by the partition
P = Q1 ∪ Q2 ∪ Q3 ∪Q4 = {1, 5, 9, 13} ∪ {2, 6, 10, 14} ∪ {3, 7, 11, 15} ∪ {4, 8, 12, 16}.

Ll. Alsedà (UAB) Topological and algebraic reducibility for patterns on trees 21/41



Motivation and aims Patterns and monotone models On the reducibility of patterns Reducibility and entropy Entropy 0

The notion of block structure is pattern intrinsic

Observe that from the equivalence relation which defines the class
of models belonging to the pattern P it easily follows that this
notion does not depend on the particular model (T ,P , f )
representing P.

We note that if a pattern has a p-block structure, this p-block
structure is essentially unique up to relabeling of blocks. Observe
also that a pattern can have several different block structures: see
again Example 2.
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More block structures

The existence of a block structure for a periodic pattern P is
essentially equivalent to the fact that, for some k ≥ 1, the k-th
power Mk of the Markov matrix M of P is reducible. To look
closer at the algebraic properties of M (more precisely, to
discriminate whether M is reducible itself and to decide whether M
is cyclic) we need to define a couple of particular block structures,
which we will respectively call separated structure and rotational

structure.
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Separated Block Structure

Let P be an n-periodic pattern with n ≥ 3 and let (T ,P , f ) be the
canonical model of P. Assume that P has a p-block structure
defined by a partition P = P1 ∪ P2 ∪ . . . ∪ Pp. We say that this
p-block structure is separated if 〈Pi 〉T ∩ 〈Pj〉T = ∅ whenever i 6= j .

For instance, the 4-block structure Q1 ∪ Q2 ∪ Q3 ∪ Q4 for the
pattern P in Example 2 is separated, since the blocks have
pairwise disjoint intersections in any model representing P (in
particular, in the canonical model). On the other hand, a part of
the tree T corresponding to the canonical model is shown in
Example 2. Observe that 〈P1〉T ∩ 〈P2〉T = {y}, where y is a
branching point of valence 4. Therefore, the 2-block structure
P1 ∪ P2 is not separated.
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Rotational Block Structure

The cyclicity of the Markov matrix of a periodic pattern is related
to the existence of another particular case of block structure.

Let P be a non-trivial n-periodic pattern with n ≥ 3 and let
(T ,P , f ) be the canonical model of P. Assume that there exists a
branching point y ∈ T such that f (y) = y . For n > p ≥ 2, we will
say that P has a p-rotational structure (or simply a rotational

structure) if there exist subtrees Y1,Y2, . . . ,Yp such that each Yi

is the closure of a union of connected components of T \ {y},
f (Yi) = Yi+1 for 1 ≤ i < p and f (Yp) = Y1. Note that the sets
Yi \ {y} form a partition of T \ {y}.
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A rotational block structure is a block structure

In this situation, the partition P = P1 ∪ P2 ∪ . . . ∪ Pp , where
Pi := P ∩ Yi for 1 ≤ i ≤ p, defines a p-block structure for P (that
is, a rotational structure is a particular case of block structure).
Moreover,

1 Either all blocks 〈Pi 〉 are pairwise disjoint,

2 Or 〈Pi 〉 ∩ 〈Pj〉 = {y} whenever i 6= j .

Hence, a rotational structure is either separated or every pair of
blocks in the canonical model intersect at a fixed branching point.
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Examples

A pattern can have several different rotational structures. For an
example, consider the 8-periodic pattern P whose canonical model
(T ,P , f ) is depicted in Example 3. In this case, y is the only
branching point in T and f (y) = y . The connected components of
T \ {y} are the intervals (y , 5], (y , 6], (y , 7] and (y , 8], whose
closures are mapped cyclically by f . Hence,
{1, 5} ∪ {2, 6} ∪ {3, 7} ∪ {4, 8} defines a 4-rotational structure for
P. Since the blocks 〈1, 5〉, 〈2, 6〉, 〈3, 7〉, 〈4, 8〉 are pairwise disjoint,
(a) holds and this rotational structure is separated. On the other
hand, since f also maps cyclically the sets [y , 5] ∪ [y , 7] and
[y , 6] ∪ [y , 8], the partition {1, 3, 5, 7} ∪ {2, 4, 6, 8} defines a
2-rotational structure for P, which is not separated because the
blocks 〈{1, 3, 5, 7}〉 and 〈{2, 4, 6, 8}〉 intersect at y . Observe that
the points of P rotate around the discrete component {1, 2, 3, 4}
under the action of f . This fact justifies the name rotational

structure.
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Example 3
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Figure: The canonical model (T ,P , f ) of a 8-periodic pattern P , which
satisfies f (y) = y . The pattern P has a separated and rotational 4-block
structure given by the partition {1, 5}∪ {2, 6}∪ {3, 7}∪ {4, 8} and also a
rotational 2-block structure given by the partition
{1, 3, 5, 7} ∪ {2, 4, 6, 8}, which is not separated.
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Remarks on block structures

There exist block structures that are not rotational neither
separated (see below).The 8-periodic pattern P has no rotational
structures, since the only fixed point in the canonical model lies on
the open interval (1, 2) and, in consequence, is not a branching
point. On the other hand, the 4-block structure given by the
partition P1 ∪ P2 ∪ P3 ∪ P4 = {1, 5} ∪ {2, 6} ∪ {3, 7} ∪ {4, 8} is
not separated. However, the pattern has also a separated 2-block
structure given by the partition {1, 3, 5, 7} ∪ {2, 4, 6, 8}, obtained
by grouping together some sets Pi .

3

1 2

4

6

8

5

7

a b

Figure: The canonical model (T ,P , f ) of a 8-periodic pattern P , which
satisfies f (a) = b, f (b) = a.
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Remarks on block structures

The notion of block structure is purely combinatorial, since it depends
only on the discrete components of P . In contrast, a block structure will
be separated or rotational depending on some topological properties of
the blocks in the canonical model of P . However, since the canonical
model is unique and it is constructed by means of a well defined
algorithm uniquely determined by the combinatorial data of P , in fact
both notions are also intrinsic (in the sense that depend only on the
combinatorial data of P).

In the literature one can find several kinds of block structures and related

notions for periodic orbits. In the interval case, the Sharkovskii’s square

root construction is an early example of a block structure. Also the

notion of extension gives rise to some particular cases of block structures

for interval periodic orbits. Finally, the notion of division, introduced for

interval periodic orbits and generalized by A.–Ye in order to study the

topological entropy and the set of periods for tree maps, has a strong

connection with the notion of rotational structure.
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Characterization of the topological, algebraic and

combinatorial reducibility

Theorem

Let P be an n-periodic pattern with n ≥ 3 and let M be the

Markov matrix of P. The following statements hold:

1 M is reducible if and only if P has separated block structures

or collapsing intervals.

2 M is cyclic if and only if either P is trivial or has rotational

structures.
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Characterization of the topological, algebraic and

combinatorial reducibility

Corollary

Let P be a non-trivial n-periodic pattern with n ≥ 3 and let M be

the Markov matrix of P. Then, Mk is reducible for some k ≥ 1 if

and only if P has collapsing intervals or block structures.

Equivalently, M is primitive if and only if P has no collapsing

intervals and no block structures.
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Characterization of the topological, algebraic and

combinatorial reducibility

The above theorem generalizes some well known results for interval
patterns. It is folk knowledge that a periodic interval pattern has a
block structure if and only if its Markov matrix is reducible. In
fact, this is true not just for interval patterns but for a broader
class of patterns, which we call simplicial.

A pattern ([T ,P ], [θ]) is called simplicial if each discrete
component of (T ,P) has two points. Observe that, in this case,
for each pointed tree (S ,Q) ∈ [T ,P ] we have that V (S) ⊂ Q and,
for each discrete component C of (S ,Q), 〈C 〉S is an interval.

Corollary

Let P be a simplicial n-periodic pattern with n ≥ 3 and let M be

the Markov matrix of P. Then, M is reducible if and only if P has

a block structure. Moreover, if M is irreducible then M is primitive.
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Reducibility and entropy

Now we study the topological entropy of patterns with a block
structure.

It is a generalization of the following classical result for interval
patterns which gives a formula for the entropy of extensions.

In order to state it we need to introduce the notion of skeleton.

Let P be an n-periodic pattern and let (T ,P , f ) be the canonical
model of P. Let P = P1 ∪ P2 ∪ . . . ∪ Pp be a partition of P which
defines a separated p-block structure or a p-rotational structure for
P. It follows that, in both cases, f (〈Pi 〉) = 〈Pi+1〉 for 1 ≤ i < p

and f (〈Pp〉) = 〈P1〉.
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The skeleton of a pattern

The skeleton of P (associated to this partition of P) is a
p-periodic pattern Q defined as follows:

1 If P1 ∪ P2 ∪ . . . ∪ Pp defines a p-rotational structure for P,
then Q is defined to be a trivial p-periodic pattern.

2 If P1 ∪ P2 ∪ . . . ∪ Pp defines a separated p-block structure for
P which is not a p-rotational structure, consider the tree S

obtained from T by collapsing each block 〈Pi 〉 to a point xi .
Let κ : T −→ S be the standard projection, which is bijective
on T \ ∪i〈Pi 〉 and satisfies κ(〈Pi 〉) = xi . Set
Q = κ(P) = {x1, x2, . . . , xp} and define θ : Q −→ Q by
θ(xi) = xi+1 for 1 ≤ i < p and θ(xp) = x1. Then the skeleton
Q of P is defined to be the p-periodic pattern ([S ,Q], [θ]).
Observe that θ ◦ κ

∣

∣

P
= κ ◦ f

∣

∣

P
.
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Reducibility and entropy

Theorem

Let P be an n-periodic pattern and let (T ,P , f ) be the canonical

model of P. Assume that there is a partition

P = P1 ∪P2 ∪ . . .∪Pp which defines either a p-rotational structure

or a separated p-block structure for P. Let Q be the associated

skeleton of P. Then, all the entropies h(f p
∣

∣

〈Pi 〉
) are equal and

h(P) = max {h(Q), (1/p)h(f p
∣

∣

〈Pi 〉
) } for any 1 ≤ i ≤ p.
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Entropy 0

Now we describe the zero entropy periodic patterns (i.e. periodic
patterns P such that h(P) = 0) in terms of the existence of a very
particular class of block structures.

Let P = ([T ,P ], [f ]) be a periodic pattern with a p-block structure
defined by a partition P = P1 ∪P2 ∪ . . .∪Pp . We will say that this
p-block structure has trivial blocks if the patterns
([〈Pi 〉,Pi ], [f

p
∣

∣

Pi
]) are trivial for 1 ≤ i ≤ p. Equivalently, Pi is

contained in a discrete component of (T ,P) for 1 ≤ i ≤ p.
Observe that this notion is independent from the particular model
(T ,P , f ) representing the pattern P.
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Starry patterns

An n-periodic pattern P will be called 1-starry if P is trivial. For
k ≥ 2, P will be called k-starry if P has a separated p-block
structure with trivial blocks whose associated skeleton is
(k-1)-starry.

For an example, consider the 12-periodic pattern P3 of Example 4.
By constructing the canonical model of P3 one checks that the
block structure {1, 7} ∪ {2, 8} ∪ {3, 9} ∪ {4, 10} ∪ {5, 11} ∪ {6, 12},
with trivial blocks, is separated. The associated skeleton P2 has
also a separated 3-block structure {1, 4} ∪ {2, 5} ∪ {3, 6}, again
with trivial blocks. Finally, its associated skeleton P1 is a trivial
pattern. Hence, the patterns Pk are k-starry for k = 1, 2, 3.
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Example 4
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Figure: On the left, a 12-periodic pattern P3 with a separated 6-block
structure {1, 7} ∪ {2, 8} ∪ {3, 9} ∪ {4, 10} ∪ {5, 11} ∪ {6, 12} with trivial
blocks. The dashed circles stand for the discrete components of P . In
the center, the corresponding skeleton P2, with a 3-block structure
{1, 4} ∪ {2, 5} ∪ {3, 6} with trivial blocks. On the right, the
corresponding skeleton P1, a trivial pattern.
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Entropy 0; first characterization

Theorem

A periodic pattern P has entropy zero if and only if P is k-starry

for some k ≥ 1.

Observe the recursive nature of Theorem 10: the fact that an
n-periodic pattern has entropy 0 is translated to the fact that a
collection of periodic patterns (the skeleton and those associated
to the blocks), with periods strictly smaller than n, have entropy 0.
It is well known that the same happens for interval periodic
patterns. However, we emphasize that in order for P to have
entropy 0 it is not enough that the patterns exhibited by f p on
each block have entropy 0. In addition, they must be trivial.
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Entropy 0; second characterization

Theorem

Let P = ([T ,P ], [f ]) be an n-periodic pattern. Then:

1 P has zero entropy if and only if all patterns ([T ,P ], [f k ]), for
each k ∈ N such that k and n are relatively prime, have zero

entropy.

2 P has positive entropy if and only if all patterns ([T ,P ], [f k ]),
for each k ∈ N such that k and n are relatively prime, have

positive entropy.

As far as we know, this result was not explicitly stated in the
literature, even for interval patterns. We also remark that in
general the entropies of the patterns ([T ,P ], [f k ]) in the statement
(b) of the Theorem need not be equal.
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