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Abstract

It is proved that, in two dimensions, the Calderén inverse conduc-
tivity problem in Lipschitz domains is stable in the LP sense when the
conductivities are uniformly bounded in any fractional Sobolev space
WP a>0,1<p< 0.
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1 Introduction

Calderén inverse problem, see [22], consists in the determination of an
isotropic L conductivity coefficient v on §2 from boundary measurements.
These measurements are given by the Dirichlet to Neumann map A, defined
for a function f on OS2 as the Neumann value

Av(f) =7

u,

o
where u is the solution of the Dirichlet boundary value problem

{v-(wu) =0

wo = f

(1.1)

and % denotes the outer normal derivative. For general domain and conduc-
tivities where the pointwise definition V%U has no meaning, the Dirichlet

to Neumann map
A, HY2(09) — H™Y2(09) (1.2)

can be defined by
(8 (F)0) = [ 9Vu- Vg (13)

where o € W12(Q) is a function such that gy = @o in the sense of traces.



Since the foundational work of Calderén, research on this question
has been very intense but it is not until 2006 when, by means of quasicon-
formal mappings, K. Astala and L. Péivarinta in [12], see also [11], were
able to establish the injectivity of the map

'7—>A'y

for an arbitrary L°° function bounded away from zero. Previous pla-
nar results were obtained in [35], [45] and [20]. In higher dimensions,
the known results on uniqueness require some extra a priori regularity
on v (basically some control on 2 derivatives of v, see [44], [17], [38] and [19].)

A relevant question (specially in applications and in the development
of recovery algorithms, see [30] and [16]) is the stability of the inverse
problem, that is, the continuity of the inverse map

Ay — .

For dimension n > 2, the known results are due to Alessandrini [4], [5].
There the author proved stability under the extra assumption v € W2,
In the planar case, n = 2, the situation is different. Liu proved stability
for conductivities in W2? with p > 1 in [32]. In [13], stability was obtained
when v € C1*® with a > 0. Recently, Barcel6, Faraco and Ruiz [14] obtained
stability under the weaker assumption v € C%, 0 < o < 1. Precisely, they
prove that for any two conductivities v1,y2 on a Lipschitz domain €, with a
priori bounds % <; < K, K > 1 and |v[|ce < Ao, the following estimate
holds:

171 = 2llze@) £ VUM = Aellgreoo)—a-1/2000))
with V(t) =C log(%)_“. Here C,a > 0 depend only on K, a and Ay, and

f(x) = f(Y)

[fllce = sup
TH#Y ’JL‘ - y’a

is the seminorm of the class C® of Holder continuous functions.

An example, due to Alessandrini [4], shows that in absence of continuity L
estimates do not hold. Namely, if we denote by B,, = {z € R?,|z| < o}
the ball centered at the origin with radius rg, take = B; the unit
ball in R?, vy = 1 and v = 1 + XB,,» then [[y1 — 2lre@ = 1, but
HA'Yl — AWHH%%H‘% S 27“0 — 0 as To — 0.

A closer look to the previous example shows that lim,,—o ||v1—72[/z2() = 0.
Therefore one could conjecture that, in absence of continuity, average sta-
bility (in the L? sense) might hold. However, it is well known that some
control on the oscillation of v is needed to obtain stability. Namely, let



~v be defined in the unit square and extended periodically, and denote
vj(x) = 7(jx).. Then the sequence {v;}72; G-converges to a matrix v (see
for example [46] for the notion of G-convergence). Since G-convergence
implies the convergence of the fluxes [46, Proposition 9], we get that if u;, ug

solve the corresponding Dirichlet problems for a fixed function f € H 3 (092),

V- (v;Vu;) =0
(V) (1.4)
Uj‘aﬂ =f
then the fluxes satisfy that v;Vu; — yVu. Thus, by (1.3)
lim <A"/j1 - sz)(f)v ©o) (1.5)

J1,j2—00

for each f,p9 € H 2, However, v; has no convergent subsequence in L2
Notice that v; can be chosen even being C*°, so the problem here is not so
much a matter of regularity but rather a control on the oscillation. In [6] it
is provided a specific choice of v where the pointwise convergence (1.5) is

strengthened to convergence in the operator norm H > H3.

In this paper we prove that L? stability holds if we prescribe a bound
of ~ in any fractional Sobolev space W®2. By the relation with Besov
spaces this could be interpreted as controlling the average oscillation of the
function. Thus average control on the oscillation of the coefficients yields
average stability of the inverse problem.

Theorem 1.1. Let ) be a Lipschitz domain in the plane. Let v = 71,72 be
two planar conductivities in § satisfying

e (I) Ellipticity: + < ~(z) < K.
e (II) Sobolev regularity: ~; € W*P(Q) with a > 0,1 < p < o0, and
[7illwear @) < To.

Let & = min{«, %} Then there exists two constants ¢(K,p), C(K,«a,p) > 0,
such that:

C(1+To)
71— 12l <
F = Tog (p)[ea?

where p = [[Ay, — Ay || 1/2000)— H-1/2(00) -

(1.6)

The theorem is specially interesting for o« — 0. Then we are close to obtain-
ning stability for conductivities in L and we allow all sort of wild disconti-
nuities. Arguing by interpolation one can also obtain LP stability estimates.
Concerning the logarithmic modulus of continuity, the arguments of Man-
dache [34] can be adapted to the L? setting. Namely we can consider the
same set of conductivities with the obvious replacement of the C™ function



by a normalized W2 function. The argument shows the existence of two
conductivities such that [[v1 — 2|l @) < € [[Villwer@) < To, but

1
v = ell2m) > ———a5a7 (1.7)
Cllog(p)|™ 2=
Here C' is a constant depending on all the parameters. Notice that the
power is better than in the L setting but still the modulus of continuity
is far from being satisfactory.

In our way to prove Theorem 1.1 we have dealt with several ques-
tions related to quasiconformal mappings of independent interest. More
precisely, we have needed to understand how quasiconformal mappings
interact with fractional Sobolev spaces. In particular we analyze the
regularity of Beltrami equations with Sobolev bounds on the coefficients
which has been a recent topic of interest in the theory. See [23, 24] where
the case p € WP is investigated in relation with the size of removable sets.
We prove the following regularity result.

Theorem 1.2. Let a € (0,1), and suppose that p,v € W*2(C) are Beltrami
coefficients, compactly supported in D, such that

K-1
< K-
K+1
at almost every z € D. Let ¢ : C — C be the only homeomorphism satisfying
0¢p = udo + v op

and ¢(2) —z = O(1/2) as |z| — co. Then, ¢(z) — z belongs to W'H02(C)
for every 0 € (0, %), and

()] + [v(2)

1D (6 — 2l ey < Ok (Iallfyaey + IWaec))
for some constant Cx depending only on K.

Many corollaries can be obtained from this theorem by interpolation. An
interesting case is for example what do you obtain if p is a function of
bounded variation. We have contented ourselves with the L? setting but
similar results hold in LP. As a consequence of this theorem, we obtain the
corresponding regularity of the complex geometric optics solutions.

The other crucial ingredient in our proof is the regularity of p o where 9 is
a normalized quasiconformal mapping. It is well known that quasiconformal
mappings preserve BMO and W12 (see [39]). Then an interpolation argu-
ment is used in [40] to prove that the same happens with WO"%, 0<a<l.
For more general fractional spaces, we prove the following statement:

L c Wa72 = no w c Wﬂ’Q, fOI' every ﬁ < % (18)



which suffices for our purposes. The proof relies on the precise bounds for
the powers that Jacobians of quasiconformal mappings to be Muckenhoupt
weights obtained in [10].

The Lipschitz regularity of the domain €2 is used to reduce the prob-
lem to the unit disk D. This reduction relies on two facts. First, any
Lispchitz domain 2 is an extension domain for fractional Sobolev spaces.
Secondly, the characteristic function ygq belongs to W®2(C) for any a < %
Indeed, this is responsible also of the constraint a < % at Theorem 1.1. In
fact, a stability result holds as well if €2 is any simply connected extension
domain. To see this, recall that planar simply connected extension domains
Q are quasidisks ([26]), that is, Q = ¢(D) where ¢ : C — C is quasicon-
formal. Therefore, for instance by our results in Section 4, yo = xp o ¢~
belongs to some space W2, and then use Theorem 1.1.

The rest of the paper is organized as follows. In Section 2 we recall
previous facts from [12, 14] which will be needed in the present paper,
and describe the strategy of our proof. In Section 3 we reduce the
problem to conductivities v such that v — 1 € W' ’2(]]])). In Section 4 we
study the interaction between quasiconformal mappings and fractional
Sobolev spaces. Finally in Section 5 we prove the subexponetial growth of
the complex geometric optic solutions and in Section 6 we prove the theorem.

In closing we remark several issues raised by our work. The first one
is to improve the logarithmic character of the stability. It was proved by
Alesssandrini and Vesella that often a logarithmic estimate yields Lipschitz
stability for some finite dimensional spaces of conductivities. However, to
achieve the desired estimates in our setting seems to require a more subtle
understanding of the Beltrami equation and we leave it for the future. It
will also be desirable to obtain LP estimates in terms of WP with constants
independent of p, so that the C* situation in [14] could be understood as a
limit of this paper. Finally, from the quasiconformal point of view, there
seems to be room for improvement in our estimates specially concerning
the composition which is far from being optimal when a ' 1, since W12 is
invariant under composition with quasiconformal maps. This will also be
the issue for further investigations.

Notation. For any multiindex a = (a1, a2), we write 9% = 9¢10,? and
|a] = a1 + ag. The complex derivatives are then

= 0 1 .
0 1 )
az—a—£—§(am—lay)



where z = x +dy. For a mapping ¢ : Q@ — C, |Vo(2)| = |Do(2)| = |06(2)| +
|0¢(2)| is the operator norm of the differential matrix D¢, and J(z,¢) =
|0¢(2)? — |04(2)|? is the Jacobian determinant. The fractional derivatives
D® f are defined in (3.2), along the work we denote the ordinary differential
by D f but, when this notation is not clear, we will denote it by V f. Given
a Banach space X we denote the operator norm of T: X — X by ||T||x. By
C or a we denote constants which may change at each occurrence. We will
indicate, when necessary, the dependence of the constants on parameters
K, T', etc, by writing C = C(K,T,...). This tracking of the constants
is essential for stability results. By X < Y we mean that there exists a
harmless constant C such that X < CY.
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2 Scheme of the proof

We will follow the strategy of [14]. This work focuses on the approach based
on the Beltrami equation initiated in [12]. The starting point is the answer
to Calderén conjecture in the plane obtained by Astala and Paivarinta.

Theorem 2.1 (Astala-Piiviirinta). Let Q C R? be a bounded simply con-
nected domain, and let ~; € L>(Q), i = 1,2. Suppose that there exist a
constant K > 1 such that % <v<K.If

Ay = Ay,
then v1 = .

In other words, the mapping v — A, is injective. We recall the basic
elements from [12] needed in the sequel, also the strategies for uniqueness
and stability, and what we will need in the current paper.



Equivalence between Beltrami and conductivity equation: Let D
be the unit disc. If a function v is y-harmonic in D, then there exists another
function v, called its y-harmonic conjugate (and actually v~ !-harmonic in
), unique modulo constants, such that f = u + iv satisfies the R-linear
Beltrami type equation

of =pdf (2.1)
with 1
-7
=——cR 2.2
=1 (2.2)
Then if K > 1 is the ellipticity constant of v we denote by
K-1
K= ——".
K+1

It is easy to see that ||ptlcc < K and thus the Beltrami equation is elliptic if
and only if the conductivity equation is elliptic. Moreover, for x € (%, K),
the function F(z) = % satisfies HLK < |F'(2)| < 1%5( Thus, it also
follows that

1
c IVllwer@) < lpllwer@) < CllYllwer@),

where the constant C' only depends on K (see Lemma 3.1). Therefore,
bounds in terms of u and ~ are equivalent.
We can argue as well in the reverse direction. If f € I/Vlicz (D) satisfies (2.1)
for real p with ||plc < K, then we can write f = u + v where u and v
satisfy

div (yVu) =0 and div (7_1 Vv) =0.
Thus, it is equivalent to determine either v or u, and throughout the paper
we will work with either of them interchangeably.

As for holomorphic functions, u and v are related by the correspond-
ing Hilbert transform

H,: H2(0D) — Hz(9D)
defined as
Hy(ulop) = vlop

for real functions, and R-linearly extended to C-valued functions by setting
Hy(iu) = i H_p(u). Since OrH, = A, it follows [12, Proposition 2.7] that
Hyu, H-p and A,-1 are uniquely determined by A,. Accordingly in [14,
Proposition 2.2] it is shown that

HHM - HMH 5 ||A’Y1 - A'YQH7

with respect to the corresponding operator norms.



Existence of complex geometric optics solutions, scattering trans-
form and 0; equations: The theory of quasiconformal mappings and
Beltrami operators allows to combine in an efficient way ideas from com-
plex analysis, singular integral operators and degree arguments to prove the
existence of complex geometric optics solutions with no assumptions on the
coefficients.

Theorem 2.2. Let k € (0,1), and let p be a real Beltrami coefficient satis-
fying |u| < %XU- For every k € C and p € (2,1 + %) the equation

of =ndf
admits a unique solution f, € VVllo’f(C) of the form
fu(z) = €% M, (2, k) (2.3)
such that M, (z,k) —1 = 0(1/z) as |z| — oo. Moreover,

M_y,
Re(Mﬂ)>O

In this context, the proper definition of scattering transform of p (or of )
is

and fu(z,0) = 1.

w) = [ o (FRE-TLE) de. 24

Alternatively the scattering transform is given by the asymptotics of the
scattering solutions. Namely,

(k) = lim ~ (3 (5, ) = Mo (2, F) (2.5)

Z—00

The complex geometric optics solutions {u., i} to the divergence type equa-
tion (1.1) are then obtained from the corresponding ones from the Beltrami
equation by

sy = Re(fy) + i (/)

Uy = Im(fu) +iRe(f-p),
and they uniquely determine the pair {f,, f-,} (and viceversa) in a stable
way. We consider u, as a function of (z,k). In the z plane, u, satisfies the
complex v-harmonic equation,

div(y Vu,) = 0.

As a function of k, u, is a solution to the following O-type equation

Ouy
ok

Let us emphasize that 7,(k) is independent of z.

(2,k) = —iTu(k)u(z, k). (2.6)



Strategy for uniqueness: Let 1,72 be two conductivities. In [12], the
strategy for uniqueness is divided in the following steps:

i) Reduction to D.

(

(1) If Ay, = A, then 7, = 7,.

(#i) Step (i7) and (2.6) imply that w,, = ty,.
(

i74) Finally, condition u,, = ., is equivalent to Du,, = Du.,, which holds
as well if and only if v; = ¥

The first step is relatively easy since there is no regularity of « to preserve
and thus one can extend by 0 in D \ Q. Second step is dealt with in [12,
Proposition 6.1]. It is shown that H,, = H,, implies f, (2,k) = fu,(2, k)
for all k € C and |z| > 1. As a consequence (¢i) follows from the characteri-
zation of 7, (2.5).

The step (7i7) is more complex because uniqueness results and a pri-
ori estimates for pseudoanalytic equations in C like (2.6) only hold if either
the coefficients or the solutions decay fast enough at oo. Unfortunately the
needed decay properties for 7 seem to require roughly one derivative for ~.
However in [12] it is shown that in the measurable setting at least one can
obtain subexponential decay for the solutions. That is,

U»Y(Z, k‘) _ eik(z—l—eu(z,k)) (27)
for some function € = €,(z, k) satisfying
Jm llew(z, k)|l Loo(cy = 0.

This would not be enough if we would consider equation (2.6) for a single
z. However, in [12] it is used that wu(z, k) solves an equation for each z.
Further, one has asymptotic estimates for u both in the k (as above) and z
variables. Then, a clever topological argument in both variables shows that,
with these estimates, 7, determines the solution to (2.6).

Strategy for stability: In order to obtain stability, the natural idea is to
try to quantify in an uniform way the arguments for uniqueness. This was
done in [14] for C* conductivities. Let us recall the argument and specially
the results which did not require regularity of v and would be instrumental
for the current work. Let p = ||[A,, —A,,||. First one reduces to the unit disk
by an argument which involves the Whitney extension operator, the weak
formulation (1.3) and a result of Brown about recovering continuous con-
ductivities at the boundary ([18]). Next we investigate the relation between
the corresponding scattering transforms.



Theorem 2.3 (Stability of the scattering transforms). Let 1,72 be con-
ductivities in D, with % <~ < K, and denote pu; = ﬁzz Then, for every
k € C it holds that

’Tﬂl(k> — Tuz (k)’ < Ceclkl p- (2-8)
where the constant ¢ depends only on K.

The estimate is just pointwise but on the positive side it holds for L
conductivities. In [14, Theorem 4.6] there is an explicit formula for the
difference of scattering transforms which might be of independent interest.
Next we state a result that is implicitly proved in [14, Theorem 5.1]. There
it is stated as a property of solutions to regular conductivities. However, in
the proof the regularity is only used to obtain the decay in the k variable.
Because of this, here we state it separately as condition (2.9).

Theorem 2.4 (A priori estimates in terms of scattering transform). Let
K > 1 and v1, 72 be conductivities on D, with % <~ < K. Let
Uy, (2, k) = k(= ten; (Z’k))a

denote, as in (2.7), the complex geometric optics solutions to (1.1). Let us
assume that there exist positive constants o, B such that for eack z,k € C,

B

‘6 1(2,]{7)’ < T
! ||

(2.9)

Then it follows that:

A There exists new constants b = b(K), C = C(K, B), such that for every
z € C there exists w € C satisfying:

—ba
(a) |z—w| < CB ‘log%‘ , where p = [[Ay, — A, ||
(b) uy (2,k) = upy (w, k).

B For each k € C, there exists new constants b = b(K) and C = C(k, K)
such that
CB¥*
o0 2.1
||u’Yl(zv k) u’YQ(Z k)||L (D dA(Z) — |10g( )’ ( 0)

Proof. The proof of A follows from [14, Proposition 5.2] and [14, Proposition
5.3]. Let us prove B. Given z € C, let w € C be given by part A. Then

|UW1(Zak) - u’m(Z:k)’ = ‘U’YI(Z? k) — u%(“%k)"

By the Holder continuity of K-quasiregular mappings, together with (a), we
get,

[ty (2, k) — tay (2, )| < Ch, K) |2 —w|% < C(k, K) C% B¥ |log

and the desired estimate follows after renaming the constants. O

10



Unlike in the uniqueness arguments, estimating D(u,, — u,) in terms of
Uy, — U, is more delicate in the stability setting, since functions do not
control their derivatives in general. This is solved in [14], under Hoélder
regularity.

Theorem 2.5 (Schauder estimates). Let ~y;, i = 1,2 be conductivities on D,
such that % <7 < K and ||71lcem) < To. As always, denote p; = };1’:,
and let f,,(z, k) be the corresponding complex geometric optics solutions to

(2.1). Then

1. For each k € C there esists a constant C = C(k) > 0 with
[ 1 (5 k) = fua (s B)llerra(my < C(K). (2.11)

2. The jacobian determinant of f,,(z,k) has a positive lower bound

J(2, f (k) > C(K, k,To) > 0.

Now, to finish the proof of stability for Holder continuous conductivities, just
note that an interpolation argument between L and C'*® gives Lipschitz

bounds for Df,,. Thus, by pu = 2:; and the second statement above, one
obtains L stability for py — pa. The corresponding result for ;3 — 2 comes

due to (2.2).

Strategy for stability under Sobolev regularity In the current work
we will try to push the previous strategy to obtain L? stability. The previ-
ous analysis shows that we can rely on many of the results from [12, 14]. In
particular, we only have to prove that 7, — p is continuous.

For this, we start by reducing the problem in Section 3. We replace the
assumption v; € W*P(2) by v; € Woﬁ’z(]D)), where 0 < 3 < min{3, a}. For
this, it is used there that characteristic functions of Lipschitz domains be-
long to W54(C) whenever 3¢ < 1.

Then we proceed by investigating the regularity of solutions of Beltrami
equations with coefficients in fractional Sobolev spaces in order to obtain an
estimate like (2.11), with the C'*® norm replaced by the sharp Sobolev norm
attainable under our assumption on the Beltrami coefficient (see Theorem
4.7). Tt is also needed here to understand how composition with quasicon-
formal mappings affects fractional Sobolev spaces. As far as we know, the
estimates here are new and of their own interest.

Afterwards we prove that our Sobolev assumption on pu suffices to get the
uniform subexponential growth of the geometric optics solutions needed in
condition (2.9) in Theorem 2.4 (this is done in Section 5, see Theorem 5.7).
In fact we obtain a very clean expression for the precise growth, achieving
that the exponent depends linearly on «. Finally, in Section 6 we do the
interpolation argument. Here we do not have enough regularity to control

11



W1 norms and here is where one sees why we need to be happy with the
control on ||p1 — pal|2(p). Also we do not have a pointwise lower bound for
the corresponding Jacobians which causes also difficulties.

3 Fractional Sobolev spaces and Reduction to i €
Wi (D)

3.1 On fractional Sobolev Spaces

Here and in the rest of the section we consider 1 < p < oco. Following [1,
p.21], for any domain 2, we denote by W'?(Q) the class of distributions f
with LP(2) distributional derivatives of first order. This means that for any
constant coefficients first order differential operator D there exists an LP({2)
function D f such that

(f.Dy) = —/Qwa-

whenever ¢ € C* is compactly supported inside of 2. We also denote
WhP(Q) = LP(Q) N WP(Q). Similarly one can define the Sobolev spaces
W™P(Q) and W™P(Q) of general integer order m > 1. These are Banach
spaces with the norms

I fllwme) = Z 10%fllLe)  and  [[fllypmeq) = Z 10% fll Lo (02)-

|a|<m |a|=m

Let us introduce for general domains €2 and any real number 0 < a < 1 the
complex interpolation space

WeP(Q) = [LP(Q), WHP(Q)]a, (3.1)

and similarly for the homogeneous case WP(Q) = [LP(Q), W?(Q)]4. Then
the closure of C3°(€2) (C* functions with compact support contained in 2)
in W*P(Q) is denoted by W;""(£2). Functions in W (Q) can be extended
by zero to the whole plane, and the extension belongs to W*?(C), so we can
identify any function in W (Q) with its extension in W*P(C). For simplic-
ity, H'(Q) = W12(Q), H}(Q) = W*(Q) and Hz(0Q) = H'(Q)/HL(R).

It comes from the work of Calderén (see [2, p.7] or [42]) that every Lip-
schitz domain Q is an extension domain. Given Q' O Q, we denote the
corresponding extension operator by FE,

B Wme(Q) — WP ()

When € is an extension domain, an interpolation argument (see [1, p.222])
shows that WP (Q) coincides with the space of restrictions to € of functions
in W*P(C). That is, to each function u € W*P(Q) one can associate a

12



function @ € W*P(C) such that o = v and ||@|lyenrc) < C[lullwarq)-
We have chosen just one way to introduce the fractional Sobolev spaces.
Next, we discuss alternative characterizations and further properties of these
spaces needed in the rest of the paper. Two good sources for the basics of
this theory are [1, Chapter 7], [42, Chapter 4].

Fourier side. By denoting ex(z) = eikzﬂg, the Fourier transform can be
defined as

A~

f(k) = /C e_k(2) f(2)dA(2).
Then, if f € W*P(C) we introduce the fractional derivative of order « as
Daf(€) = ¢ (€). (32)
When p = 2, it is easy to see that
W) = { f € LX(C); (1 + g% Fle) € LA(©) },
and that this agrees with the space of Bessel potentials
W®2(C) = G x L*(C) = {f = Ga x g;9 € L*(C)},

where G, is the Bessel kernel [2, p.10]. Similarly W®2(C) = I, * L*(C) for
the Riesz kernels I,. If p # 2, the situation is more complicated but it can
be shown that

~

wer(c) = {f e L) (1 + g2 F(e) e 17(C) }.

Integral modulus of continuity We define the LP-difference of a func-
tion f by
wp(F) () = IF (- + ) = FO)lle(c)- (3.3)

(see [42, Chapter V]). Then the Besov spaces B5?(C) are defined by

BRA(C) ={f € LP(C) : | Gpa = / wp() )y~ Pdy < oo},
« C

There are many relations between Besov and fractional Sobolev spaces. We
will need the following two facts,

B2 = W2, WP C BR?  (p < 2). (3.4)

For a proof see [1, Chapter 7] or [42, Chapter V].

13



Generalized Leibniz Rule The following result is shown in [29]. See
also [27] and [47].

Lemma 3.1. Let f,g € C5°(C

(a) Let aq, a0 € [0,0] C [0,1
SV B
(1,00) satisfy -+ - =

1D%(fg) = f D*(g) = g D*(f)lle < CUD* (Hl[Ler [[D**(g)| Lr2

).
) be such that aq + ag = a. Let also p1,p2 €
]%. Then

for some constant C = C(ay, ag, a, p1,p2,p) > 0.
(b) If 0 < <1, py € (1,00] and pa € (1,00) satisfy p% + p% = 1%’ then
1D*(f e g)llr < CDf(g)llLer |1Dgl| L2,
for some constant C' = C(«, p1,p2,p).

(¢) If0<a<1landl<p< oo then

1D%(fg) = f D*(g) =g D*(Nllr < CID*(f)zr lgll o,

for some constant C' = C(a, p) > 0.

Remark 3.2. From property (a) and (c) it follows the generalized Leibnitz
rule

ID(f 9llizr < Coll D fllLes llgllLez + 1Dl zes || £ zea (3.5)

Whenever1<p1,p3<ooand1§p2,p4§ooandl:%—|—i2:pi3+pi4.

Moreover, we can localize the support in (3.5) in the following way. Let us
assume supp f C D, then

ID*(f Dllze@) < Collfllweri 2oy 9l + (1Dl Les | fllrazpy  (3.6)

The key point is to use a cutoff function ¢ with ¢ = 1 on D and supported
on 2D, and by using (a) and (c) above, we can write

D)l ey = 1D (D)l Lo (m)
< CID*@ll e | fllr2 + (1Dl Lo (my || fll Lo () + |0 D fll Lo

We need to take ps > p. This can be achieved by using Sobolev embedding

2p
2—ap

Wer(D) C LP2(D), with py <

to finally obtain that

1D fllze < Cfllwer@p)- (3.7)

14



Pointwise Inequalities

Lemma 3.3. [ [43]] If f € W*P(C), a > 0, 1 < p < o0, then for each

0 < X < « there exists a function g = gy € LP*(C), py = 2_(02[711)\)17 such that

£(2) = fw)] < |2 = wl* (9(2) + g(w)) (3.8)
for almost every z,w € C. Furthermore, we have that

lgllien < Cllfllwer(c),

for some constant C' > 0.

3.2 Reduction to p =2

This reduction relies on the fact that u € L>(C)NW*P(C) and the following
interpolation Lemma.

Lemma 3.4. Let f € We0oPo N WALPL yhere 1 < po,p1 < 00, 0 < ap, a1 <
1, and 0 € (0,1). Then,

I lwes < NLfll%aow0 LF I15aym

where

1 1-—
a=0ap+(1—0)a; and f:£+ 9.
P Dpo b1

Furthermore, if either pg = 0o or p1 = oo, then the above inequality holds
true by replacing W*Pi by the Riesz potentials space I, * BMO.

Proof. 1t is well known that the complex interpolation method gives
[WeoPo Jo1pi], — [P

whenever 1 < p < oo (for the proof of this, see for instance [48]). For
p = 00, the same result holds true if we replace W by the space of Riesz
potentials I, * BMO of BMO functions (for this, see [40]). O

Let p be a compactly supported Beltrami coefficient. Then, it belongs both
to L'(C) and L>®(C). If we also assume that u € W%P(C) for some a,p,
then we can use the above interpolation to see that u € W54(C), for any
1 < ¢ < o0 and some 0 < # < a. We are particularly interested in ¢ = 2.

Lemma 3.5. Suppose that p € WP(Q) N L>®(Q) for some p > 1 and
0<a<1. Then,

e Forany0<60<1,

—0 0
HHHW‘IG%(Q) < HMHlLoo(Q) HMHW‘LP(Q)'
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o Forany0<0<1,

—0 0
||M||W9a,m(m < ||N||i1(g) HMHWa,p(Q)-

e One always has

lllwsay < CUS ) 1ty

where 3 = %p* and p* = min{p, 7%}-

Proof. The first inequality comes easily interpolating between L>°(€2) and
WeP(Q) (the L norm can even be replaced by the BMO norm, which
is smaller, see [40] for more details). For the second, simply notice that
compactly supported Beltrami coefficients belong to all LP(£2) spaces, p > 1,
so one can do the same between L'*¢(Q) (e as small as desired) and W*P(().
The last statement is obtained by letting 6 = % above. O

3.3 Reduction to 2 =D and p € W*(D)

The proof of the following lemma relies in the fact that characteristic func-
tions of Lipschitz belong to W2 for each a < %

Theorem 3.6. Let 2 be a Lipschitz domain, strictly included in D. Let

€ W2(Q). Define
- Q
=0 c\a

Then, i € Woﬁ’2((C) for 3 < min{e, 3} and

lllwsay < C lullwes).
Analogous results can be stated for the extensions by 1 of ;.

Proof. Since € is an extension domain, there is an extension pg of p belong-
ing to W*2(C). Of course, such extension jo need not be supported in
any more. Now i can be introduced as the pointwise multiplication

= XQ Ho-

By virtue Lemma 3.1 it is enough to study the smoothness of the character-
istic function xqo. A way to see this is to recall that fractional Sobolev spaces
are invariant under composition with bilipschitz maps [50]. Now, the char-
acteristic function of the half plane belongs to W”(C) whenever ap < 1.
Therefore, by a partition of unity argument, we get that yo € W*P(C)
when ap < 1. The proof is concluded. ]

16



Now we need to compare the original Dirichlet-to-Neumann maps with the
Dirichlet-to-Neumann maps of the extensions.

Lemma 3.7. Let Q be a domain strictly included in D. Let v1,7v2 € L*(2)
be conductivities in Q. Further, assume that
1
K
for almost every z € Q. Let 7; denote the corresponding extensions by 1 to
all of C. Then,

<7i(2) < K

1A = Al 3 opy 4 omy S C P

where p = || Ay, — A72||H%(8Q)—>H_%(8Q)'

Proof. We follow the ideas of [14, Theorem 6.2], although the stability result

from [18] is not needed in our situation. Let ¢p € H%(al]])). Let 4; € H'(D)
be the solution to

V-(#Vi;)) =0 inD
aj = Y0 in JD.
Let also us be defined by
{v - (12Vus) =0  in Q

U2 = 7:61 in 0f€).

Define now @ = ug xo +11 xp\o- As in [14], we first control s — o2 in terms
of p. To do this,

/ V(2 — 2)]* < ¢ / Ao V(g — tig) - V(D9 — 1i2)
D D
=C / :}/2 Vf)g . V(TN)Q — 17,2)
D
because ¥y — @iz € Hi (D) and the J2-harmonicity of i in D. By adding and

substracting fD Vi - V(02 — Gg), and using that 413 = 52 = 1 off Q, the
right hand side above is bounded by a constant times

/ NV - V(0 — U2)
D

+ ’/ (y1 Vg — v2 Vug) - V(02 — a2)| .
0

Here the first term vanishes because %7 is 41-harmonic on D and 9 — g €
H& (D). For the second, we observe that u; is yi-harmonic in €2, ug is Y-
harmonic in Q, and uy — @y € Hg (). Thus,

= [{(Ay, = Ay (Ti)90), (B2 — 1) j90) |

< pllall g o0, 192 = B2l 44 5,

/ (m Vg —v2 Vug) - V(02 — U2)
Q

< pl Vil 2y V(92 — t2) || 220

17



Summarizing, we get

1
2
( [ 19t - a2>|2) < ep|| Vit ey < e Vi |2

<cplleoll 1

(3.9)

HZ(9D)"

W(;: will use this to compare the Dirichlet-to-Neumann maps at 0. If ¢y €
H?2(0D) is any testing function, and 1 is any H'(DD) extension,

(A3, = A5,)(%0), Yo) = /D(fyl Viiy — A2 Viig) - Vib. (3.10)

We will divide the bound of this quantity in two steps. For the first,

D(’Yl Viy — (y2 xa + 71 xp\e) Vi2) - V| = [(Ay, — Ay,)(G1100), Yja0) |
which is bounded by

00l < plIVall gz IVl 220
< plIVir L2y IVl 2 (m)

< plleoll 1 |10l

p lla1 a0l

H? (69) H? (69)

H2 (oD) H2 8]1])

We are left with

/D ((v2 xQ + 71 xp\@) V2 — 52 Vo) - Vl/}’

which is equal to

/ Y2 V(02 — @) - V1p + V(02 — a2) - Vo
Q D\Q

which in turn is controlled, using (3.9), by a multiple of
/D V(02 — ) [ |Vp| < [|V(02 — G2)l| L2y [Vl L2(m)

This gives for (3.10) that the difference of Dirichlet-to-Neumann maps sat-
isfies

(852 = As)(90), 9] < €218l 13 o 190013 o

as desired. 0
Remark 3.8. The trivial extension of the conductivities by 1 simplifies the
arguments but has the price of losing regularity if & > 1/2. An argument

similar to that in [14] would need an L? version of the boundary recovery
result of Brown (see also [5]) of the type

v — ’YQHL2(aQ) < Cp.
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4 Beltrami equations and fractional Sobolev
spaces

This section is devoted to investigate how quasiconformal mappings inter-
play with fractional Sobolev spaces. We face three different goals. First,
given a Beltrami coefficient u € W' 2(C), we find 8 € (0,a) such that for
any K-quasiconformal mapping ¢ the composition u o ¢, which is another
Beltrami coefficient with the same ellipticity bound, belongs to W?2(C).
Secondly, we obtain the optimal (at least when o &~ 1) Sobolev regularity
for the homeomorphic solutions to the equation

Of =puof +vaof

under the assumptions of ellipticity and Sobolev regularity for the coeffi-
cients. Finally, we obtain bounds for the complex geometric optics solutions.
Many properties of planar quasiconformal mappings rely on two precise in-
tegral operators, the Cauchy transform,

Co(z) = =% / P aw). (4.1)

v (w—2)

and the Beurling transform,

Top(z) = -1 lim &)2 dA(w). (4.2)

T e=0 Jjy—z>e (W —2)

Their basic mapping properties are well known and can be found in any
reference concerning planar quasiconformal mappings, see for instance [3, 9,
12]. For s € (1, 00) we will denote by || T 1s(c) the norm of T" as a bounded
operator in L*(C). We recall also their relation with complex derivatives

9Cy = o,
T(9p) = d¢

which holds for any ¢ € C§°(C).

4.1 Composition with quasiconformal mappings
Let pu be a compactly supported Beltrami coefficient, satisfying

K-1
K+1

| < XD = K XD-

Further, assume that

p € W(C) and ||p]lwez(c) < To
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for some o > 0 and some I'y > 0. Let ¢ : C — C be a planar K-
quasiconformal mapping. In this section, we look for those 8 > 0 such that
pop e Wh2(C).

We need to recall a local version of a lemma due to Fefferman and Stein,
see [36] and [25, Proposition 2.24]. The proof follows from Vitali covering
Lemma, exactly as in [36]. By M f we denote the Hardy-Littlewood maximal
function,

M f(x) = sup ,,3 /D ()| dA2),

where the supremum runs over all disks D with x € D, while Mg f denote
its local version, that is,

1
Mof(x) = sup o5 /D F(2)|dA2),

where the supremum is taken over all discs D with x € D C €.

Lemma 4.1. Let 1 < p < oo and w > 0 a locally integrable function. Then

[ Mas@ra@aa) < [ 1@ M) dA),
We can now prove the main result of this section.

Proposition 4.2. Let K > 1. Let p € W*2(C) for some a € (0,1),
and assume that |u| < K+1 xp. Let ¢ : C — C be any K-quasiconformal
mapping, conformal out of a compact set, and normalized so that |¢(z)—z| —
0 as |z| — oo. Then

po¢eW’?(C)

whenever 3 < . Moreover,

a1
o dllwsa) < C il waey.
for some constant C' > 0 depending only on o, 3 and K.

Proof. It is clear that o ¢ belongs to L?(C), so since W®? agrees with the
Besov space ngz, it suffices to show the convergence of the integral

z w z 2
[ [ ot ) _pOEDE 1y

for every 8 < . First of all, for large w there is nothing to say since

z+w 2))[?
/w|>1/\,u +’w‘2+25'u(¢( )l dA(z) dA(w)

- /I I>1 W /q; \(p(z +w)) — u(p(2))|? dA(z) dA(w)

- il |67 ATl 67 @)
N |w|>1 |w|2+26 B
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Then we are left to bound the integral

(z4+w 2))|?
/w|<1/ e +|w|2+2gﬂ(¢( ) dA(z) dA(w).

As p has support in D, and |w| < 1, the difference |u(é(z + w)) — u(p(2))|
is supported in the I-neighbourhood of ¢~!(D), that is, F = {z € C :
d(z,¢~ (D)) < 1}. Indeed, ¢(z) € D if and only if z € ¢~'(D) C F, while
#(z+w) € D if and only if z € ¢~ 1 (D) —w. But if z = ¢~1(¢) — w for some
¢l <1,

(=67 (D) = inf 2 =67 (O)] = inf 670) —w 67 (€)

<p7HE) —w— 97O = |w < 1,

so also ¢~ }(D) —w C F. In other words, if z ¢ F then u(¢(z)) = u(é(z +
w)) = 0, and we are reduced to bound

2 w 2 2
/<1/ e +\w]2+2ﬁu(¢( ) dA(z) dA(w). (4.3)

Note also that, by Koebe’s 3 Theorem, we have the inclusions ¢(D) C 4D
and ¢~ 1(4D) C 16D, so that F C 17D.

To bound (4.3) the local behavior of 4 is important, so we will use condition
(3.8) for the function p. But before, recall that u € W%2(C) N L>(C), so
that by interpolation we obtain p € WO‘G’%((C) for each 6 € (0, 1), with the
estimates

—0 0
11000 < € Ml ey

Thus, by (3.8), for every A € (0, af) there exists a function g = gy € LP*(C),
Py = m, such that

11(C) — (&) < 1¢—€1* (9(C) + 9(€))

at almost every (,£ € C. The choice # = 1/K and Lemma 3.3 also gives us
LPx estimates,
lgxllzercy < Cllully & 2k g
1—L 1 (44)
< Cllpll e Nellyas ey
with C > 0.
It follows that

(2 +w)) — (@)l <!¢(Z +w) —

jw|?
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Next we recall that quasiconformal mappings are quasisymmetric (see for
instance [9] or [33]). That is, for K > 1 there exists an increasing homeo-
morphism 7 : R — R such that for any K-quasiconformal mapping ¢, and
for any a, z1, 22 € C, we have

|6(22) — (a)] |2 — df
6(21) — pla)] = "€ <|Z1 - a|) '

2
(@i 6(Dla, ) < 4 ( max [6(:2) - o))

2
< a1 (_min_ [o(e1) ~ ofa)] ) (46)

<40 (D) = O / T 9)aAC)

for some Cx > 1 depending only on K. We now plug (4.6) into (4.5), and
use that A < 1,

(WHTUJ,_ ¢<z>r)A - (CK di;ixzﬁ(DD((zm»)*

( s / » <¢dA<<>>
1 A :
= <|D<z,|w|>| Jon 769 dA(O) '

At the last step we used the reverse Holder inequality for Jacobians of qua-
siconformal mappings, which holds uniformly in A because A € (0,1) (for a
precise result see [10, Theorem 12]). Thus, if @ = {z € C : d(z, ¢ (D)) < 2}

then
(|¢(Z +w) — d)(z)’)A < Ok (MaJx(2))

|w]

[N

where MqJ)\(z) denotes the local Hardy-Littlewood maximal function Mg
at the point z of J(-,¢)*. Note also that Q C 18D by Koebe’s Theorem.
By symmetry, we could also write MqJy(z 4+ w) instead of MqJy(2), so the
integral at (4.3) is bounded from above by

Cr / / MqaJ\(z +w) g(o(z + ’UJ))2 + MqaJx(2) g(¢(2))2 dA(Z) dA(w),
lw|<1

\w|2+25—2)‘
(4.7)
and this reduces our job to find bounds for
C
25 [ Madi) g0 dAe), (45)

22



whenever A > (. Indeed, we simply divide the integral of (4.7) into two
terms, one in z (for which the bound (4.8) is obvious) and one in z 4+ w. For
the second one, we note that if z € F' and |w| < 1 then z +w € Q and after
a change of coordinates we obtain

Mo Jx(z + w) g((z + w))2
[ MRl 0 1y g

g@A@AMM@M@MM%ﬁﬁg

:f%é%M@%MWM@

provided that A > (§, and where C'x may have changed, but still depends
only on K, as claimed in (4.8).

To finish the proof, we will use Lemma 4.1 and the fact that jaco-
bians of quasiconformal mappings are A, weights. This requires two
auxiliar indexes 7, s > 1, chosen as follows:

e For each A € (3, %), we have KA+ (1 — a) < 1, whence there exists
numbers s such that

1 _ 4.9
KAt d-a) (49)
For instance,
=14 1 —1 1 (4.10)
T\ EA+(1-a) ' ‘
Further, since 8 < A we get
1 a—Kp
1< <14+ —
“Eratl-a ' T1-@—K9

therefore, by choosing o — K3 < 1/2, we can assume that s < 2. Note
that s — 1 and a — K8 are comparable quantities.

e Recall that p) = #Iia) Now, the choice (4.10) guarantees us that
PA 1
=2——>1. 4.11
2Ks s ( )
Hence we can find numbers r satisfying
r Px
1< < 4.12
14+ As(K—1) ~ 2Ks’ (4.12)
as for instance -
r - (4.13)

1+xs(K—1) 2 25

Again, the difference m — 1 is comparable to o — AK.
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By denoting o — K3 = € > 0, the particular choice
a— K@
2K

A=0+
gives us the following parameters:

s=1+ = 14+As(K—-1)=1+4+ (K —1)8+ Me

4 — 2e¢
~ 14 (K — 1)f for small enough e

and similarly

r 1
=14+ (K -1 M. =1
r=1+( )B4+ My = p— +(K_1)5+M26
1
~ 1+ ———— for small enough ¢
(K —-1)p

where M7, My are positive constants depending only on K. Once the param-
eters have been chosen, we can start bounding the integral at (4.8). Since we
can not work in L', we first bring s into the estimates by Holder’s inequality,

/ Moy (2) (g 0 6(2))* dA(z) = / MaJy(2) (g 0 6(2))% xa(=) dA()
Q Q

S

= / (MaJx(2))° (9.0 6(2))* xa(2) dA(z) | [0,
Q

I

Now Lemma 4.1 provide us with a constant C;(s) to obtain
1<Ci(s) [ )" Mllg0 0% xa) () 4A(2).

Note that C1(s) blows up only as s — 1, that is, as A — & due to (4.10).
Now, by Holder’s inequality with exponent r, one gets

1< ([ 56 (g0 qs%)xQ)(z))’"dA(z))’l" (f JA<z>SdA<z>)l_i.

The first inequality at (4.12) guarantees that the weight Jy(2)* = J(z, $)**
belongs to the Muckenhoupt class A, (see [10] or [9, Theorem 13.4.2]), with
constant

C(K) < C(K)
r—1—-As(K —1) €
due to (4.9), (4.10) and (4.13). We can use the weighted L" inequality for
the maximal function and a change of coordinates to see that

/ I(2)* (M((g0 ) xa)(2)) dA(z) < Cy / T3(2)* (9.0 6(2))>" dA(z)
C Q

173014, <

(4.14)

_ 0, / T(w, ¢~ g(w)>T dA(w).
o(2)
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The precise behavior for C'y comes from [21] (see also [37, Theorem 1.1]),

Czr = | M|z (5 an) < C HJ/\H
1 OK)  O(K)
< 1 <
_C<+(K—1)5+M26> e = Pe’

where C(K) is a positive constant that depends only on K. Summarizing,
we get for the integral at (4.8) the bound

1

1/T|Q‘1—— </Jz¢’\SdA > </ quS 1 As g(w )QSTdA(w)>TS‘

II

Now, the second inequality at (4.12) gives us that py > 2rs. Thus Holder’s
inequality is justified and we get

py—2rs

I < / WP dAw) | / Jw, s )BT dAw) |
49 5

The first integral above is finite since g € LP*. To see the finiteness of the
second integral, observe that ¢! is a K-quasiconformal mapping, hence
by Astala’s Theorem [8] the M th power of its Jacobian determinant

J(-,¢~1) will be locally integrable provided that this exponent does not
exceed % But

pgil—_zjj) KIi 1 < "< ﬁ(l +As(K 1))
which comes again from the second inequality at (4.12). Furthermore,
K pa1=2Xs)
K-1 Py — 2rs
where M3 > 0 depends only on K. Thus we have that

II < C(K)ex gl o)

where the constant C'(K) depends only on K. This means that (4.8) has
the upper bound

< Mse

1_1

Cl/’”]ml*% . El
L B ([ e ereaam) T o) ek ol ey

<ﬂ Q)17 <

11

J(z, )M dA( )> 1911702 o(c2))

~ Be3-1/K Q/Q

CUE) qp-x (L M=)
< 190 (i [ 76.0) 7 ol
C()

_W HQHLP/\(¢(Q))
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where we have used that \s < 1, the area distortion theorem of Astala [§]
and the fact that || < C(K). Using (4.4), one finally obtains for the square
root of the integral at (4.3) the bound

C(K) 1-1/K 1/K
WH“HLOO(C H/‘I’HWQQ

Since ||u||2ool/é)( < 1, the obtained inequality for the nonhomogeneous norms

is
O(K) 1
i dlhwnaqe) €~ Wil

as desired. O

Remark 4.3. The condition 8 < &% is by no means sharp. This is clear
when « is close to 1. As promised in the introduction this will be a matter
of a forthcoming work.

4.2 Regularity of homeomorphic solutions

We start by recalling the basic result on the existence of homeomorphic
solutions to Beltrami type equations. In absence of extra regularity the
integrability of the solutions comes from the work of Astala [8]. We recall
the proof in terms of Neumann series since it will be used both in this section
and in the sequel.

Lemma 4.4. Let p,v be bounded functions, compactly supported in D, such
that ||u(z)| + |v(2)]| < [[g_& at almost every z € C. The equation

Of =pof +vof (4.15)

admits only one homeomorphic solution ¢ : C — C, such that |¢(z) — z| =

O(1/|z|) as |z| — oo. Further, if p € ([g—ﬁ, I?—[fl) then the quantity

106 = 1l Lo(c) + 109 1o (c)
is bounded by a constant C = C(K,p) that depends only on K and p.
Proof. Put ¢(z) = z + Ch(z), where h is defined by
(I-—pT—vT)h=p+v.

and C and T denote, respectively, Cauchy and Beurling transforms. Since
T is an isometry in L?(C), one can construct such a function i as Neumann
series

h = Z(MT +vT)™"(u +v)
n=0
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which obviously defines an L?(C) function. By Riesz-Thorin interpolation
theorem,

;igé 1Tl tr(c) = 1,

it then follows that h € LP(C) for every p > 2 such that ||T||z»c) < £
Hence, the Cauchy transform Ch is Holder continuous (with exponent 1— %)
Further, since h is compactly supported, we get |¢(z) — z| = |Ch(z)| < %,
and in fact ¢ — z belongs to W1P(C) for such values of p. A usual
topological argument (see for instance [9, Chapter 5]) proves that ¢ is a
homeomorphism. For the uniqueness, note that if we are given two solutions
#1,$2 as in the statement then 9(¢; o qSQ_l) = 0 so that ¢ o ¢2_1(z) —zis
holomorphic on C and vanishes at infinity.

Now we recall a remarkable result from [10], which says that

I —puT —vT : LP(C) — LP(C) defines a bounded invertible opera-

tor whenever p € (Ig—fl, Ig—l_(l) Further, for the norm of the inverse operator

we have the following estimate,
I(I=pT —vT) o) < CK,p).
Thus, if p € (I?—fl, lg—f_(l)
17l ey < C(K,p) |1+ v Lec) < C(K, p).

Therefore

106 — 1| Loy + 109l Lo c) = TR ey + 17l o) < C(K, p)
since T' is a bounded operator in LP(C). O

Once we know about the existence of homeomorphic solutions, it is time to
check their regularity when the coefficients belong to some fractional Sobolev
space.

Theorem 4.5. Let a € (0,1), and suppose that p,v € W*2(C) are Beltrami
coefficients, compactly supported in D, such that

K-1
| < =

K+1
at almost every z € D. Let ¢ : C — C be the only homeomorphism satisfying

0p = udop + v od
and ¢(z) — z = O(1/z) as |z| — co. Then, ¢(z) — z belongs to WH042(C)
for every 0 € (0, %), and
1016 = D12y < C (Illyase) + IWIrose)

for some constant C = C(K, 0, ).

()] + [v(2)
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Proof. We consider a C* function 1, compactly supported inside of D, such
that 0 <+ <1 and [ =1. For n =1,2,... let ¢,(2) = n®¢(nz). Put

o 2) = /C () (2 — w) dA(w),

and

vn(z) = /(Cy(w) Un(z —w) dA(w).

It is clear;h?t both u,, v, are compactly supported in ”T‘H]D), ln(2)] +
lvn(2)] < KT1 b — NHWO‘*Q(C) — 0 and |lv, — v|[wa2c) — 0 as n — oo.
Indeed there is convergence in L? for all p € (1,00). Thus, by interpolation
we then get that for any 0 < 6 < 1

a0,2 = 0

A lm = £llya03 oy + 19n = 2len o

( w

and in particular, the sequences D, and D*v,, are bounded in L%((C).
Let ¢, be the only K-quasiconformal mapping ¢, : C — C satisfying

Opn = fin O + v 0n, (4.16)

and normalized by ¢,(z) — 2z = On(1/z) as |z| — co. By the construction in
Lemma 4.4, ¢, (2) = z + Chy(2) where h,, is the only L?(C) solution to

hn = Hn Thn + vy Thn + (Mn + Vn)v

and Ch,, denotes the Cauchy transform. As in Lemma 4.4, h, belongs to
LP(C) for all p € (Ig—fl, 2K} and

|Anllr(c)y < C(K,p) (4.17)
with a constant C(K,p) that depends on K and the product

(I?—I_(l —-p)(p— I?—fl) In particular, ¢, — z is a bounded sequence in W1?(C).

Let us denote H,(z) = Chn(z) = ¢n(2) — 2. We now write equation
(4.16) as B
0H, = ,unaHn + v, 0H, + P + Vn

and take fractional derivatives. If 8 = af, we can use Lemma 3.1 (a) to find
two functions Eg, Fjg such that

DPOH, — p, D’0H, — v, D’0H,, =
D, OH,, + Eg + Dv,, 0H, + Fj.

Now recall that we have D?0¢ = dDPp and similarly for d. Further, if ¢ is
real then DAy is also real. Thus

dD°H,, — u,dD°H, — v,0D5H,,
= DPp,, 0H, + Ez + DPv, 0H, + Fj.
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Equivalently, since T0 = 0,

(I — T — v T) <5D5Hn) = D%y, OH, + DPv, 9H, + Es + Fj.
(4.18)
For E3 and Fj we have precise L? estimates. To see this, choose p; = %,
and then let py be such that 2 < py < 2K and + 4+ L = % Observe that

1 p2
this forces 0 < 0 < K, and further

K,Qf_(l—pgz(f(_li(l_e)(l—KQ)SCK G{-@). (4.19)
Now, by Lemma 3.1 there exists Cy = Cy(3, p1,p2) such that
1B 2(c) < Co 1D hillov () |0Ha 1oz ) (4.20)
and similarly
1F5ll L2y < Co IDPv| o () |0 Hnl| o2 () - (4.21)

This says us that the right term at (4.18) is in fact an L?(C) function, whose
L?(C) norm is bounded from above by

(Co+1) (ID° pallos (@) + 1D°Vall o)) 10Hnllzra c).

Now, recall that the operator I — u,, T — v, T is continuously invertible in
L?(C), and a Neumann series argument shows that the norm of its inverse
is bounded by 3(K + 1). Thus,

18D Hullzzc
K+1
< €0+ 055 (D%l o) + D%l ) ) 10l
K+1
< (Co+ 1) == (Inllfyasiey + Iallyecicy) 10HalLrs o

where Cy = Co(f, p1,p2) is the constant in (4.20). As n — oo, we have the
uniform bound (4.17),

10Hn | 1r2 () = I Thnllpr2(c) < Cpy [Bnllr2(c) < Ch

where now the constant Cy = C1 (K, ¢) depends on K and + — 0. Thus, we
obtain for HBDﬂHnHLz(C) the upper bound

(Co+ DO, 0) (e + Iyec))

By passing to a subsequence we see that DPH,, converges in W12(C), and
as a consequence ¢ — z belongs to WHB’Q((C). Further, we hav